Добірка наукової літератури з теми "Many-Body quantum physics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Many-Body quantum physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Many-Body quantum physics"

1

Ullmo, Denis. "Many-body physics and quantum chaos." Reports on Progress in Physics 71, no. 2 (January 28, 2008): 026001. http://dx.doi.org/10.1088/0034-4885/71/2/026001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Modi, Kavan. "Quantum many-body physics in a nutshell." Contemporary Physics 60, no. 2 (April 3, 2019): 197. http://dx.doi.org/10.1080/00107514.2019.1621944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yao, Yunyan, and Liang Xiang. "Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium." Entropy 26, no. 7 (July 11, 2024): 592. http://dx.doi.org/10.3390/e26070592.

Повний текст джерела
Анотація:
Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emerged to simulate nonequilibrium quantum many-body dynamics that are challenging for classical computers. Here, we review the basic concepts of superconducting quantum simulation and their recent experimental progress in exploring exotic nonequilibrium quantum phenomena emerging in strongly interacting many-body systems, e.g., many-body localization, quantum many-body scars, and discrete time crystals. We further discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Luchnikov, Ilia A., Alexander Ryzhov, Pieter-Jan Stas, Sergey N. Filippov, and Henni Ouerdane. "Variational Autoencoder Reconstruction of Complex Many-Body Physics." Entropy 21, no. 11 (November 7, 2019): 1091. http://dx.doi.org/10.3390/e21111091.

Повний текст джерела
Анотація:
Thermodynamics is a theory of principles that permits a basic description of the macroscopic properties of a rich variety of complex systems from traditional ones, such as crystalline solids, gases, liquids, and thermal machines, to more intricate systems such as living organisms and black holes to name a few. Physical quantities of interest, or equilibrium state variables, are linked together in equations of state to give information on the studied system, including phase transitions, as energy in the forms of work and heat, and/or matter are exchanged with its environment, thus generating entropy. A more accurate description requires different frameworks, namely, statistical mechanics and quantum physics to explore in depth the microscopic properties of physical systems and relate them to their macroscopic properties. These frameworks also allow to go beyond equilibrium situations. Given the notably increasing complexity of mathematical models to study realistic systems, and their coupling to their environment that constrains their dynamics, both analytical approaches and numerical methods that build on these models show limitations in scope or applicability. On the other hand, machine learning, i.e., data-driven, methods prove to be increasingly efficient for the study of complex quantum systems. Deep neural networks, in particular, have been successfully applied to many-body quantum dynamics simulations and to quantum matter phase characterization. In the present work, we show how to use a variational autoencoder (VAE)—a state-of-the-art tool in the field of deep learning for the simulation of probability distributions of complex systems. More precisely, we transform a quantum mechanical problem of many-body state reconstruction into a statistical problem, suitable for VAE, by using informationally complete positive operator-valued measure. We show, with the paradigmatic quantum Ising model in a transverse magnetic field, that the ground-state physics, such as, e.g., magnetization and other mean values of observables, of a whole class of quantum many-body systems can be reconstructed by using VAE learning of tomographic data for different parameters of the Hamiltonian, and even if the system undergoes a quantum phase transition. We also discuss challenges related to our approach as entropy calculations pose particular difficulties.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vicentini, Filippo. "Machine learning toolbox for quantum many body physics." Nature Reviews Physics 3, no. 3 (January 29, 2021): 156. http://dx.doi.org/10.1038/s42254-021-00285-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Hong, and Julian Sonner. "Quantum many-body physics from a gravitational lens." Nature Reviews Physics 2, no. 11 (September 25, 2020): 615–33. http://dx.doi.org/10.1038/s42254-020-0225-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Noh, Changsuk, and Dimitris G. Angelakis. "Quantum simulations and many-body physics with light." Reports on Progress in Physics 80, no. 1 (November 4, 2016): 016401. http://dx.doi.org/10.1088/0034-4885/80/1/016401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Dian, Riccardo Rossi, Filippo Vicentini, Nikita Astrakhantsev, Federico Becca, Xiaodong Cao, Juan Carrasquilla, et al. "Variational benchmarks for quantum many-body problems." Science 386, no. 6719 (October 18, 2024): 296–301. http://dx.doi.org/10.1126/science.adg9774.

Повний текст джерела
Анотація:
The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-the-art numerical approaches show limited accuracy and future algorithms or computational platforms, such as quantum computing, could provide improved accuracy. The V-score can be used as a metric to assess the progress of quantum variational methods toward a quantum advantage for ground-state problems, especially in regimes where classical verifiability is impossible.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "New approach to many-body quantum-electrodynamics calculations:merging quantum electrodynamics with many-body perturbation." Canadian Journal of Physics 83, no. 4 (April 1, 2005): 395–403. http://dx.doi.org/10.1139/p05-012.

Повний текст джерела
Анотація:
A new method for bound-state quantum electrodynamics (QED) calculations on many-electron systems is presented that is a combination of the non-QED many-body technique for quasi-degenerate systems and the newly developed covariant-evolution-operator technique for QED calculations. The latter technique has been successfully applied to the fine structure of excited states of medium-heavy heliumlike ions, and it is expected that the new method should be applicable also to light elements, hopefully down to neutral helium. PACS Nos.: 31.30.Jv, 31.15.Md, 31.25.Jf, 33.15.Pw
Стилі APA, Harvard, Vancouver, ISO та ін.
10

von der Linden, Wolfgang. "A quantum Monte Carlo approach to many-body physics." Physics Reports 220, no. 2-3 (November 1992): 53–162. http://dx.doi.org/10.1016/0370-1573(92)90029-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Many-Body quantum physics"

1

Jia, Ningyuan. "Quantum Many-Body Physics with Photons." Thesis, The University of Chicago, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928150.

Повний текст джерела
Анотація:

Understanding and manipulating quantum materials is a long-sought goal in both the condensed matter and cold atom communities. Photons have recently emerged as a good candidate for studying quantum many-body states due to their fast dynamics and convenient manipulation. Tremendous efforts have been made to engineer single particle Hamiltonian with non-trivial topology. Having individual photons to strongly collide with each other and form an entangled many-body state remained as a challenge in optical domain.

In this thesis, I will first demonstrate how to engineer artificial magnetic field and non-trivial topology for microwave photons. In a classical lumped element circuit, we demonstrate the edge modes for microwave photons within the bulk band, and also show that these modes propagates with topological protection against the local lattice disorder. This work paves the way to synthesize correlated quantum materials in a lattice using microwave photons, combined with circuit QED technique.

Recently, Rydberg-Rydberg interaction has been broadly used in cold atom experiment to generate long-range inter-particle coupling for quantum information processing and quantum material simulation. We combine this technique with cavity electromagnetically induced transparency and create a robust quasi-particle, cavity Rydberg polaritons, which harness the power from both cavity photons with exotic topology and Rydberg atoms with strong interactions. We first demonstrate the interaction in the single quanta level in a quantum dot with single cavity mode and further expand it into multi-mode regime with modulated atomic states.

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bausch, Johannes Karl Richard. "Quantum stochastic processes and quantum many-body physics." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269857.

Повний текст джерела
Анотація:
This dissertation investigates the theory of quantum stochastic processes and its applications in quantum many-body physics. The main goal is to analyse complexity-theoretic aspects of both static and dynamic properties of physical systems modelled by quantum stochastic processes. The thesis consists of two parts: the first one addresses the computational complexity of certain quantum and classical divisibility questions, whereas the second one addresses the topic of Hamiltonian complexity theory. In the divisibility part, we discuss the question whether one can efficiently sub-divide a map describing the evolution of a system in a noisy environment, i.e. a CPTP- or stochastic map for quantum and classical processes, respectively, and we prove that taking the nth root of a CPTP or stochastic map is an NP-complete problem. Furthermore, we show that answering the question whether one can divide up a random variable $X$ into a sum of $n$ iid random variables $Y_i$, i.e. $X=\sum_{i=1}^n Y_i$, is poly-time computable; relaxing the iid condition renders the problem NP-hard. In the local Hamiltonian part, we study computation embedded into the ground state of a many-body quantum system, going beyond "history state" constructions with a linear clock. We first develop a series of mathematical techniques which allow us to study the energy spectrum of the resulting Hamiltonian, and extend classical string rewriting to the quantum setting. This allows us to construct the most physically-realistic QMAEXP-complete instances for the LOCAL HAMILTONIAN problem (i.e. the question of estimating the ground state energy of a quantum many-body system) known to date, both in one- and three dimensions. Furthermore, we study weighted versions of linear history state constructions, allowing us to obtain tight lower and upper bounds on the promise gap of the LOCAL HAMILTONIAN problem in various cases. We finally study a classical embedding of a Busy Beaver Turing Machine into a low-dimensional lattice spin model, which allows us to dictate a transition from a purely classical phase to a Toric Code phase at arbitrarily large and potentially even uncomputable system sizes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Biella, Alberto. "Many-body physics in open quantum systems." Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/85905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Besserve, Pauline. "Quantum-classical hybrid algorithms for quantum many-body physics." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAX086.

Повний текст джерела
Анотація:
Cette thèse étudie l'apport du calcul quantique bruité pour l’algorithme phare des fortes corrélations, la théorie du champ moyen dynamique (DMFT). Elle vise à mettre à profit les premiers dispositifs de calcul quantique, malgré leurs imperfections liées à un degré de contrôle expérimental encore limité. Dans un premier temps, une version améliorée de la méthode variationnelle de préparation de l'état fondamental du modèle d'impureté est proposée. Elle consiste en la réalisation de mises à jour de la base à une particule dans laquelle est décrit le Hamiltonien d'impureté. Ces mises à jour sont entrelacées avec des optimisations variationnelles de l'état, et guidées par la matrice densité à une particule de l'état variationnel optimisé courant. Cet algorithme nous a permis de réaliser la première implémentation hybride bruitée d'un schéma assimilé à la DMFT avec un système auxiliaire à deux impuretés. Aussi, nous montrons sur plusieurs exemples que cette méthode est capable d'augmenter la capacité d'un circuit variationnel donné à représenter l'état cible. Enfin, nous proposons de combiner les mises à jour de la base à une particule avec un algorithme variationnel dit adaptatif, qui construit le circuit itérativement. Nous montrons que cette approche permet de réduire, à précision donnée sur l'énergie de l'état optimisé, le nombre de portes du circuit. Dans un second temps, nous proposons de mettre à profit la dissipation qui affecte les qubits afin de diminuer les effets de la troncation du bain sur l'ajustement de l'hybridation du bain à celle de la DMFT. Nous montrons qu'une réduction en termes de sites de bain est bien à la portée d'une telle méthode. Cependant, nous faisons l'hypothèse d'un processus dissipatif qui n'est pas réaliste : la méthode doit donc encore être étudiée via un modèle plus proche des conditions expérimentales
This thesis investigates the possibility to leverage noisy quantum computation within the flagship algorithm for strong correlations, the dynamical mean-field theory (DMFT). It aims to take advantage of the first quantum computing devices, despite their imperfections imputable to a still-limited degree of experimental control.Firstly, an improved version of the variational method for preparing the ground state of the impurity model is proposed. It consists in carrying out updates of the single-particle basis in which the impurity Hamiltonian is described. These updates are interwoven with variational optimizations of the state, and guided by the one-particle density matrix of the current optimized variational state. This algorithm has enabled us to carry out the first noisy hybrid implementation of a DMFT-like scheme with a two-impurity auxiliary system. Also, we show on several examples that this method is capable of increasing the ability of a given variational circuit to represent the target state. Finally, we propose to combine single-particle basis updates with an adaptive variational algorithm, which builds the circuit iteratively. We show that this approach can reduce the number of gates in the circuit for a given precision in the energy of the attained state.Secondly, we propose to take advantage of the dissipation affecting the qubits to alleviate the effect of bath truncation onto the fit of the DMFT hybridization. We confirm that a reduction in the count of bath sites is within the reach of such a method. However, we make the assumption of a dissipative process which is not realistic: the method therefore still needs to be studied via a model closer to experimental conditions
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yoshida, Beni. "Studying many-body physics through quantum coding theory." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77257.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 133-140).
The emerging closeness between correlated spin systems and error-correcting codes enables us to use coding theoretical techniques to study physical properties of many-body spin systems. This thesis illustrates the use of classical and quantum coding theory in classifying quantum phases arising in many-body spin systems via a systematic study of stabilizer Hamiltonians with translation symmetries. In the first part, we ask what kinds of quantum phases may arise in gapped spin systems on a D-dimensional lattice. We address this condensed matter theoretical question by giving a complete classification of quantum phases arising in stabilizer Hamiltonians at fixed points of RG transformations for D = 1; 2; 3. We found a certain dimensional duality on geometric shapes of logical operators where m-dimensional and (D m)-dimensional logical operators always form anti-commuting pairs (m is an integer). We demonstrate that quantum phases are completely classified by topological characterizations of logical operators where topological quantum phase transitions are driven by non-analytical changes of geometric shapes of logical operators. As a consequence, we argue that topological order is unstable at any nonzero temperature and self-correcting quantum memory in a strict sense may not exist where the memory time is upper bounded by some constant at a fixed temperature, regardless of the system size. Our result also implies that topological field theory is the universal theory for stabilizer Hamiltonians with continuous scale symmetries. In the second part, we ask the fundamental limit on information storage capacity of discrete spin systems. There is a well-known theoretical limit on the amount of information that can be reliably stored in a given volume of discrete spin systems. Yet, previously known systems were far below this theoretical limit. We propose a construction of classical stabilizer Hamiltonians which asymptotically saturate this limit. Our model borrows an idea from fractal geometries arising in the Sierpinski triangle, and is a rare manifestation of limit cycle behaviors with discrete scale symmetries in real-space RG transformations, which may be beyond descriptions of topological field theory.
by Beni Yoshida.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Young, Carolyn 1979. "Many-body cotunneling in coupled quantum dots." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101692.

Повний текст джерела
Анотація:
The zero-temperature equilibrium conductance of mesoscopic devices due to single-particle resonant tunneling was first described by Landauer [1]. The Landauer formula was later extended to the multi-channel case by Fisher and Lee [2], who reduced the problem of calculating electronic transport properties to the problem of solving for the Green's function for a given system geometry.
In this work, the single-particle formalism is extended to the study of higher-order two-particle cotunneling processes by considering many-body Green's functions. The effect of attaching leads to the system is described in terms of a two-particle self-energy, whose analytical form is written in terms of a Feynman path integral over all possible tunneling processes between the leads and the device. In addition, an efficient numerical technique for the calculation of the fully dressed Green's function of a device region attached to two-particle leads is presented.
The problem of two-particle transport is then approached, and an analogy to single-particle transport on the infinite plane is drawn. It is shown that, for nonspin flip cotunneling processes, the two-particle transport result can be related to the single-particle conductance by way of a simple convolution. Finally, results for the cotunneling contribution to the conductance of double quantum dots, or charge qubits, are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Scarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.

Повний текст джерела
Анотація:
Ma thèse de doctorat était consacrée à l'étude des systèmes quantiques à plusieurs corps dissipatifs et pilotés. Ces systèmes représentent des plateformes naturelles pour explorer des questions fondamentales sur la matière dans des conditions de non-équilibre, tout en ayant un impact potentiel sur les technologies quantiques émergentes. Dans cette thèse, nous discutons d'une décomposition spectrale de fonctions de Green de systèmes ouverts markoviens, que nous appliquons à un modèle d'oscillateur quantique de van der Pol. Nous soulignons qu’une propriété de signe des fonctions spectrales des systèmes d’équilibre ne s’imposait pas dans le cas de systèmes ouverts, ce qui produisait une surprenante "densité d’états négative", avec des conséquences physiques directes. Nous étudions ensuite la transition de phase entre une phase normale et une phase superfluide dans un système prototype de bosons dissipatifs forcés sur un réseau. Cette transition est caractérisée par une criticité à fréquence finie correspondant à la rupture spontanée de l'invariance par translation dans le temps, qui n’a pas d’analogue dans des systèmes à l’équilibre. Nous discutons le diagramme de phase en champ moyen d'une phase isolante de Mott stabilisée par dissipation, potentiellement pertinente pour des expériences en cours. Nos résultats suggèrent qu'il existe un compromis entre la fidélité de la phase stationnaire à un isolant de Mott et la robustesse d'une telle phase à taux de saut fini. Enfin, nous présentons des développements concernant la théorie du champ moyen dynamique (DMFT) pour l’étude des systèmes à plusieurs corps dissipatifs et forcés. Nous introduisons DMFT dans le contexte des modèles dissipatifs et forcés et nous développons une méthode pour résoudre le problème auxiliaire d'une impureté couplée simultanément à un environnement markovien et à un environnement non-markovien. À titre de test, nous appliquons cette nouvelle méthode à un modèle simple d’impureté fermionique
My PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marzolino, Ugo. "Entanglement and decoherence in many-body physics." Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/5827.

Повний текст джерела
Анотація:
2009/2010
The thesis deals with several features of quantum many-body systems. They are described both in terms of reversible unitary transformations and as an environment interacting with other systems. An introductory part introduces the main ideas of quantum noise and dissipative dynamics. A chapter is also dedicated to some useful aspects of entanglement. The second part of the thesis concerns the orginal results. A chapter describes the dynamics of two qubits interacting with a common environment. This chapter is focused on the derivation of a new Markovian approximation, finer than the standard weak coupling limit, and its application on the dynamical generation of the entanglement. The second topic concerns the developping of some procedures to reconstruct the parameters governing a large class of Markovian and non-Markovian dissipative dynamics of a quantum particle. These procedures are based on the symplectic tomography of the evolved state. The third topic concerns the physics of many identical bosons, with a special focus on Bose-Einstein condensates. The relevance of entanglement and spin squeezing for quantum metrology with high accuracy is discussed in connection with the quantum Fisher information and collective and squeezing inequalities. A third part summerizes the results. Some useful tools are described in the appendices.
XXIII Ciclo
1983
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brell, Courtney Gordon Gray. "Many-body models for topological quantum information." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13539.

Повний текст джерела
Анотація:
We develop and investigate several quantum many-body spin models of use for topological quantum information processing and storage. These models fall into two categories: those that are designed to be more realistic than alternative models with similar phenomenology, and those that are designed to have richer phenomenology than related models. In the first category, we present a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the perturbative low-energy limits of entirely two-body Hamiltonians. This construction reproduces the target models' behavior using only couplings which are natural in terms of the original Hamiltonians. As an extension of this work, we construct parent Hamiltonians involving only local 2-body interactions for a broad class of Projected Entangled Pair States (PEPS). We define a perturbative Hamiltonian with a finite order low energy effective Hamiltonian that is a gapped, frustration-free parent Hamiltonian for an encoded version of a desired PEPS. For topologically ordered PEPS, the ground space of the low energy effective Hamiltonian is shown to be in the same phase as the desired state to all orders of perturbation theory. We then move on to define models that generalize the phenomenology of several well-known systems. We first define generalized cluster states based on finite group algebras, and investigate properties of these states including their PEPS representations, global symmetries, relationship to the Kitaev quantum double models, and possible applications. Finally, we propose a generalization of the color codes based on finite groups. For non-Abelian groups, the resulting model supports non-Abelian anyonic quasiparticles and topological order. We examine the properties of these models such as their relationship to Kitaev quantum double models, quasiparticle spectrum, and boundary structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nandkishore, Rahul (Rahul Mahajan ). "Quantum many body physics in single and bilayer graphene." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79522.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Two dimensional electron systems (2DES) provide a uniquely promising avenue for investigation of many body physics. Graphene constitutes a new and unusual 2DES, which may give rise to unexpected collective phenomena. However, the vanishing density of states in charge neutral single layer graphene suppresses many body effects, and one has to alter the system to observe strongly ordered states. We consider three ways of accessing quantum many body physics using graphene. First, we consider doping single layer graphene to a Van Hove singularity in the density of states. We show that there are strong instabilities to several strongly ordered states, with the leading instability being to a d-wave superconducting state. The superconducting state realizes chiral superconductivity, an exotic form of superconductivity wherein the phase of the order parameter winds by 4[pi] as we go around the Fermi surface. We also discuss the nature of the spin density wave state which is the principal competitor to superconductivity in doped graphene. Next, we study bilayer graphene (BLG), which has a non-vanishing density of states even at charge neutrality. We show that Coulomb interactions give rise to a zero bias anomaly in the tunneling density of states for BLG, which manifests itself at high energy scales. We also show that the quadratic band crossing in BLG is unstable to arbitrarily weak interactions, and estimate the energy scale for formation of strongly ordered states. We show that gapped states in BLG have topological properties, and we classify the various possible gapped and gapless states in terms of symmetries. We study the competition between various ordered states, and discuss how the nature of the ground state may be deduced experimentally. We also discuss recent experimental observations of strongly ordered states in bilayer graphene. Finally, we study bilayer graphene in a transverse magnetic field, focusing on the properties of the quantum Hall ferromagnet (QHF) state. We resolve an apparent discrepancy between the experimentally observed energetics and theory. We close with a discussion of the exotic topological defects that form above the QHF state.
by Rahul Nandkishore.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Many-Body quantum physics"

1

Kuramoto, Yoshio. Quantum Many-Body Physics. Tokyo: Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-55393-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Salasnich, Luca. Quantum Physics of Light and Matter - Quantum Many-Body Systems. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63297-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ecole d'été de physique théorique (Les Houches, Haute-Savoie, France) (94th 2010). Many-body physics with ultracold gases. Oxford: Oxford University Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tasaki, Hal. Physics and Mathematics of Quantum Many-Body Systems. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41265-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Trump, M. A. Classical Relativistic Many-Body Dynamics. Dordrecht: Springer Netherlands, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Trump, M. A. Classical relativistic many-body dynamics. Dordrecht: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ran, Shi-Ju. Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems. Cham: Springer Nature, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martin, Philippe A. Many-Body Problems and Quantum Field Theory: An Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

P, Das M., and Mahanty J. 1932-, eds. Modern perspectives in many-body physics: Proceedings of the Sixth Physics Summer School, The Australian National University, Canberra, Australia, 11-29 January 1993. Singapore: World Scientific, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bertsch, George F. Oscillations in finite quantum systems. Cambridge [England]: Cambridge University Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Many-Body quantum physics"

1

Ceperley, D. M., and M. H. Kalos. "Quantum Many-Body Problems." In Monte Carlo Methods in Statistical Physics, 145–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82803-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Salasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter, 115–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05179-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Salasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter, 115–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52998-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Salasnich, Luca. "Quantum Mechanics of Many-Body Systems." In UNITEXT for Physics, 139–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93743-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vanderstraeten, Laurens. "Introduction to Quantum Many-Body Physics." In Springer Theses, 5–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64191-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wilming, Henrik, Thiago R. de Oliveira, Anthony J. Short, and Jens Eisert. "Equilibration Times in Closed Quantum Many-Body Systems." In Fundamental Theories of Physics, 435–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99046-0_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Srivastava, Anubhav Kumar, Guillem Müller-Rigat, Maciej Lewenstein, and Grzegorz Rajchel-Mieldzioć. "Introduction to Quantum Entanglement in Many-Body Systems." In Lecture Notes in Physics, 225–85. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55657-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schlein, Benjamin. "Bogoliubov theory for many-body quantum systems." In Partial Differential Equations, Spectral Theory, and Mathematical Physics, 367–88. Zuerich, Switzerland: European Mathematical Society Publishing House, 2021. http://dx.doi.org/10.4171/ecr/18-1/22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Augusiak, R., F. M. Cucchietti, and M. Lewenstein. "Many-Body Physics from a Quantum Information Perspective." In Modern Theories of Many-Particle Systems in Condensed Matter Physics, 245–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10449-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kakehashi, Yoshiro. "Quantum Many-Body Theory and Coherent Potential Approximation." In Nonequilibrium Physics at Short Time Scales, 3–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08990-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Many-Body quantum physics"

1

Grigoriou, Emmanouil, Ming Li, Yoshitomo Kamiya, Germán J. de Valcárcel, and Carlos Navarrete-Benlloch. "Many-body phases enabled by quantum optical processes." In Quantum 2.0, QM5A.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5a.1.

Повний текст джерела
Анотація:
Many-body physics and quantum optics have traditionally worked on opposite sides of the physics spectrum. Quantum optics deals with the precise quantum control of atomic, optical, and solid state systems with a small number of degrees of freedom. On the other hand, many-body physics is typically associated with the statistical behavior of condensed-matter systems containing an infinite number of constituents. However, we are now in an era where our level of control of quantum-optical systems is so precise, that we can apply it to the design of devices that implement many-body models in regimes traditionally inaccessible to condensed-matter systems, so-called quantum simulators. Here we provide evidence that the addition of particle-non-conserving processes (pumping and dissipation) to the toolbox of quantum simulators will allow them to reach elusive many-body phases such as supersolids or time crystals.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kelly, Hugh P. "Many-body calculations of photoionization cross sections." In Computational quantum physics. AIP, 1992. http://dx.doi.org/10.1063/1.42617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

VERSTRAETE, FRANK. "ENTANGLEMENT IN MANY-BODY QUANTUM PHYSICS." In Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ye, Jun. "Precision metrology and many-body quantum physics." In Laser Science. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ls.2012.lw1i.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dutta, Sayantan, Adrian Basarab, Bertrand Georgeot, and Denis Kouame. "Image Denoising Inspired by Quantum Many-Body physics." In 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021. http://dx.doi.org/10.1109/icip42928.2021.9506794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lev, B. "Quantum Many-body Physics with Multimode Cavity QED." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.fm1e.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dutta, Sayantan, Adrian Basarab, Bertrand Georgeot, and Denis Kouame. "Despeckling Ultrasound Images Using Quantum Many-Body Physics." In 2021 IEEE International Ultrasonics Symposium (IUS). IEEE, 2021. http://dx.doi.org/10.1109/ius52206.2021.9593778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pichard, Jean-Louis, Axel Freyn, Moises Martinez-Mares, and Jose A. Moreno-Razo. "Scattering approach to quantum transport and many body effects." In CONDENSED MATTER PHYSICS: IV Mexican Meeting on Experimental and Theoretical Physics: Symposium on Condensed Matter Physics. AIP, 2010. http://dx.doi.org/10.1063/1.3536609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Farfurnik, Demitry, and Nir Bar-Gill. "Spin ensembles in diamond for sensing and many-body physics." In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.f3b.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Carmele, Alexander, Leon Droenner, and Julia Kabuss. "Quantum many-body correlations in collective phonon-excitations." In Physics and Simulation of Optoelectronic Devices XXVI, edited by Marek Osiński, Yasuhiko Arakawa, and Bernd Witzigmann. SPIE, 2018. http://dx.doi.org/10.1117/12.2296607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії