Добірка наукової літератури з теми "Masonry mechanics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Masonry mechanics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Masonry mechanics"

1

Liu, Xi Jun, Lin Xiang Liu, and Yu Mei Wang. "Based on Experiment of Constitutive Model of Load-Bearing Insulation Masonry." Applied Mechanics and Materials 204-208 (October 2012): 1089–93. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.1089.

Повний текст джерела
Анотація:
In order to obtained the constitutive equations of thermal insulation masonry, the four masonry with different angles has pressed. Study on thermal insulation of masonry compressive mechanical parameters of constitutive equation and two-stage by compression stress-strain curves obtained in the servo press machine tests and data processing. The Basic mechanics parameters can be provided for finite element analysis of thermal insulation composite wall. The experiments showed that the constitutive model is discretization and the maximum stress and strain by press machine testing is different from brick masonry. The constitutive model is close with curve by press machine testing. The performance of mechanics in thermal insulation wall can be application by the stress-strain curves of thermal insulation of masonry. The stress-strain curves based experiments can be used finite element analysis of thermal insulation wall.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McNary, W. Scott, and Daniel P. Abrams. "Mechanics of Masonry in Compression." Journal of Structural Engineering 111, no. 4 (April 1985): 857–70. http://dx.doi.org/10.1061/(asce)0733-9445(1985)111:4(857).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kawa, Marek. "Failure Criterion for Brick Masonry: A Micro-Mechanics Approach." Studia Geotechnica et Mechanica 36, no. 3 (February 28, 2015): 37–48. http://dx.doi.org/10.2478/sgem-2014-0025.

Повний текст джерела
Анотація:
Abstract The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gilbert, Matthew, and Claudia Casapulla. "Editorial: Mechanics of masonry gravity structures." Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 174, no. 2 (June 2021): 64–65. http://dx.doi.org/10.1680/jencm.2021.174.2.64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hu, Di, and Akenjiang Tuohuti. "Masonry Homogenization Micro-Mechanics Analysis Model." Advanced Materials Research 838-841 (November 2013): 2242–49. http://dx.doi.org/10.4028/www.scientific.net/amr.838-841.2242.

Повний текст джерела
Анотація:
Micro-mechanics models of masonry basic cell were established to obtain homogenized Young's module and Poissons ratio, according to the finite element homogenization analysis (FEA) results in x, y, z. Model results demonstrate that relatively small errors (less than 6%) occur compare with exact solution.The paper concentrates on the issue of linear homogenization, therefore, it can be used as effective estimates for homogeneous material stiffness degradation of nonlinear range. Through linear superposition principle, homogenization material yield criterion obtained from mechanics models, which can be used as the lower limit of cell bearing capacity.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sacco, Elio, Daniela Addessi, and Karam Sab. "New trends in mechanics of masonry." Meccanica 53, no. 7 (March 5, 2018): 1565–69. http://dx.doi.org/10.1007/s11012-018-0839-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Romano, Alessandra, and John A. Ochsendorf. "The Mechanics of Gothic Masonry Arches." International Journal of Architectural Heritage 4, no. 1 (November 16, 2009): 59–82. http://dx.doi.org/10.1080/15583050902914660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Shu Hong, Chun An Tang, Juan Xia Zhang, and Wan Cheng Zhu. "Implementation of a Mesoscopic Mechanical Model for the Shear Fracture Process Analysis of Masonry." Key Engineering Materials 297-300 (November 2005): 1025–31. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.1025.

Повний текст джерела
Анотація:
This short paper will present a two-dimensional (2D) model of masonry material. This mesoscopic mechanical model is suitable to simulate the behavior of masonry. Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations. It has been found that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Shu Hong, Yong Bin Zhang, Chun An Tang, and Lian Chong Li. "Numerical Study on Cracking Process of Masonry Structure." Advanced Materials Research 9 (September 2005): 117–26. http://dx.doi.org/10.4028/www.scientific.net/amr.9.117.

Повний текст джерела
Анотація:
Masonry structure is heterogeneous and has been widely used in building and construction engineering. The study on cracking pattern of masonry structure is significant to engineering design. Many previous investigations on the failure process of masonry structure are usually based on the homogenization technique by selecting a typical unit of masonry to serve as a representative volume. This kind of numerical analysis neglects the mesoscopic heterogeneous structure, which cannot capture the full cracking process of masonry structures. The cracking process of masonry structure is dominantly affected by its heterogeneous internal structures. In this paper, a mesoscopic mechanical model of masonry material is developed to simulate the behavior of masonry structure. Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was put forward to simulate the cracking process of masonry structure, which was considered as a two-phase composite of block and mortar phases. The crack propagation processes simulated with this model shows good agreement with those of experimental observations. The numerical results show that numerical analysis clearly reflect the modification, transference and their interaction of the stress field and damage evolution process which are difficult to achieve by physical experiments. It provides a new method to research the forecast theory of failure and seismicity of masonry. It has been found that the fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brencich, Antonio, and Renata Morbiducci. "Masonry Arches: Historical Rules and Modern Mechanics." International Journal of Architectural Heritage 1, no. 2 (May 31, 2007): 165–89. http://dx.doi.org/10.1080/15583050701312926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Masonry mechanics"

1

Jelvehpour, Ali. "Development of a transient gradient enhanced non local continuum damage mechanics model for masonry." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/93365/1/Ali_Jelvehpour_Thesis.pdf.

Повний текст джерела
Анотація:
Due to the advent of varied types of masonry systems a comprehensive failure mechanism of masonry essential for the understanding of its behaviour is impossible to be determined from experimental testing. As masonry is predominantly used in wall structures a biaxial stress state dominates its failure mechanism. Biaxial testing will therefore be necessary for each type of masonry, which is expensive and time consuming. A computational method would be advantageous; however masonry is complex to model which requires advanced computational modelling methods. This thesis has formulated a damage mechanics inspired modelling method and has shown that the method effectively determines the failure mechanisms and deformation characteristics of masonry under biaxial states of loading.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pelà, Luca. "Continuum damage model for nonlinear analysis of masonry structures." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/30327.

Повний текст джерела
Анотація:
The present work focuses on the formulation of a Continuum Damage Mechanics model for nonlinear analysis of masonry structural elements. The material is studied at the macro-level, i.e. it is modelled as a homogeneous orthotropic continuum. The orthotropic behaviour is simulated by means of an original methodology, which is based on nonlinear damage constitutive laws and on the concept of mapped tensors from the anisotropic real space to the isotropic fictitious one. It is based on establishing a one-to-one mapping relationship between the behaviour of an anisotropic real material and that of an isotropic fictitious one. Therefore, the problem is solved in the isotropic fictitious space and the results are transported to the real field. The application of this idea to strain-based Continuum Damage Models is rather innovative. The proposed theory is a generalization of classical theories and allows us to use the models and algorithms developed for isotropic materials. A first version of the model makes use of an isotropic scalar damage model. The adoption of such a simple constitutive model in the fictitious space, together with an appropriate definition of the mathematical transformation between the two spaces, provides a damage model for orthotropic materials able to reproduce the overall nonlinear behaviour, including stiffness degradation and strain-hardening/softening response. The relationship between the two spaces is expressed in terms of a transformation tensor which contains all the information concerning the real orthotropy of the material. A major advantage of this working strategy lies in the possibility of adjusting an arbitrary isotropic criterion to the particular behaviour of the orthotropic material. Moreover, orthotropic elastic and inelastic behaviours can be modelled in such a way that totally different mechanical responses can be predicted along the material axes. The aforementioned approach is then refined in order to account for different behaviours of masonry in tension and compression. The aim of studying a real material via an equivalent fictitious solid is achieved by means of the appropriate definitions of two transformation tensors related to tensile or compressive states, respectively. These important assumptions permit to consider two individual damage criteria, according to different failure mechanisms, i.e. cracking and crushing. The constitutive model adopted in the fictitious space makes use of two scalar variables, which monitor the local damage under tension and compression, respectively. Such a model, which is based on a stress tensor split into tensile and compressive contributions that allows the model to contemplate orthotropic induced damage, permits also to account for masonry unilateral effects. The orthotropic nature of the Tension-Compression Damage Model adopted in the fictitious space is demonstrated. This feature, both with the assumption of two distinct damage criteria for tension and compression, does not permit to term the fictitious space as “isotropic”. Therefore, the proposed formulation turns the original concept of “mapping the real space into an isotropic fictitious one” into the innovative and more general one of “mapping the real space into a favourable (or convenient) fictitious one”. Validation of the model is carried out by means of comparisons with experimental results on different types of orthotropic masonry. The model is fully formulated for the 2-dimensional case. However, it can be easily extended to the 3-dimensional case. It provides high algorithmic efficiency, a feature of primary importance when analyses of even large scale masonry structures are carried out. To account for this requisite it adopts a strain-driven formalism consistent with standard displacement-based finite element codes. The implementation in finite element programs is straightforward. Finally, a localized damage model for orthotropic materials is formulated. This is achieved by means of the implementation of a crack tracking algorithm, which forces the crack to develop along a single row of finite elements. Compared with the smeared cracking approach, such an approach shows a better capacity to predict realistic collapsing mechanisms. The resulting damage in the ultimate condition appears localized in individual cracks. Moreover, the results do not suffer from spurious mesh-size or mesh-bias dependence. The numerical tool is finally validated via a finite element analysis of an in-plane loaded masonry shear wall.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

PELA', Luca. "CONTINUUM DAMAGE MODEL FOR NONLINEAR ANALYSIS OF MASONRY STRUCTURES." Doctoral thesis, Università degli studi di Ferrara, 2009. http://hdl.handle.net/11392/2389195.

Повний текст джерела
Анотація:
The present work focuses on the formulation of a Continuum Damage Mechanics model for nonlinear analysis of masonry structural elements. The material is studied at the macro-level, i.e. it is modelled as a homogeneous orthotropic continuum. The orthotropic behaviour is simulated by means of an original methodology, which is based on nonlinear damage constitutive laws and on the concept of mapped tensors from the anisotropic real space to the isotropic fictitious one. It is based on establishing a one-to-one mapping relationship between the behaviour of an anisotropic real material and that of an isotropic fictitious one. Therefore, the problem is solved in the isotropic fictitious space and the results are transported to the real field. The application of this idea to strain-based Continuum Damage Models is rather innovative. The proposed theory is a generalization of classical theories and allows us to use the models and algorithms developed for isotropic materials. A first version of the model makes use of an isotropic scalar damage model. The adoption of such a simple constitutive model in the fictitious space, together with an appropriate definition of the mathematical transformation between the two spaces, provides a damage model for orthotropic materials able to reproduce the overall nonlinear behaviour, including stiffness degradation and strain-hardening/softening response. The relationship between the two spaces is expressed in terms of a transformation tensor which contains all the information concerning the real orthotropy of the material. A major advantage of this working strategy lies in the possibility of adjusting an arbitrary isotropic criterion to the particular behaviour of the orthotropic material. Moreover, orthotropic elastic and inelastic behaviours can be modelled in such a way that totally different mechanical responses can be predicted along the material axes. The aforementioned approach is then refined in order to account for different behaviours of masonry in tension and compression. The aim of studying a real material via an equivalent fictitious solid is achieved by means of the appropriate definitions of two transformation tensors related to tensile or compressive states, respectively. These important assumptions permit to consider two individual damage criteria, according to different failure mechanisms, i.e. cracking and crushing. The constitutive model adopted in the fictitious space makes use of two scalar variables, which monitor the local damage under tension and compression, respectively. Such a model, which is based on a stress tensor split into tensile and compressive contributions that allows the model to contemplate orthotropic induced damage, permits also to account for masonry unilateral effects. The orthotropic nature of the Tension-Compression Damage Model adopted in the fictitious space is demonstrated. This feature, both with the assumption of two distinct damage criteria for tension and compression, does not permit to term the fictitious space as “isotropic”. Therefore, the proposed formulation turns the original concept of “mapping the real space into an isotropic fictitious one” into the innovative and more general one of “mapping the real space into a favourable (or convenient) fictitious one”. Validation of the model is carried out by means of comparisons with experimental results on different types of orthotropic masonry. The model is fully formulated for the 2-dimensional case. However, it can be easily extended to the 3-dimensional case. It provides high algorithmic efficiency, a feature of primary importance when analyses of even large scale masonry structures are carried out. To account for this requisite it adopts a strain-driven formalism consistent with standard displacement-based finite element codes. The implementation in finite element programs is straightforward. Finally, a localized damage model for orthotropic materials is formulated. This is achieved by means of the implementation of a crack tracking algorithm, which forces the crack to develop along a single row of finite elements. Compared with the smeared cracking approach, such an approach shows a better capacity to predict realistic collapsing mechanisms. The resulting damage in the ultimate condition appears localized in individual cracks. Moreover, the results do not suffer from spurious mesh-size or mesh-bias dependence. The numerical tool is finally validated via a finite element analysis of an in-plane loaded masonry shear wall.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saloustros, Savvas. "Tracking localized cracks in the computational analysis of masonry structures." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461714.

Повний текст джерела
Анотація:
Numerical methods aid significantly the engineering efforts towards the conservation of existing masonry structures and the design of new ones. Among them, macro-mechanical finite element methods based on the smeared crack approach are commonly preferred as an affordable choice for the analysis of large masonry structures. Nevertheless, they usu-ally result in a non-realistic representation of damage as smeared over large areas of the structure, which hampers the correct interpretation of the damage pattern. Additionally, a more critical pathology of this approach is the mesh-dependency, which influences nota-bly the safety and stability predictions. To overcome these limitations, this thesis proposes a novel computational tool based on the {enrichment} of the classical smeared crack approach with a local tracking algorithm. The objective of this localized damage model is the realistic and efficient non-linear anal-ysis of masonry structures with an enhanced representation of cracking. The non-linear behaviour of masonry is simulated through the adoption of a continuum damage mechanics model with two damage indices, allowing the differentiation between the tensile and compressive mechanical responses of masonry. In this context, a novel explicit formulation for the evolution of irreversible strains is proposed and implemented. Two new expressions are derived for the regularization of the tensile and compressive softening responses according to the crack-band approach, ensuring the mesh-size objec-tivity of the damage model. The simulation of the structural behaviour of masonry structures under versatile loading and boundary conditions necessitates some developments in the context of local tracking algorithms. To this end, this thesis presents the enhancement of local tracking algorithms with novel procedures that make possible the simulation of multiple, arbitrary and inter-secting cracking under monotonic and cyclic loading. Additionally, the effect of different crack propagation criteria is investigated and the selection among more than one potential failure planes is tackled. The proposed localized damage model is validated through the simulation of a series of structural examples. These vary from small-scale tests on concrete specimens with few dominant cracks, to medium and large-scale masonry structures with multiple tensile, shear and flexural cracking. The analyses are compared with analytical, experimental and numerical results obtained with alternative methods available in the literature. Overall, the localized damage model developed in this thesis largely improves the mesh-independency of the classical smeared crack approach and reproduces crack patterns and collapse mech-anisms in an efficient and realistic way.
Los métodos numéricos son decisivos en la ingeniería para la conservación de estructuras de mampostería existentes y el diseño de estructuras nuevas. Entre ellos, los métodos macro-mecánicos de elementos finitos, basados en el concepto de fisuras distribuidas, son habitualmente los preferidos como opción asequible para el análisis de grandes estructuras de mampostería. Sin embargo, suelen resultar en a una representación poco realista del daño, distribuido en grandes áreas de la estructura, lo que impide la correcta interpretación del patrón de daño. Además, esta metodología presenta una patología más crítica, la dependencia de la malla, que influye notablemente en las predicciones de seguridad y estabilidad. Para superar estas limitaciones, esta tesis propone una nueva herramienta numérica basada en el enriquecimiento del clásico enfoque de fisuras distribuidas con un algoritmo de trazado local. El objetivo de este modelo de daño localizado es el análisis no-lineal de las estructuras de mampostería de manera realista y eficiente con una representación mejora-da de fisuras. El comportamiento no lineal de la mampostería se simula a través de la adopción de un modelo de mecánica de daño continuo con dos índices de daño, permitiendo la diferenciación entre las respuestas mecánicas de tensión y compresión de la mampostería. En este contexto, se propone e implementa una nueva formulación explícita para la evolución de deformaciones irreversibles. Se derivan dos nuevas expresiones para la regularización del ablandamiento de tracción y compresión según el ancho de banda de la fisura, garantizan-do la objetividad del modelo de daño al respecto del tamaño de la malla. La simulación del comportamiento estructural de las estructuras de mampostería en condiciones de carga y contorno generales precisa de algunos desarrollos en el contexto de los algoritmos locales de trazado. Con este objetivo, se presenta la mejora de los algoritmos locales de trazado con nuevos procedimientos que posibilitan la simulación de fisuración múltiple, arbitraria e secante bajo cargas monótonas y cíclicas. Además, se investiga el efecto de diferentes criterios de propagación de fisuras y se aborda la selección entre más de un plano de falla posible. El modelo de daño localizado propuesto se valida mediante la simulación de una serie de ejemplos estructurales. Éstos van desde pruebas a pequeña escala en probetas de hormigón, con pocas fisuras dominantes, hasta estructuras de mampostería de mediana y gran escala con fisuración múltiple de tracción, de cortante y de flexión. Los análisis se comparan con los resultados analíticos, experimentales y numéricos obtenidos con métodos alternativos disponibles en la literatura. El modelo de daño localizado mejora en gran medida la independencia de la malla del clásico método de fisuras distribuidas y reproduce patrones de daño y mecanismos de colapso de una manera eficiente y realista
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kalkbrenner, Philip. "A machine learning based material homogenization technique for masonry structures." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/673191.

Повний текст джерела
Анотація:
Cutting-edge methods in the computational analysis of structures have been developed over the last decades. Such modern tools are helpful to assess the safety of existing buildings. Two main finite element (FE) modeling approaches have been developed in the field of masonry structures, i.e. micro and macro scale. While the micro modeling distinguishes between the masonry components in order to accurately represent the typical masonry damage mechanisms in the material constituents, macro modeling considers a single continuum material with smeared properties so that large scale masonry models can be analyzed. Both techniques have demonstrated their advantages in different structural applications. However, each approach comes along with some possible disadvantages. For example, the use of micro modeling is limited to small scale structures, since the computational effort becomes too expensive for large scale applications, while macro modeling cannot take into account precisely the complex interaction among masonry components (brick units and mortar joints). Multi scale techniques have been proposed to combine the accuracy of micro modeling and the computational efficiency of macro modeling. Such procedures consider linked FE analyses at both scales, and are based on the concept of a representative volume element (RVE). The analysis of a RVE takes into account the micro structural behavior of component materials, and scales it up to the macro level. In spite of being a very accurate tool for the analysis of masonry structures, multi scale techniques still exhibit high computational cost while connecting the FE analyses at the two scales. Machine learning (ML) tools have been utilized successfully to train specific models by feeding big source data from different fields, e.g. autonomous driving, face recognition, etc. This thesis proposes the use of ML to develop a novel homogenization strategy for the in-plane analysis of masonry structures, where a continuous nonlinear material law is calibrated by considering relevant data derived from micro scale analysis. The proposed method is based on a ML tool that links the macro and micro scales of the analysis, by training a macro model smeared damage constitutive law through benchmark data from numerical tests derived from RVE micro models. In this context, numerical nonlinear tests on masonry micro models executed in a virtual laboratory provide the benchmark data for feeding the ML training procedure. The adopted ML technique allows the accurate and efficient simulation of the anisotropic behavior of masonry material by means of a tensor mapping procedure. The final stage of this novel homogenization method is the definition of a calibrated continuum constitutive model for the structural application to the masonry macro scale. The developed technique is applied to the in-plane homogenization of a Flemish bond masonry wall. Evaluation examples based on the simulation of physical laboratory tests show the accuracy of the method when compared with sophisticated micro modeling of the entire structure. Finally, an application example of the novel homogenization technique is given for the pushover analysis of a masonry heritage structure.
En las últimas décadas se han desarrollado diversos métodos avanzados para el análisis computacional de estructuras. Estas herramientas modernas son también útiles para evaluar la seguridad de los edificios existentes. En el campo de las estructuras de la obra de fábrica se han desarrollado principalmente dos técnicas de modelizacón por elementos finitos (FE): la modelización en escala micro y en escala macro. Mientras que en un micromodelo se distingue entre los componentes de la obra de fábrica para representar con precisión los mecanismos de daño característicos de la misma, en un macromodelo se asignan las propiedades a un único material continuo que permite analizar modelos de obra de fábrica a gran escala. Ambas técnicas han demostrado sus ventajas en diferentes aplicaciones estructurales. Sin embargo, cada enfoque viene acompañado de algunas posibles desventajas. Por ejemplo, la micromodelización se limita a estructuras de pequeña escala, puesto que el esfuerzo computacional que requieren aumenta rápidamente con el tamaño de los modelos, mientras que la macromodelización, por su parte, es un enfoque promediado que no puede por tanto tener en cuenta precisamente la interacción compleja entre los componentes de la fábrica (unidades de ladrillo y juntas de mortero). Hasta el momento, se han propuesto algunas técnicas multiescala para combinar la precisión de la micromodelización y la eficiencia computacional de la macromodelización. Estos procedimientos aplican el análisis de FE vinculado a ambas escalas y se basan en el concepto de elemento de volumen representativo (RVE). El análisis de un RVE tiene en cuenta el comportamiento microestructural de los materiales componentes y lo escala hasta el nivel macro. A pesar de ser una herramienta muy precisa para el análisis de obra de fábrica, las técnicas multiescala siguen presentando un elevado coste computacional que se produce al conectar los análisis de FE de dos escalas. Además, diversos autores han utilizado con éxito herramientas de aprendizaje automático (machine learning (ML)) para poner a punto modelos específicos alimentados con grandes fuentes de datos de diferentes campos, por ejemplo, la conducción autónoma, el reconocimiento de caras, etc. Partiendo de los anteriores conceptos, este tesis propone el uso de ML para desarrollar una novedosa estrategia de homogeneización para el análisis en plano de estructuras de mampostería, donde se calibra una ley de materiales continua no lineal considerando datos relevantes derivados del análisis a microescala. El método propuesto se basa en una herramienta de ML que vincula las escalas macro y micro del análisis mediante la puesta a punto de una ley constitutiva para el modelo macro a través de datos producidos en ensayos numéricos de un RVE micro modelo. En este contexto, los ensayos numéricos no lineales sobre micro modelos de mampostería ejecutados en un laboratorio virtual proporcionan los datos de referencia para alimentar el procedimiento de entrenamiento del ML. La técnica de ML adoptada permite la simulación precisa y eficiente del comportamiento anisotrópico del material de mampostería mediante un procedimiento de mapeo tensorial. La etapa final de este novedoso método de homogeneización es la definición de un modelo constitutivo continuo calibrado para la aplicación estructural a la macroescala de mampostería. La técnica desarrollada se aplica a la homogeneización en el plano de un muro de obra de fábrica construido con aparejo flamenco. Ejemplos de evaluación basados en la simulación de pruebas físicas de laboratorio muestran la precisión del método en comparación con una sofisticada micro modelización de toda la estructura. Por último, se ofrece un ejemplo de aplicación de la novedosa técnica de homogeneización para el análisis pushover de una estructura patrimonial de obra de fábrica.
Enginyeria de la construcció
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yao, Chicao. "Failure mechanisms of concrete masonry." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/29323.

Повний текст джерела
Анотація:
The behaviour of concrete masonry under in-plane compression combined with out-of-plane bending was examined both experimentally and analytically. Ungrouted and grouted masonry, both fully bedded or face-shell bedded, were included in the study. It was found that the masonry under the above stated loading conditions may suffer loss of capacity either due to splitting or shear type of material failure, or by instability. Different loading conditions yield different failure mechanisms, which in turn correspond to different apparent strengths. Theoretical developments are presented leading to estimates of capacity for each of these cases. An extensive experimental program involving 104 masonry prism specimens, was conducted to assist and to verify these analyses. Theoretical developments include those directed to explain splitting failure phenomena, to investigate the mortar joint effect, the deformation compatibility of grouted masonry, and to examine the slenderness of tall masonry wall. Experimental measurements and observations made on the specimens include capacity, deformation and failure pattern.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mallinder, Peter Alan. "Constitutive-based masonry vault mechanisms." Thesis, Sheffield Hallam University, 1997. http://shura.shu.ac.uk/20007/.

Повний текст джерела
Анотація:
The objective of the research programme has been to investigate the behaviour of masonry arch vault collapse mechanisms in the context of the problems besetting the national bridge stock. The programme has primarily involved masonry constitutive theoretical studies, supported by laboratory experimentation, which have led to the formulation of novel masonry hinge modelling. The modelling has been developed for practical application in a four hinge masonry vault mechanism analysis and subjected to testing. The technique has been applied in the field supported by a novel application of information technology (IT) image processing, reflecting the growing importance of IT within the construction industry. All theoretical studies have been mounted as micro-computer software with graphics. The accent is upon engineering requirements in practice. Chapter One reviews the context and history of the masonry vault structural form, whose presence has long been commonplace in the United Kingdom, especially on the nation's road network. It is noted that elderly arched road bridges are under continual pressure to carry ever greater loads yet their strength is uncertain. Historically, structural analysts have attempted to resolve the arch's behaviour but present methods are still inexact. Chapter Two describes how, traditionally, masonry has been assumed to possess either a linear stress-strain property or infinite stiffness and strength. An alternative, novel equation for modelling masonry stress-strain laws is presented which may be configured to mimic the behaviour of real materials as well as that of the infinite strength and linear laws it replaces. A numerical analytical procedure has been developed to 'solve' rectangular masonry sections under combined bending and thrust thereby rendering the earlier approximations unnecessary. Chapter Three develops the theme further leading to the numerical determination of limit state hinge characteristics which furnish a static limit state axial thrust/bending moment interaction diagram and a corresponding serviceability limit state, prevention of cracking interaction diagram. Differentiation is thus made possible between hitherto identically-treated though varying natural materials and comparisons made. It is further postulated that any point on a static limit state interaction diagram locus represents a masonry hinge and an extensive series of laboratory model hinge tests is undertaken to demonstrate the point by testing the foregoing theoretical studies. Chapter Four describes the incorporation of the hinge theory into a mechanism-type computer analytical tool. Crucially, the analysis is different from other mechanism analyses by virtue of the hinge modelling, enabling the effects of material properties on arch behaviour to be studied. The software is tested in Chapter Five against prototype data for laboratory model and full size masonry bridges. Chapter Six introduces computer vision, an IT technique that is relatively novel to the structures field. It is adapted to monitor the above laboratory model arch tests and then extended to the monitoring of a multi-span arch bridge test in the field. Computer vision permits the formulation of a hypothesis regarding the unusual mode of failure that occurred and this is supported by a generalisation of the mechanism hinge theory, thereby demonstrating the merits of both techniques. Finally, Chapter Seven draws conclusions on the foregoing and makes suggestions for further work. Supporting documentation is given in the Appendices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Júnior, Luiz Aquino Gonçalves. "Avaliação de incertezas em modelo de dano com aplicação a prismas de alvenaria sob compressão." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-21102008-101410/.

Повний текст джерела
Анотація:
A norma brasileira de cálculo de alvenaria é baseada no método de tensões admissíveis e passa por revisão para ser escrita no método dos estados limites. A confiabilidade estrutural é um ramo da engenharia que mede segurança das estruturas, sendo muitas vezes empregada para calibrar fatores de segurança. Para medir a confiabilidade de uma estrutura deve-se conhecer as incertezas que envolvem o problema. A incerteza de modelo estima a tendência do modelo (que pode ser eventualmente ser eliminada) e a variância do modelo (uma medida da sua variabilidade). O presente trabalho propõe um método de cálculo da incerteza de um modelo numérico de um prisma formado por três unidades concreto sujeito à compressão. O estudo numérico é feito em elementos finitos com análise não-linear baseada em dano. A incerteza é avaliada através de variáveis de projeto: tensão máxima, deformação na tensão máxima e módulo de elasticidade. São aplicados métodos probabilísticos para comparar resultados numéricos e ensaios experimentais disponíveis na literatura. Confronta-se a probabilidade de falha resultante de resistências corrigidas, sem correção e obtidas experimentalmente. Conclui-se que a incerteza de modelo é importante para quantificar a medida de segurança e deve ser levada em conta na análise da confiabilidade de uma estrutura. O procedimento também é útil para qualificar e comparar modelos de cálculo, com aplicações em alvenaria ou quaisquer outros tipos de estruturas.
The brazilian masonry code is based on the allowable stress method and is currently in revision to be written in the partial safety factor format. Structural reliability is a branch of engineering which allows quantitative evaluation of the safety of structures, being useful in the calibration of safety factors. To measure structural safety, it is necessary to know the uncertainties present in the problem. Model error variables estimate the bias of the model (wich can eventually be eliminated) and the variance of the model (a measure of the model variability). The present work suggests a method for evaluation of modeling uncertainty of the resistence of a prism made of three concrete units subject to compression. The numerical study is based on the finite element method and nonlinear analysis with damage mechanics. The uncertainty is evaluated by design variables: maximum stress, deformation in maximum stress and elasticity modulus of the prism. A probabilistic method is used to compare numerical results with experimental results taken from the literature. The probability of failure based on experimental resistances are compared with the probability of failure based on the model and corrected resistances. It is concluded that the model uncertainty is important to quantify safety and must be taken into account in structural reliability analysis. The procedure is also useful to qualify and compare different models, with application to masonry or other kinds of structural materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shapiro, Elaine Elizabeth. "Collapse mechanisms of small-scale unreinforced masonry vaults." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/72648.

Повний текст джерела
Анотація:
Thesis (S.M. in Building Technology)--Massachusetts Institute of Technology, Dept. of Architecture, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 61-63).
The structural behavior of masonry arches under various forms of loading is well-studied; however, the three-dimensional behavior of barrel vaults and groin vaults is not as well understood. This thesis aims to address this problem by performing scale model testing of barrel and groin vaults as a complement to analytical solutions. The behavior of the model vaults are observed in four cases: (1) spreading supports, (2) vertical point loads applied at various locations of the vault's geometry, (3) point loads applied to an initially deformed vault, and (4) horizontal acceleration through tilting. In all cases, extensive experimental testing is carried out on a subset of three model vaults: two barrels and one groin vault, all with the same radius and thickness ratio but with different angles of embrace. High-speed cameras are used to capture the collapse mechanism of the vaults. The analyses include equilibrium methods executed through Excel and Matlab programs, publicly available online applets for arch stability, and hand calculations. The testing and analysis carried out in this thesis reveal several properties that can be used by engineers studying existing structures. First, a groin vault's spreading capacity is determined by the constituent barrel vault that is spreading. This simplifies the analysis to a two-dimensional problem. Second, the load capacity of a barrel vault is linearly proportional to the initial deformation in span. So, if a vault experiences a span increase that is 25% of the maximum it can withstand, its load capacity decreases by 25%. Nearly all vaults have experienced deformations due to settlement over time and will therefore respond differently to loading than a perfect vault which is the common starting point in analysis. This work can be applied to the understanding and maintenance of masonry vaults in service throughout the world.
by Elaine Elizabeth Shapiro.
S.M.in Building Technology
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Marino, Salvatore. "Mechanical behaviour of composite spandrels in unreinforced masonry buildings." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5951/.

Повний текст джерела
Анотація:
La presente tesi tratta il comportamento meccanico delle fasce di piano in muratura composite. Con tale termine ci si riferisce alle fasce di piano che hanno al di sotto un elemento portante in conglomerato cementizio armato, come ad esempio cordoli o solai. Assieme ai maschi murari, le fasce di piano costituiscono gli elementi portanti di una parete in muratura. Tuttavia, in caso di analisi sismica di un edificio in muratura, l’effetto fornito da tali elementi è trascurato e si considera solamente il contributo dei maschi murari. Ciò è dovuto anche alla scarsa conoscenza che ancora oggi si possiede sul loro comportamento meccanico. Per questo motivo diversi gruppi di ricerca tutt’ora sono impegnati in tale studio. In particolare, il lavoro di questa tesi, s’inserisce nel più ampio progetto di ricerca condotto dalla professoressa Katrin Beyer, direttrice del Laboratorio di Ingegneria Sismica e Dinamica Strutturale del Politecnico di Losanna (Svizzera).
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Masonry mechanics"

1

Angelillo, Maurizio, ed. Mechanics of Masonry Structures. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1774-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aita, Danila, Orietta Pedemonte, and Kim Williams, eds. Masonry Structures: Between Mechanics and Architecture. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13003-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Calladine, C. R. Masonry Construction: Structural Mechanics and Other Aspects. Dordrecht: Springer Netherlands, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Como, Mario. Statics of Historic Masonry Constructions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

R, Calladine C., ed. Masonry construction: Structural mechanics and other aspects. Dordrecht: Kluwer Academic, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Woodward, Kyle. Influence of block and mortar strength on shear resistance of concrete block masonry walls. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lucchesi, Massimiliano, Nicola Zani, Cristina Padovani, and Giuseppe Pasquinelli. Masonry Constructions: Mechanical Models and Numerical Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79111-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Massimiliano, Lucchesi, ed. Masonry constructions: Mechanical models and numerical applications. Berlin: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mechanics of Masonry Structures. Springer Wien, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Angelillo, Maurizio. Mechanics of Masonry Structures. Springer Wien, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Masonry mechanics"

1

Como, Mario. "Masonry Arches." In Springer Series in Solid and Structural Mechanics, 133–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24569-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Como, Mario. "Masonry Stairways." In Springer Series in Solid and Structural Mechanics, 391–407. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24569-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Como, Mario. "Masonry Arches." In Springer Series in Solid and Structural Mechanics, 129–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30132-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Como, Mario. "Masonry Vaults." In Springer Series in Solid and Structural Mechanics, 175–341. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30132-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Como, Mario. "Masonry Stairways." In Springer Series in Solid and Structural Mechanics, 381–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30132-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Como, Mario. "Masonry Arches." In Springer Series in Solid and Structural Mechanics, 145–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54738-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Angelillo, Maurizio, Paulo B. Lourenço, and Gabriele Milani. "Masonry behaviour and modelling." In Mechanics of Masonry Structures, 1–26. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1774-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Šilhavý, M. "Mathematics of the Masonry–Like model and Limit Analysis." In Mechanics of Masonry Structures, 29–69. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1774-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lucchesi, Massimiliano. "A numerical method for solving BVP of masonry-like solids." In Mechanics of Masonry Structures, 71–108. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1774-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Angelillo, Maurizio. "Practical applications of unilateral models to Masonry Equilibrium." In Mechanics of Masonry Structures, 109–210. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1774-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Masonry mechanics"

1

Golebiewski, Michal, Izabela Lubowiecka, and Marcin Kujawa. "Dynamic research of masonry vault in a technical scale." In SCIENTIFIC SESSION OF APPLIED MECHANICS IX: Proceedings of the IX Polish National Conference on Applied Mechanics. Author(s), 2017. http://dx.doi.org/10.1063/1.4977681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baig, Iqbal, K. Ramesh, and Hariprasad M. P. "Analysis of stress distribution in dry masonry walls using three fringe photoelasticity." In International Conference on Experimental Mechanics 2014, edited by Chenggen Quan, Kemao Qian, Anand Asundi, and Fook Siong Chau. SPIE, 2015. http://dx.doi.org/10.1117/12.2081235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Angjeliu, G., G. Cardani, and E. Garavaglia. "Seismic Vulnerability Assessment of Historic Masonry Buildings through Fragility Curves Approach." In 15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII). CIMNE, 2022. http://dx.doi.org/10.23967/wccm-apcom.2022.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Asteris, P., and V. Plevris. "Neural Network Approximation of the Masonry Failure under Biaxial Compressive Stress." In 3rd South-East European Conference on Computational Mechanics. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2014. http://dx.doi.org/10.7712/130113.4411.s2158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Asteris, Panagiotis G., and Vagelis Plevris. "NEURAL NETWORK APPROXIMATION OF THE MASONRY FAILURE UNDER BIAXIAL COMPRESSIVE STRESS." In 3rd South-East European Conference on Computational Mechanics. Athens: ECCOMAS, 2013. http://dx.doi.org/10.7712/seeccm-2013.2158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vandoren, B., and K. De Proft. "MESOSCOPIC MODELLING OF MASONRY USING GFEM: A COMPARISON OF STRONG AND WEAK DISCONTINUITY MODELS." In 10th World Congress on Computational Mechanics. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/meceng-wccm2012-18040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Van Zijl, Gideon, and Leon de Beer. "an SHCC overlay retrofitting strategy for unreinforced load bearing masonry." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Manju, M. A., and K. S. Nanjunda Rao. "Response of R.C. Framed Buildings with Masonry Infills Having Openings Under Lateral Loading." In 5th International Congress on Computational Mechanics and Simulation. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1139-3_358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Srinivas, V., Saptarshi Sasmal, K. Ramanjaneyulu, and Thavamani Pandi. "Numerical Simulations for Structural Response of Masonry Arch Bridge with Relieving Slab as Upgradation Strategy." In 5th International Congress on Computational Mechanics and Simulation. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1139-3_239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Donnici, A., and F. Mazza. "Code-Oriented Floor Acceleration Response Spectra of RC Framed Buildings Accounting for Nonlinear Response of Masonry Infills." In 15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII). CIMNE, 2022. http://dx.doi.org/10.23967/wccm-apcom.2022.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Masonry mechanics"

1

Mosalam, K., L. Glascoe, and J. Bernier. Mechanical Properties of Unreinforced Brick Masonry, Section1. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/966219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mechanic killed while inspecting masonry stacker machine. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, January 2006. http://dx.doi.org/10.26616/nioshsface05or008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії