Добірка наукової літератури з теми "Mass explosion"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mass explosion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mass explosion"

1

Filippov, Vladimir, Andrey Eremenko, and Igor Mokrousov. "GEOTECHNOLOGY IMPACT ON SEISMIC ACTIVITY OF THE AREA DURING MINING PROTECTIVE PILLAR IN CONDITIONS OF SHEREGESH DEPOSIT." Interexpo GEO-Siberia 2, no. 5 (2019): 75–80. http://dx.doi.org/10.33764/2618-981x-2019-2-5-75-80.

Повний текст джерела
Анотація:
Analysis of blasting works during reserves mining of protective pillar of level-and-room mining and sublevel mining with application of mobile machinery is carried out. It is established that high power explosions, carried out within border of protective pillar, longtime impact on rock solid (up to 2 days and more). Each explosion forms seismic active zone in which shocks occur on the distance up to 400v and more. Converse to technology of sublevel caving with application of mobile machinery has excepted carrying out explosions with large mass of explosive materials (10t and more). Through a month, 20-30 explosions are carried out with mass of explosive material from 800-900kg up to 3000-3500 kg. Increasing of explosion number causes to the explosions produce seismic active zone and Impact to solid condition and near workings. But reduction of mass of explosive materials has caused to low frequent event. Mainly seismic events of 1 and 2 class happen.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bjelovuk, Ivana D. "Estimation of the explosive mass based on the surface explosion crater on asphalt." Tehnicki vjesnik - Technical Gazette 22, no. 1 (2015): 227–32. http://dx.doi.org/10.17559/tv-20130928113332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kukfisz, Bożena, and Robert Piec. "The Fire and Explosion Hazard of Coloured Powders Used during the Holi Festival." International Journal of Environmental Research and Public Health 18, no. 21 (October 21, 2021): 11090. http://dx.doi.org/10.3390/ijerph182111090.

Повний текст джерела
Анотація:
During the world-famous Holi festival, people throw and smear each other with a colored powder (Holi color, Holi powder, Gulal powder). Until now, adverse health and environmental effects (skin and eye irritation, air pollution, and respiratory problems) have been described in the available literature. However, the literature lacks data on the flammable and explosive properties of these powders during mass events, despite the fact that burns, fires, and explosions during the Holi festival have taken place many times. The aim of the article is to present the fire and explosion parameters of three currently used Holi dust and cornflour dust types as reference dust. The minimum ignition temperature of the dust layer and dust cloud, the maximum explosion pressure and its maximum rate of growth over time, the lower explosion limit, the limit of oxygen concentration, and the minimum ignition energy were determined. Tests confirmed that the currently available Holi powders should be classified as flammable dusts and low-explosive dusts. The likelihood of a fire or explosion during mass incidents involving a Holi dust-air mixture is high.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zotkin, D. A., M. A. Kislov, and K. N. Krupin. "Forensic injury characteristics in explosive trauma mass case." Bulletin of the Medical Institute "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH), no. 1 (April 13, 2021): 17–20. http://dx.doi.org/10.20340/vmi-rvz.2021.1.morph.1.

Повний текст джерела
Анотація:
The use of improvised explosive devices for terrorist purposes in crowded areas forms explosive trauma as a form of violent peacetime trauma. The forensic aspect of such events is associated with the reconstruction of explosion circumstances, in which the structure of organs and tissues damage of the body is important, as morphological equivalents of damaging factors impact. Based on the archival material of forensic medical examinations, identical mass cases of explosive trauma are summarized, in the assessment of which the characteristics of explosion damaging factors and the damage to the body corresponding to their effects are given, which can be used in forensic practice to establish the conditions and circumstances of the explosion, as well as the reconstruction of these events.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Chuan-hao, Shu-shan Wang, Jing-xiao Zhang, and Feng Ma. "Pressure Load Characteristics of Explosions in an Adjacent Chamber." Shock and Vibration 2021 (January 21, 2021): 1–9. http://dx.doi.org/10.1155/2021/3726306.

Повний текст джерела
Анотація:
To learn more about dynamite explosions in confined spaces, we focused on the chamber adjacent to the main chamber, the main chamber being the location of the explosion. We investigated the characteristics of two damaging pressure loads: first reflected shock wave and quasistatic pressure. In this work, we analyzed the characteristics of the first reflected shock wave and the quasistatic pressure formed by the explosion of the chamber charge. Simulated chamber explosion experiments were carried out, where high-frequency piezoelectric sensors were used to measure the first reflected shock wave, and low-frequency piezo-resistive sensors were used to measure the quasistatic pressure. Valid and reasonable experimental data were obtained, and the experimental values of the pressure load were compared with those calculated from the classical model. The results showed that when the main chamber was partially damaged by the explosion load, the adjacent chambers were not subjected to the shock wave load, and the quasistatic pressure load was less than that in the main chamber. The presence of adjacent chambers did not affect the shock wave load in the main chamber. Using the mass of the explosive and the blast distance as input parameters, the internal explosion shock wave load parameters, including those in adjacent chambers, can be calculated. The presence of the adjacent chamber did not affect the theoretically calculated quasistatic overpressure peak in the main chamber. Using the mass of the explosive and the spatial volume of the chamber as input parameters, the quasistatic pressure load parameters of the internal explosion can be calculated, including those in the adjacent chambers.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chevalier, R. A. "Supernovae and Stellar Mass Loss." Highlights of Astronomy 7 (1986): 599–609. http://dx.doi.org/10.1017/s1539299600007000.

Повний текст джерела
Анотація:
AbstractType I supernovae can be modeled as the carbon deflagration of white dwarfs and Type II supernovae as the explosions of massive stars with hydrogen envelopes. The massive stars at the ends of their lives are expected to be red supergiants, which are observed to have slow, dense winds. The interaction of the supernova kinetic energy and radiation with the circumstellar gas gives rise to observational phenomena at a range of wavelengths. Additional phenomena, such as a scattered light echo, are predicted. While the light from a Type II supernova near maximum light is probably from energy deposited in the initial explosion, there is now good evidence that the radioactive decay of 56Co powers the emission at late times. It was been noted that the explosions of massive stars without hydrogen envelopes would be quite unlike normal Type II supernovae. There is now good evidence for such explosions – SN1985f and the class of peculiar Type I supernovae. It is suggested that these supernovae be called Type III with the spectroscopic definition of a) no H lines and b) broad [01] lines at late times. That not all very massive star explosions are of this type is indicated by SN1961v, which was probably a very massive explosion, but in which hydrogen was present.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Chuan-hao, Shu-shan Wang, and Jing-xiao Zhang. "Pressure Load Characteristics of Nonideal Explosives in a Simulation Cabin." Shock and Vibration 2019 (September 24, 2019): 1–8. http://dx.doi.org/10.1155/2019/6862134.

Повний текст джерела
Анотація:
In this study, an aluminum-containing charge was exploded in an enclosed simulation cabin to explore the characteristics of two types of damaging pressure loads formed by internal explosions: the first incident shock wave and the quasistatic pressure. A high-frequency piezoelectric sensor was used to measure the first incident shock wave and a low-frequency piezoresistive sensor was used to measure the quasistatic pressure. After obtaining effective experimental data, the experimental results were compared with the values obtained by the classical calculation model. The results show that the pressure loads generated by the internal explosions from the ideal explosive and the aluminum-containing explosive share similar load characteristics, given the same mass and benchmark explosive. The difference between the two explosives primarily lies in the amplitude of the load parameters. The aluminum-containing explosive has lower first incident shock wave and higher quasistatic pressure than that of the ideal explosive. For the peak overpressure of the first incident shock wave, the explosion shock wave load parameters of the aluminum-containing explosive, which are calculated based on the explosion heat theory, are higher than the measured values. The peak quasistatic overpressure is directly related to the total energy released by the explosion; however, they are hardly correlated with the reaction process. Therefore, the aerobic postcombustion reaction of the aluminum-containing explosive does not affect the analysis and calculation of the peak quasistatic overpressure. As a result, given the heat value of the explosive, the peak quasistatic overpressure of the explosive can accurately be obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Katanov, Igor. "The Change of the Spatial Parameters of the Destruction of the Rock mass by Borehole Charge with Low-Density Tamping." E3S Web of Conferences 41 (2018): 01018. http://dx.doi.org/10.1051/e3sconf/20184101018.

Повний текст джерела
Анотація:
Explosive destruction of the rock formation is substantiated by several theories developed by well-known scientists. The improvement of quality of preparation of rock mass to excavation, by an excavator without an increase in the value of specific consumption of explosives is important in the present time. Traditionally, to increase the impact time of detonation products on the rock hard tamping was used. The problem is in the rational redistribution of the explosion energy due to the use of a borehole charge, and in particular, in the tamping of low-density, porous materials. The more intensive attenuation of the mass velocity of particles in the material of such tamping in comparison with the mass velocity of the rock mass particles contributes to the well channel compression and increases the impact time of detonation products on the rock mass. As a result of redistribution of energy of detonation products, the specific impulse of explosion increases. The value of the radius of the controlled crushing zone increases by more than 1.6 times. The results of industrial explosions in coal mines have confirmed the theoretical reasoning.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lazarević, Miloš, Bogdan Nedić, Jovica Bogdanov, and Stefan Đurić. "Determination of the critical distance in the procedure of explosive welding." Vojnotehnicki glasnik 68, no. 4 (2020): 823–44. http://dx.doi.org/10.5937/vojtehg68-26683.

Повний текст джерела
Анотація:
Introduction/purpose: When performing the explosive welding procedure, for the safety of workers, it is necessary to take into account the minimum distance between the workers and the place of explosion at the time of explosion. Negligence can cause temporary hearing loss, rupture of the eardrum and in some cases even the death of workers. The aim of this paper is to determine the critical distance based on the mass of explosive charge required for explosive welding, provided that the limit pressure is 6.9 kPa in the case of temporary hearing loss and 35 kPa in the case of eardrum rupture. This paper does not take into account other effects of the explosion than those caused by the shock wave. Methods: Depending on the type of explosion, the equivalent explosive mass was calculated. Based on the equivalent explosive mass and the limit pressure, the minimum distances were calculated using the Sadovsky and Kingery-Bulmash equations. Results: The corresponding tables show the results of the calculation of the critical distance of workers from the place of the explosion when there may be temporary hearing loss or rupture of the eardrum. The calculated value of the critical explosion distance by the Kingery-Bulmash method, under the condition of the maximum pressure for temporary hearing loss, is 5.62% lower than the distance value obtained by the Sadovsky method while the value of the critical explosion distance calculated by the Kingery-Bulmash method, under the condition of the maximum pressure for eardrum rupture, is 7.83% lower than the value obtained by the Sadovsky method. Conclusion: The results of the calculation showed that the critical distance from the explosion can be successfully calculated and that the obtained values have small differences depending on the applied calculation method.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xie, Zui Wei, Xin Yue Wu, and Qiang Wan. "Relation between Actual Mass and Simulation Mass of Far-Field Underwater Explosion." Applied Mechanics and Materials 127 (October 2011): 350–54. http://dx.doi.org/10.4028/www.scientific.net/amm.127.350.

Повний текст джерела
Анотація:
The far-filed underwater explosive shock wave pressure and impulse is simulated by the FEM code LS-DYNA, and the simulation results are found having rapid decay characteristic through compared with the empirical results. Based on this phenomenon, the relations, whose validity is verified through a computation instance, between simulation mass and actual mass under given initial conditional is obtained by using curve fitting. Using those equations, the accuracy of LS-DYNA to simulate far-field underwater explosive can significantly be increased, thus the ability of this code to simulate far-field underwater explosion is enhanced.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Mass explosion"

1

Ouchi, Ryoma. "Constraining the mechanism of enhanced mass loss in the last few years before the supernova explosion." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martinez, Katynka Zazueta. "The "Latin Explosion," media audiences, and the marketing of Latino panethnicity : Latina Magazine and the Latin Grammys in a Post-Selena América /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3112195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alhabib, Nada. "Explosion of escaping endpoints of exponential maps." Thesis, University of Liverpool, 2016. http://livrepository.liverpool.ac.uk/3001508/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chau, Yu-Xi. "Explosive condensation in symmetric mass transport models." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77689/.

Повний текст джерела
Анотація:
Condensation is an emergent phenomenon in complex systems that is observed in both physical and social sciences, from granular polydisperse spheres to macroeconomic studies. The critical behaviour of condensation in such systems is of continual interest in research. In this thesis we study this in the context of interacting particle systems, in particular the recently introduced explosive condensation process. We firstly provide a review of the mathematical foundations of interacting particle systems from the aspects of Markov processes. This includes the formulation of factorised hop rates, stationary product measures, the equivalence of ensembles and how these properties are related to condensation. Subsequently, we give a review of key interacting particle systems of interest, namely the zero-range process, inclusion process and the explosive condensation process. We then introduce two models that have similar stationary weights scaling as the explosive condensation process and include them in our study in the thermodynamic limit. The density and the maximum site occupation are derived under the stationary distribution, and from this we are able to identify the choice of parameters that could lead to a phase transition. Exact results for these models using the generator are di�cult to obtain. For the main results of this study, we therefore analyse the formation of condensate using a heuristic approach. The microscopic interactions leading to the formation of an explosive condensate are structurally studied, and this leads to a comprehensive model with a timescale analysis. The time to condensation is shown to vanish as the thermodynamic limit is reached, depending on the choice of parameter values. Throughout the thesis, theoretical results are supported by Monte Carlo simulation and numerical calculations where appropriate. A modification of the conventional Gillespie algorithm is proposed. The new algorithm improves e�ciencies but is also able to preserve key stochastic properties, and is used throughout the simulation of the main findings.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reis, Ricardo Miguel da Costa. "Influência do carregamento do solo, oriundo de detonações, na resistência elástica de edifícios." Master's thesis, Instituto Politécnico de Setúbal. Escola Superior de Tecnologia do Barreiro, 2018. http://hdl.handle.net/10400.26/22986.

Повний текст джерела
Анотація:
Mestrado em Engenharia Civil Área de Especialização: Construção
No desenvolvimento da presente dissertação pretendeu-se fazer a caracterização da influência de detonações de massas de explosivos, em locais despromovidos de proteção à superfície, pela transmissão de energia no solo pelo efeito de ondas sísmicas (designado de ground shock) e os seus efeitos na resistência dos sistemas estruturais dos edifícios em estudo, quer pela determinação da diminuição da frequência própria ou natural dos sistemas, quer pela determinação da sua influência na limitação de danos dos eurocódigos estruturais. Para determinação prévia do efeito do ground shock, foram criados vários cenários previsíveis de propagação, com relevância significativa na geotecnia existente nos locais de propagação. Numa segunda fase procedeu-se aos ensaios propriamente ditos, sendo realizadas detonações onde a massa liquida de explosivos foi uma variável, dentro dos limites designados dentro dos cenários previamente estabelecidos, proporcionando a obtenção de valores válidos de ação base e frequências naturais de vibração dos sistemas estruturais, para o efeito foi usado um acelerómetro triaxial. Após estes ensaios in situ foi modelado o sistema estrutural escolhido, calibrando-o com os resultados obtidos. A metodologia usada posteriormente para incremento da ação base registada foi a criação de acelerogramas artificiais na sua relação com as massas de explosivos. No final destes procedimentos, foram comparados os valores das ações base com os efeitos obtidos nas simulações e suas influências no sistema estrutural, pela limitação de danos e redução da frequência própria da estrutura, onde se obteve por retro análise o valor máximo de massa liquida de explosivo capaz de gerar a ação base mais condicionante.
In the development of the present dissertation, it was intended to characterize the influence of detonations of explosives mass, in unprotected areas aboveground, the transmission of energy in the ground by the effect of seismic waves (designated ground shock) and their effects in resistance of the structural systems of the buildings in study, either by determining the reduction of natural frequency or by determining their influence on the limitation damage of structural Eurocode’s. For the prediction of ground shock effects, several scenarios have been created, with significant relevance in the geotechnics conditions existing in the propagation places. On second phase, the tests were carried by detonations and the explosive quantities was a variable, within the limits designated in previously established scenarios, providing valid values of base action and natural vibration frequencies of the systems. A triaxial accelerometer was used for this purpose. After these tests, the structural system chosen, in situ, was modeling and calibrating with the obtained results. The methodology used later to increase the registered base action was the generation of artificial accelerograms in their connection with the quantities of explosives. At the end of these procedures, the values of the base actions were compared with the effects obtained in the simulations with influence in structural system, by the limitation of damages and reduction of the natural frequency of the structure, were it was obtained by reto analyses the maximum value of the net explosive quantitie to produce de most conditions base action.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boulenger, Thomas. "Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00922988.

Повний текст джерела
Анотація:
Ce travail cherche a comprendre comment l'ajout d'une géométrie non euclidienne dans un problème de Schrödinger non linéaire influe sur l'existence et l'unicité des solutions explosives de masse critique. On s'inspire pour beaucoup des travaux de Merle et Raphaël sur la méthode de modulation des paramètres d'invariance géométrique pour une EDP qui possède de bonnes lois de conservations. On s'appuie ici plus particulièrement sur un article de Raphaël et Szeftel qui prouve l'existence et l'unicité d'une solution de masse critique en dimension 2 pour l'équation de Schrödinger non linéaire avec potentiel d'inhomogénéité devant la non-linéarité, et qui explose par ailleurs au maximum de l'inhomogénéité. Dans un premier temps, il s'agit de reprendre la méthode dans son ensemble afin de l'adapter à des cas où le Laplacien n'est plus plat, et est remplacé par un opérateur de type Laplace-Beltrami ou Laplacien généralisé. Ayant mis en avant le rôle de la courbure au point d'explosion, en termes de conditions sur les dérivées de termes métriques, on reprend dans un deuxième temps l'étude dans le cas plus général d'une variété riemannienne. Grâce à un ansatz sur la solution qui intègre maintenant la transformation induite par la métrique, on est capable d'énoncer un résultat d'existence et d'unicité en termes de conditions géométriques sur la variété elle même. Par soucis de simplicité, on se limite néanmoins au rôle local de la métrique, en la supposant globalement définie dans une certaine carte, et asymptotiquement équivalente a la métrique euclidienne.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gallouët, Thomas. "Transport optimal : régularité et applications." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00793191.

Повний текст джерела
Анотація:
Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne, deux mesures à densité régulière et un coût de transport, typiquement la distance géodésique quadratique et nous nous intéressons à la régularité de l'application de transport optimal. Le critère décisif à cette régularité s'avère être le signe du tenseur de Ma-Trudinger-Wang (MTW). Nous présentons tout d'abord une synthèse des travaux réalisés sur ce tenseur. Nous nous intéressons ensuite au lien entre la géométrie des lieux d'injectivité et le tenseur MTW. Nous montrons que dans de nombreux cas, la positivité du tenseur MTW implique la convexité des lieux d'injectivité. La deuxième partie de cette thèse est liée aux équations aux dérivées partielles. Certaines peuvent être considérées comme des flots gradients dans l'espace de Wasserstein W2. C'est le cas de l'équation de Keller-Segel en dimension 2. Pour cette équation nous nous intéressons au problème de quantification de la masse lors de l'explosion des solutions ; cette explosion apparaît lorsque la masse initiale est supérieure à un seuil critique Mc. Nous cherchons alors à montrer qu'elle consiste en la formation d'un Dirac de masse Mc. Nous considérons ici un modèle particulaire en dimension 1 ayant le même comportement que l'équation de Keller-Segel. Pour ce modèle nous exhibons des bassins d'attractions à l'intérieur desquels l'explosion se produit avec seulement le nombre critique de particules. Finalement nous nous intéressons au profil d'explosion : à l'aide d'un changement d'échelle parabolique nous montrons que la structure de l'explosion correspond aux points critiques d'une certaine fonctionnelle.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schmitt, Didier. "Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse." Nancy 1, 1995. http://www.theses.fr/1995NAN10283.

Повний текст джерела
Анотація:
Cette étude concerne l'existence globale en temps de solutions pour les systèmes de réaction-diffusion présentant deux propriétés essentielles : la positivité des solutions est préservée au cours du temps et la masse totale des composantes est contrôlée, propriété qui est satisfaite si la somme des termes réactifs est négative ou nulle (ou plus généralement à croissance sous linéaire). Ces propriétés apparaissent naturellement dans de nombreux systèmes issus d'applications. Plusieurs résultats partiels d'existence globale pour cette classe de systèmes ont été obtenus avec des hypothèses supplémentaires. Essentiellement celles-ci nécessitent que l'une des composantes de la solution soit uniformément bornée, ce qui est assuré en général par une structure triangulaire des termes réactifs. Ce travail est principalement consacré à l'étude de l'existence globale de solutions dans le cas ou il n'y a pas d'estimation uniforme à priori simple sur aucune des composantes de la solution. Après avoir mis en évidence quelques critères d'existence globale pour des systèmes spécifiques, nous montrons la possibilité d'explosion en temps fini pour les systèmes vérifiant les deux propriétés essentielles, en exhibant des contre-exemples explicites. Nous obtenons comme sous-produit de ces contre-exemples des réponses négatives à des questions indépendantes concernant les équations paraboliques linéaires à forme non divergentielle et à coefficients discontinus et les équations d'évolution de Hamilton-Jacobi. Nous montrons enfin, pour les systèmes triangulaires, l'existence d'effets régularisants de l'espace des fonctions intégrables dans l'espace des fonctions bornées P. P. Ce qui permet d'obtenir des solutions classiques pour des données initiales seulement intégrables (voire même mesurés dans certains cas)
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Slater, Craig Stephen. "Studies of photoinduced molecular dynamics using a fast imaging sensor." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:24b6edce-9bd0-4729-97d6-4de959618cb0.

Повний текст джерела
Анотація:
Few experimental techniques have found such a diverse range of applications as has ion imaging. The field of chemical dynamics is constantly advancing, and new applications of ion imaging are being realised with increasing frequency. This thesis is concerned with the application of a fast pixelated imaging sensor, the Pixel Imaging Mass Spectrometry (PImMS) camera, to ion imaging applications. The experimental possibilities of such a marriage are exceptionally broad in scope, and this thesis is concerned with the development of a selection of velocity-map imaging applications within the field of photoinduced molecular dynamics. The capabilities of the PImMS camera in three-dimensional and slice imaging applications are investigated, in which the product fragment Newton-sphere is temporally stretched along the time-of-flight axis, and time-resolved slices through the product fragment distribution are acquired. Through experimental results following the photodissociation of ethyl iodide (CH3CH2I) at around 230 nm, the PImMS camera is demonstrated to be capable of recording well-resolved time slices through the product fragment Newton-sphere in a single experiment, without the requirement to time-gate the acquisition. The various multi-hit capabilities of the device represent a unique and significant advantage over alternative technologies. The details of a new experiment that allows the simultaneous imaging of both photoelectrons and photoions on a single detector for each experimental acquisition cycle using pulsed ion extraction are presented. It is demonstrated that it is possible to maintain a high velocity resolution using this approach through the simultaneous imaging of the photoelectrons and photoions that result from the (3 + 2) resonantly enhanced multi-photon ionisation of Br atoms produced following the photodissociation of Br2 at 446.41 nm. Pulsed ion extraction represents a substantial simplification in experimental design over conventional photoelectron-photoion coincidence (PEPICO) imaging spectrometers and is an important step towards performing coincidence experiments using a conventional ion imaging apparatus coupled with a fast imaging detector. The performance of the PImMS camera in this application is investigated, and a new method for the determination of the photofragment detection efficiencies based on a statistical fitting of the coincident photoelectron and photoion data is presented. The PImMS camera is applied to laser-induced Coulomb explosion imaging (CEI) of an axially chiral substituted biphenyl molecule. The multi-hit capabilities of the device allow the concurrent detection of individual 2D momentum images of all ionic fragments resulting from the Coulomb explosion of multiple molecules in each acquisition cycle. Correlations between the recoil directions of the fragment ions are determined through a covariance analysis. In combination with the ability to align the molecules in space prior to the Coulomb explosion event, the experimental results demonstrate that it is possible to extract extensive information pertaining to the parent molecular structure and fragmentation dynamics following strong field ionisation. Preliminary simulations of the Coulomb explosion dynamics suggest that such an approach may hold promise for determining elements of molecular structure on a femtosecond timescale, bringing the concept of the `molecular movie' closer to realisation. Finally, the PImMS camera is applied to the imaging of laser-induced torsional motion of axially chiral biphenyl molecules through femtosecond Coulomb explosion imaging. The target molecules are initially aligned in space using a nanosecond laser pulse, and torsional motion induced using a femtosecond 'kick' pulse. Instantaneous measurements of the dihedral angle of the molecules are inferred from the correlated F+ and Br+ ion trajectories following photoinitiated Coulomb explosion at various time delays after the initial kick pulse. The technique is extended to include a second kick pulse, in order to achieve either an increase in the amplitude of the oscillations or to damp the motion, representing a substantial degree of control of the system. Measurements out to long kick-probe delays (200 ps) reveal that the initially prepared torsional wave packet periodically dephases and rephases, in accordance with the predictions of recent theoretical work.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chee, Yenlai. "Remote sensing analysis of cratered surfaces Mars landing hazard assessment, comparison to terrestrial crater analogs, and Mars crater dating models /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Mass explosion"

1

Maddux, Bob. Fantasy explosion. Ventura, Calif., U.S.A: Regal Books, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Serge, Proulx, ed. L' Explosion de la communication. Paris: La Découverte, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nomoto, Ken'ichi, ed. Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

V, Silnikov Mikhail, Medvedev Sergey P, Khomik Sergey V, and SpringerLink (Online service), eds. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

L, Keene Michael, and Koella Jennifer Campbell, eds. Seeing the American woman, 1880-1920: The social impact of the visual media explosion. Jefferson, N.C: McFarland & Company, Inc., Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Breton, Philippe. L' explosion de la communication à l'aube de XXIe siècle. Montréal: Boréal, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Breton, Philippe. L' explosion de la communication: La naissance d'une nouvelle idéologie. Paris: La Découverte, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Serge, Proulx, ed. L' Explosion de la communication: À l'aube du XXIe siècle. 2nd ed. [Gatineau, Qué.]: Boréal, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Breton, Philippe. L' explosion de la communication: La naissance d'une nouvelle idéologie. Paris: La Découverte, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Serge, Proulx, ed. L' explosion de la communication: La naissance d'une nouvelle idéologie. Montréal: La Découverte, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Mass explosion"

1

Domínguez, I., R. M. Cabezón, and D. García-Senz. "Explosion of Fast Spinning Sub-Chandrasekhar Mass White Dwarfs." In Springer Proceedings in Physics, 347–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13876-9_62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Jager, Cornelis, and Hans Nieuwenhuijzen. "Stellar mass loss and atmospheric instability." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 101–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cugier, H., and J. P. De Greve. "Carbon abundance in mass-exchanging binaries." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 221–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hollowell, David, and Icko Iben. "Nucleosynthesis and mixing in low- and intermediate-mass AGB stars." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 38–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sumiyoshi, K., S. Yamada, H. Suzuki, and W. Hillebrandt. "Explosion of A Neutron Star Below the Minimum Mass with Implicit Hydrodynamics." In Numerical Astrophysics, 285–86. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wood, P. R. "Chemical peculiarities, mass loss, and final evolution of AGB stars in the magellanic clouds." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 31–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boer, B., J. Carpay, A. de Koter, C. de Jager, H. Nieuwenhuijzen, A. Piters, and F. Spaan. "Turbulence-driven atmospheric instability and large-scale motions in super- and hypergiants." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 131–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hidayat, B., A. G. Admiranto, K. R. Supelli, and K. A. van der Hucht. "The galactic distribution and subtype evolution of Wolf-Rayet stars." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 152–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sparks, Warren M., Sumner G. Starrfield, James W. Truran, and G. Siegfried Kutter. "The chemical composition of the white dwarfs in cataclysmic variable systems which produce novae." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 234–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

de Loore, C., and C. Doom. "The evolution of the progenitor of SN 1987A." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 246–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mass explosion"

1

Min, B. T., H. D. Kim, J. H. Kim, S. W. Hong, and I. K. Park. "Particle Size Characteristics of Molten Corium Quenched in Water." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48773.

Повний текст джерела
Анотація:
During a hypothetical severe accident in a nuclear reactor, a steam explosion might occur when molten corium interacts with water. The strength of a steam explosion affects the integrity of the containment of a nuclear reactor and is highly dependant on the characteristics of the melt-water-steam mixture. Since a break-up and fragmentation process during a pre-mixing are important mechanisms for a steam explosion behavior and affect the debris size distribution, the particle size characteristics of quenched corium have been investigated. For several years, series of experiments have been performed using prototypical corium in the TROI test facility with a high frequency induction heating using cold crucible technology. The molten corium was discharged into the cold water and the quenched debris particles were collected, sieved and examined for the effect of a size distribution on a steam explosion. The small corium droplets do not seem to contribute to a steam explosion owing to solidification at an early stage before the explosion but the large droplets contribute to it owing to their liquid state. It was also shown that single oxides and binary oxides with an eutectic composition (UO2/ZrO2 = 70/30 at weight percentage) led to steam explosions, but a binary oxide with a non-eutectic one did not. The mass mean diameters of the debris of the steam explosive composition was less than that of the non-steam explosive composition. Zirconia was the most energetic steam-explosive material in these tests, and an eutectic composition of corium also lead to a steam explosion, but a non-eutectic composition corium hardly led to a steam explosion. The particle sizes of the molten corium participating in a steam explosion were shown to be mainly 3–6 mm depending on the material and composition.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Utrobin, Victor P., Stefan Immler, and Kurt Weiler. "Supernova 1987A: the Ejecta Mass and the Explosion Energy." In SUPERNOVA 1987A: 20 YEARS AFTER: Supernovae and Gamma-Ray Bursters. AIP, 2007. http://dx.doi.org/10.1063/1.3682879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Utrobin, Victor P., Stefan Immler, and Kurt Weiler. "Supernova 1987A: the Ejecta Mass and the Explosion Energy." In SUPERNOVA 1987A: 20 YEARS AFTER: Supernovae and Gamma-Ray Bursters. AIP, 2007. http://dx.doi.org/10.1063/1.2803572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tran, Manh-Vu, and Gianfranco Scribano. "Explosion Characteristics of Syngas/air Premixed Flames." In 8th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'21). Avestia Publishing, 2021. http://dx.doi.org/10.11159/ffhmt21.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

XU, HEYANG, WEIBING LI, WENBIN LI, and YAJUN WANG. "Experimental Studies of Explosion Energy Output with Different Igniter Mass." In 31st International Symposium on Ballistics. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/ballistics2019/33259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nomoto, Ken'ichi. "The evolution and explosion of mass-accreting population III stars." In FIRST STARS IV – FROM HAYASHI TO THE FUTURE –. AIP, 2012. http://dx.doi.org/10.1063/1.4754356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Limongi, M., and A. Chieffi. "Presupernova evolution and explosion of massive stars with mass loss." In THE MULTICOLORED LANDSCAPE OF COMPACT OBJECTS AND THEIR EXPLOSIVE ORIGINS. American Institute of Physics, 2007. http://dx.doi.org/10.1063/1.2774863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dooley, Patrick W. "Miniature time-of-flight mass spectrometry using molecular Coulomb explosion detection." In Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, edited by John C. Armitage. SPIE, 2017. http://dx.doi.org/10.1117/12.2283806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Antonov, Dmitrii, Roman Fedorenko, Pavel Strizhak, Guillaume Castanet, and Sergei S. Sazhin. "Puffing/Micro-explosion inComposite Droplets in Tandem: Experimental Results and Modelling." In The 6th World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2021. http://dx.doi.org/10.11159/csp21.lx.302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hempel, Maren, Arunav Kundu, Steve E. Zepf, Tom Macccarone, Reba M. Bandyopadhyay, Stefanie Wachter, Dawn Gelino, and Christopher R. Gelino. "Low Mass X-ray Binaries in Globular Cluster Systems." In A POPULATION EXPLOSION: The Nature & Evolution of X-ray Binaries in Diverse Environments. AIP, 2008. http://dx.doi.org/10.1063/1.2945071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Mass explosion"

1

Holmes, Matthew David, Gary Robert Parker, Jr., Eric Mann Heatwole, Trevor Alexander Feagin, Robert M. Broilo, Peter M. Dickson, Larry Dean Vaughan, and Michael Andrew Englert Erickson. Center-Ignited Spherical-Mass Explosion (CISME); FY 2018 Report. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1477621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yoo, Jong Hyun. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/764401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nilsen, J., J. I. Castor, M. A. Lane, and G. E. Overturf. Glow Discharge Mass Spectrometry Analysis of LX-17 and PBX-9502 High Explosive Samples. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/15002382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Halverson, M., and J. Mishima. Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5421402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Spivak, A. A. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/73915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Stephanie, Mike Tremble, Amanda Hemmerich, Bill Dunn, Kate Wright, Shannon Papin, and Heather B. Crane. Final Environmental Assessment Addressing 21st Explosive Ordinance Disposal Weapons of Mass Destruction Facilities Demolition and Expansion at Kirtland Air Force Base, New Mexico. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada610671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії