Добірка наукової літератури з теми "Many-body quantum mechanic"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Many-body quantum mechanic".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Many-body quantum mechanic"
Wall, Michael L., Arghavan Safavi-Naini, and Martin Gärttner. "Many-body quantum mechanics." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 25–29. http://dx.doi.org/10.1145/2983537.
Повний текст джерелаShigeta, Yasuteru, Tomoya Inui, Takeshi Baba, Katsuki Okuno, Hiroyuki Kuwabara, Ryohei Kishi, and Masayoshi Nakano. "Quantal cumulant mechanics and dynamics for multidimensional quantum many-body clusters." International Journal of Quantum Chemistry 113, no. 3 (March 14, 2012): 348–55. http://dx.doi.org/10.1002/qua.24052.
Повний текст джерелаLuchnikov, Ilia A., Alexander Ryzhov, Pieter-Jan Stas, Sergey N. Filippov, and Henni Ouerdane. "Variational Autoencoder Reconstruction of Complex Many-Body Physics." Entropy 21, no. 11 (November 7, 2019): 1091. http://dx.doi.org/10.3390/e21111091.
Повний текст джерелаColcelli, A., G. Mussardo, G. Sierra, and A. Trombettoni. "Free fall of a quantum many-body system." American Journal of Physics 90, no. 11 (November 2022): 833–40. http://dx.doi.org/10.1119/10.0013427.
Повний текст джерелаGoihl, Marcel, Mathis Friesdorf, Albert H. Werner, Winton Brown, and Jens Eisert. "Experimentally Accessible Witnesses of Many-Body Localization." Quantum Reports 1, no. 1 (June 17, 2019): 50–62. http://dx.doi.org/10.3390/quantum1010006.
Повний текст джерелаFRÖHLICH, J., and U. M. STUDER. "GAUGE INVARIANCE IN NON-RELATIVISTIC MANY-BODY THEORY." International Journal of Modern Physics B 06, no. 11n12 (June 1992): 2201–8. http://dx.doi.org/10.1142/s0217979292001092.
Повний текст джерелаNandkishore, Rahul, and David A. Huse. "Many-Body Localization and Thermalization in Quantum Statistical Mechanics." Annual Review of Condensed Matter Physics 6, no. 1 (March 2015): 15–38. http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726.
Повний текст джерелаWyllard, Niclas. "(Super)conformal many-body quantum mechanics with extended supersymmetry." Journal of Mathematical Physics 41, no. 5 (May 2000): 2826–38. http://dx.doi.org/10.1063/1.533273.
Повний текст джерелаLev, F. M. "On the many-body problem in relativistic quantum mechanics." Nuclear Physics A 433, no. 4 (February 1985): 605–18. http://dx.doi.org/10.1016/0375-9474(85)90020-x.
Повний текст джерелаALBEVERIO, SERGIO, LUDWIK DABROWSKI, and SHAO-MING FEI. "A REMARK ON ONE-DIMENSIONAL MANY-BODY PROBLEMS WITH POINT INTERACTIONS." International Journal of Modern Physics B 14, no. 07 (March 20, 2000): 721–27. http://dx.doi.org/10.1142/s0217979200000601.
Повний текст джерелаДисертації з теми "Many-body quantum mechanic"
CARACI, CRISTINA. "Bose-Einstein condensation for two dimensional interacting bosons: mean field and Gross-Pitaevskii scalings." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/23210.
Повний текст джерелаBenedikter, Niels [Verfasser]. "Effective Evolution Equations from Many-Body Quantum Mechanics / Niels Benedikter." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1052061079/34.
Повний текст джерелаSengupta, Sanghita. "Quantum Many - Body Interaction Effects In Two - Dimensional Materials." ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/939.
Повний текст джерелаBertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.
Повний текст джерелаErne, Sebastian Anton [Verfasser], and Thomas [Akademischer Betreuer] Gasenzer. "Far-From-Equilibrium Quantum Many-Body Systems: From Universal Dynamics to Statistical Mechanics / Sebastian Anton Erne ; Betreuer: Thomas Gasenzer." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252805/34.
Повний текст джерелаHafver, Andreas. "The formalism of non-commutative quantum mechanics and its extension to many-particle systems." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5255.
Повний текст джерелаENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates the notion of a fundamental shortest length scale by introducing non-commuting position coordinates. Various theories of quantum gravity indicate the existence of such a shortest length scale in nature. It has furthermore been realised that certain condensed matter systems allow effective descriptions in terms of non-commuting coordinates. As a result, non-commutative quantum mechanics has received increasing attention recently. A consistent formulation and interpretation of non-commutative quantum mechanics, which unambiguously defines position measurement within the existing framework of quantum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter formalism, extends it to many-particle systems and links it up with non-commutative quantum field theory via second quantisation. It is shown that interactions of particles, among themselves and with external potentials, are altered as a result of the fuzziness induced by non-commutativity. For potential scattering, generic increases are found for the differential and total scattering cross sections. Furthermore, the recovery of a scattering potential from scattering data is shown to involve a suppression of high energy contributions, disallowing divergent interaction forces. Likewise, the effective statistical interaction among fermions and bosons is modified, leading to an apparent violation of Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities.
AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate. Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet. ’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika, wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi ¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak. Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata ’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied. Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander, wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge vir termodinamika by ho¨e digthede.
Paolini, Fabio. "Dinâmica gaussiana de sistemas atômicos de Bose-Einstein frios." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24042009-145044/.
Повний текст джерелаWe study low-lying excitations of a spinless, homogeneous bose gas, with repulsive interaction, at zero temperature, in terms of a gaussian mean field approximation. The dynamical equations of this approximation have been linearized in small displacements from the well known static Hartree-Fock-Bogoliubov solution. We obtain a gapped continous band of excitations above a discrete branch with phonon behavior at large wavelengths. We also discuss the allowed forms of excitations and conclude that restrictions exist for the allowed deviations of the general set of gaussian mean field parameters, when they are generated in first orders by infinitesimal unitary transformations.
Ricaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.
Повний текст джерелаThis thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
Lentz, Simon. "Exact eigenstates of the Inozemtsev spin chain." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297571.
Повний текст джерелаDen här avhandlingen behandlar följande frågeställning: finns det fler egenfunktioner än de redan kända till spinnkedjan med elliptisk växelverkan känd som Inozemtsevs spinnkedja? Inozemtsevs spinnkedja interpolerar mellan Heisenbergs spinnkedja och Haldane-Shastrys spinnkedja som båda ärkvant-integrerbara. Därför är det intressant att vidare utforska egenfunktionerna hos Inozemtsevs spinnkedja. Det finns kopplingar mellan spinnkedjor och spinnfria en-dimensionella kontinuumsystem, nämligen Calogero-Sutherlands system; en sådan koppling mellan Haldane-Shastrysspinnkedja och Calogero-Sutherlands modell med trigonometrisk växelverkan härleds i denna avhandling. Dessa kopplingar konstaterar att egenfunktionerna för Calogero-Sutherland systemet är egenfunktioner för spinnkedjan också. En koppling existerar mellan Calogero-Sutherland modellen med elliptisk växelverkan och Inozemtsevs spinnkedja vilket ger exakta egenfunktioner hos Inozemtsevs modell med enkla poler vid sammanfallande argument. Däremot existerar det egenfunktioner till Calogero-Sutherland modellen med elliptisk växelverkan med andra ordningens nollor vid sammanfallande argument istället för enkla poler. Det är därför intressant att undersöka om det existerar en koppling mellan dessa två system med egenfunktioner med andra ordningens nollor; det här skulle då ge exakta egenfunktioner till Inozemtsevs spinnkedja med andra ordningens nollor. Detta är huvudsyftet med avhandlingen. Egenfunktioner med andra ordningens nollor för två magnoner undersöks. Avhandlingen använder sig av analytisk metod och har prövats med numeriska metoder. De numeriska resultaten indikerar att de undersökta funktionerna i denna avhandling misslyckas med att parametrisera egenfunktionerna till Inozemtsevs spinnkedja förutom vissa specifika fall.
Hanssen, James Louis. "Controlling atomic motion: from single particle classical mechanics to many body quantum dynamics." Thesis, 2004. http://hdl.handle.net/2152/1193.
Повний текст джерелаКниги з теми "Many-body quantum mechanic"
March, Norman H. The many-body problem in quantum mechanics. New York: Dover Publications, 1995.
Знайти повний текст джерелаBethe, Hans Albrecht. Quantum mechanics of one- and two-electron atoms. Mineola, N.Y: Dover Publications, 2008.
Знайти повний текст джерелаVan, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. 2nd ed. Hackensack, NJ: World Scientific, 2008.
Знайти повний текст джерелаVan, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Hackensack, NJ: World Scientific, 2005.
Знайти повний текст джерелаDickhoff, Willem Hendrik. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Singapore: World Scientific, 2006.
Знайти повний текст джерелаBalslev, Erik, ed. Schrö'dinger Operators The Quantum Mechanical Many-Body Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55490-4.
Повний текст джерелаErik, Balslev, ed. Schrödinger operators: The quantum mechanical many-body problem. Berlin: Springer-Verlag, 1992.
Знайти повний текст джерелаM, Eisenberg Judah, ed. Quantum mechanics of many degrees of freedom. New York: Wiley, 1988.
Знайти повний текст джерелаTrump, M. A. Classical Relativistic Many-Body Dynamics. Dordrecht: Springer Netherlands, 1999.
Знайти повний текст джерелаMathematical methods of many-body quantum field theory. Boca Raton: Chapman & Hall/CRC, 2005.
Знайти повний текст джерелаЧастини книг з теми "Many-body quantum mechanic"
Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 95–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05384-3_7.
Повний текст джерелаBes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 109–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20556-9_7.
Повний текст джерелаHecht, K. T. "Many-Body Formalism." In Quantum Mechanics, 721–38. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_78.
Повний текст джерелаFlügge, Siegfried. "IV. Many-Body Problems." In Practical Quantum Mechanics, 379–470. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_4.
Повний текст джерелаHecht, K. T. "Many-Body Techniques: Some Simple Applications." In Quantum Mechanics, 739–52. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_79.
Повний текст джерелаGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 335–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57974-5_14.
Повний текст джерелаGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 367–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56826-8_14.
Повний текст джерелаGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-00707-5_14.
Повний текст джерелаGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-30374-0_14.
Повний текст джерелаSalasnich, Luca. "Quantum Mechanics of Many-Body Systems." In UNITEXT for Physics, 139–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93743-0_9.
Повний текст джерелаТези доповідей конференцій з теми "Many-body quantum mechanic"
Briegel, Hans. "Entanglement in quantum many-body systems far away from thermodynamic equilibrium." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs1.
Повний текст джерелаZhao, Xuncheng, Mingfan Li, Qian Xiao, Junshi Chen, Fei Wang, Li Shen, Meijia Zhao, et al. "AI for Quantum Mechanics: High Performance Quantum Many-Body Simulations via Deep Learning." In SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2022. http://dx.doi.org/10.1109/sc41404.2022.00053.
Повний текст джерелаKoch, S. W., F. Jahnke, and H. C. Schneider. "Theory of Semiconductor Microcavities and Lasers." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qfb1.
Повний текст джерела