Добірка наукової літератури з теми "Many-body quantum mechanic"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Many-body quantum mechanic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Many-body quantum mechanic"

1

Wall, Michael L., Arghavan Safavi-Naini, and Martin Gärttner. "Many-body quantum mechanics." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 25–29. http://dx.doi.org/10.1145/2983537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shigeta, Yasuteru, Tomoya Inui, Takeshi Baba, Katsuki Okuno, Hiroyuki Kuwabara, Ryohei Kishi, and Masayoshi Nakano. "Quantal cumulant mechanics and dynamics for multidimensional quantum many-body clusters." International Journal of Quantum Chemistry 113, no. 3 (March 14, 2012): 348–55. http://dx.doi.org/10.1002/qua.24052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Luchnikov, Ilia A., Alexander Ryzhov, Pieter-Jan Stas, Sergey N. Filippov, and Henni Ouerdane. "Variational Autoencoder Reconstruction of Complex Many-Body Physics." Entropy 21, no. 11 (November 7, 2019): 1091. http://dx.doi.org/10.3390/e21111091.

Повний текст джерела
Анотація:
Thermodynamics is a theory of principles that permits a basic description of the macroscopic properties of a rich variety of complex systems from traditional ones, such as crystalline solids, gases, liquids, and thermal machines, to more intricate systems such as living organisms and black holes to name a few. Physical quantities of interest, or equilibrium state variables, are linked together in equations of state to give information on the studied system, including phase transitions, as energy in the forms of work and heat, and/or matter are exchanged with its environment, thus generating entropy. A more accurate description requires different frameworks, namely, statistical mechanics and quantum physics to explore in depth the microscopic properties of physical systems and relate them to their macroscopic properties. These frameworks also allow to go beyond equilibrium situations. Given the notably increasing complexity of mathematical models to study realistic systems, and their coupling to their environment that constrains their dynamics, both analytical approaches and numerical methods that build on these models show limitations in scope or applicability. On the other hand, machine learning, i.e., data-driven, methods prove to be increasingly efficient for the study of complex quantum systems. Deep neural networks, in particular, have been successfully applied to many-body quantum dynamics simulations and to quantum matter phase characterization. In the present work, we show how to use a variational autoencoder (VAE)—a state-of-the-art tool in the field of deep learning for the simulation of probability distributions of complex systems. More precisely, we transform a quantum mechanical problem of many-body state reconstruction into a statistical problem, suitable for VAE, by using informationally complete positive operator-valued measure. We show, with the paradigmatic quantum Ising model in a transverse magnetic field, that the ground-state physics, such as, e.g., magnetization and other mean values of observables, of a whole class of quantum many-body systems can be reconstructed by using VAE learning of tomographic data for different parameters of the Hamiltonian, and even if the system undergoes a quantum phase transition. We also discuss challenges related to our approach as entropy calculations pose particular difficulties.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Colcelli, A., G. Mussardo, G. Sierra, and A. Trombettoni. "Free fall of a quantum many-body system." American Journal of Physics 90, no. 11 (November 2022): 833–40. http://dx.doi.org/10.1119/10.0013427.

Повний текст джерела
Анотація:
The quantum version of the free fall problem is a topic often skipped in undergraduate quantum mechanics courses, because its discussion usually requires wavepackets built on the Airy functions—a difficult computation. Here, on the contrary, we show that the problem can be nicely simplified both for a single particle and for general many-body systems by making use of a gauge transformation that corresponds to a change of reference frame from the laboratory frame to the one comoving with the falling system. Using this approach, the quantum mechanics problem of a particle in an external gravitational potential reduces to a much simpler one where there is no longer any gravitational potential in the Schrödinger equation. It is instructive to see that the same procedure can be used for many-body systems subjected to an external gravitational potential and a two-body interparticle potential that is a function of the distance between the particles. This topic provides a helpful and pedagogical example of a quantum many-body system whose dynamics can be analytically described in simple terms.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goihl, Marcel, Mathis Friesdorf, Albert H. Werner, Winton Brown, and Jens Eisert. "Experimentally Accessible Witnesses of Many-Body Localization." Quantum Reports 1, no. 1 (June 17, 2019): 50–62. http://dx.doi.org/10.3390/quantum1010006.

Повний текст джерела
Анотація:
The phenomenon of many-body localized (MBL) systems has attracted significant interest in recent years, for its intriguing implications from a perspective of both condensed-matter and statistical physics: they are insulators even at non-zero temperature and fail to thermalize, violating expectations from quantum statistical mechanics. What is more, recent seminal experimental developments with ultra-cold atoms in optical lattices constituting analog quantum simulators have pushed many-body localized systems into the realm of physical systems that can be measured with high accuracy. In this work, we introduce experimentally accessible witnesses that directly probe distinct features of MBL, distinguishing it from its Anderson counterpart. We insist on building our toolbox from techniques available in the laboratory, including on-site addressing, super-lattices, and time-of-flight measurements, identifying witnesses based on fluctuations, density–density correlators, densities, and entanglement. We build upon the theory of out of equilibrium quantum systems, in conjunction with tensor network and exact simulations, showing the effectiveness of the tools for realistic models.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

FRÖHLICH, J., and U. M. STUDER. "GAUGE INVARIANCE IN NON-RELATIVISTIC MANY-BODY THEORY." International Journal of Modern Physics B 06, no. 11n12 (June 1992): 2201–8. http://dx.doi.org/10.1142/s0217979292001092.

Повний текст джерела
Анотація:
We review some recent results on the physics of two-dimensional, incompressible electron and spin liquids. These results follow from Ward identities reflecting the U(1) em × SU(2) spin -gauge invariance of non-relativistic quantum mechanics. They describe a variety of generalized quantized Hall effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nandkishore, Rahul, and David A. Huse. "Many-Body Localization and Thermalization in Quantum Statistical Mechanics." Annual Review of Condensed Matter Physics 6, no. 1 (March 2015): 15–38. http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wyllard, Niclas. "(Super)conformal many-body quantum mechanics with extended supersymmetry." Journal of Mathematical Physics 41, no. 5 (May 2000): 2826–38. http://dx.doi.org/10.1063/1.533273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lev, F. M. "On the many-body problem in relativistic quantum mechanics." Nuclear Physics A 433, no. 4 (February 1985): 605–18. http://dx.doi.org/10.1016/0375-9474(85)90020-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ALBEVERIO, SERGIO, LUDWIK DABROWSKI, and SHAO-MING FEI. "A REMARK ON ONE-DIMENSIONAL MANY-BODY PROBLEMS WITH POINT INTERACTIONS." International Journal of Modern Physics B 14, no. 07 (March 20, 2000): 721–27. http://dx.doi.org/10.1142/s0217979200000601.

Повний текст джерела
Анотація:
The integrability of one-dimensional quantum mechanical many-body problems with general contact interactions is extensively studied. It is shown that besides the pure (repulsive or attractive) δ-function interaction there is another singular point interactions which gives rise to a new one-parameter family of integrable quantum mechanical many-body systems. The bound states and scattering matrices are calculated for both bosonic and fermionic statistics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Many-body quantum mechanic"

1

CARACI, CRISTINA. "Bose-Einstein condensation for two dimensional interacting bosons: mean field and Gross-Pitaevskii scalings." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/23210.

Повний текст джерела
Анотація:
This thesis is concerned with static properties of large bosonic systems in two dimensions. These systems at very low-temperatures are expected to exhibit emph{Bose-Einstein condensation}. From a mathematical and physical, point of view it is interesting to provide conditions for the occurrence of Bose-Einstein condensation. Obviously, studying a system of N particles, where N is large, is very challenging. However, to overcome this problem we can rely on effective theories, which describe the collective behaviour of the particles. The aim of the manuscript is to present new results regarding the occurrence of Bose-Einstein condensation in two-dimensional bosonic systems in suitable scaling limits. Our first result consists of the rigorous derivation of complete Bose-Einstein condensation of low-energy states in a regime where the interaction potential scales as N^2bV(N^b ), for b >0 such that log (N^b) <
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Benedikter, Niels [Verfasser]. "Effective Evolution Equations from Many-Body Quantum Mechanics / Niels Benedikter." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1052061079/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sengupta, Sanghita. "Quantum Many - Body Interaction Effects In Two - Dimensional Materials." ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/939.

Повний текст джерела
Анотація:
In this talk, I will discuss three problems related to the novel physics of two-dimensional quantum materials such as graphene, group-VI dichalcogenides family (TMDCs viz. MoS2 , WS2, MoSe2 , etc) and Silicene-Germanene class of materials. The first problem poses a simple question - how do the quantum excitations in a graphene membrane affect adsorption? Using the tools of diagrammatic perturbation theory, I will derive the scattering rates of a neutral atom on a graphene membrane. I will show how this seemingly naive model can serve as a non-relativistic condensed matter analogue of the infamous infrared problem in Quantum Electrodynamics. In the second problem, I will move from the framework of a single atom adsorption to a collective behavior of fluids near graphene and TMDC - interfaces. Following the seminal work of Dzyaloshinskii-Lifshitz-Pitaevskii on van der Waals interactions, I will develop a theory of liquid film growth on 2 dimensional surfaces. Additionally, I will report an exotic phenomenon of critical wetting instability which is a result of the dielectric engineering and discuss experimental and technological implications. Finally, the last problem will see the introduction of spin-orbit coupling effects in the 2D topological insulator family of Silicene-Germanene class of materials. I will present a unified theory for their in-plane magnetic field response leading to "anomalous", i.e electron interaction-dependent spin-flip transition moment. Can this correction to spin-flip transition moment be measured? I will propose magneto-optical experimental techniques that can probe the effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.

Повний текст джерела
Анотація:
In this thesis we study three examples of interacting many-body systems undergoing a non equilibrium time evolution. Firstly we consider the time evolution in an integrable system: the sine-Gordon field theory in the repulsive regime. We will focus on the one point function of the semi-local vertex operator eiβφ(x)/2 on a specific class of initial states. By analytical means we show that the expectation value considered decays exponentially to zero at late times and we determine the decay time. The method employed is based on a form-factor expansion and uses the "Representative Eigenstate Approach" of Ref. [73] (a.k.a. "Quench Action"). In a second example we study the time evolution in models close to "special" integrable points characterised by hidden symmetries generating infinitely many local conservation laws that do not commute with one another, in addition to the infinite commuting family implied by integrability. We observe that both in the case where the perturbation breaks the integrability and when it breaks only the additional symmetries maintaining integrability, the local observables show a crossover behaviour from an initial to a final quasi stationary plateau. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-1/2 chain with additional perturbations that break integrability. Finally, we study the effects of integrability breaking perturbations on the non-equilibrium evolution of more general many-particle quantum systems, where the unperturbed integrable model is generic. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalisations of quantum Boltzmann equations. We benchmark our method against time dependent density matrix renormalisation group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalisation plateaux for local observables on all accessible time scales. Increasing the strength of the integrability breaking term induces a "drift" away from the prethermalisation plateaux towards thermal behaviour. We identify a time scale characterising this crossover.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Erne, Sebastian Anton [Verfasser], and Thomas [Akademischer Betreuer] Gasenzer. "Far-From-Equilibrium Quantum Many-Body Systems: From Universal Dynamics to Statistical Mechanics / Sebastian Anton Erne ; Betreuer: Thomas Gasenzer." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252805/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hafver, Andreas. "The formalism of non-commutative quantum mechanics and its extension to many-particle systems." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5255.

Повний текст джерела
Анотація:
Thesis (MSc (Physics))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates the notion of a fundamental shortest length scale by introducing non-commuting position coordinates. Various theories of quantum gravity indicate the existence of such a shortest length scale in nature. It has furthermore been realised that certain condensed matter systems allow effective descriptions in terms of non-commuting coordinates. As a result, non-commutative quantum mechanics has received increasing attention recently. A consistent formulation and interpretation of non-commutative quantum mechanics, which unambiguously defines position measurement within the existing framework of quantum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter formalism, extends it to many-particle systems and links it up with non-commutative quantum field theory via second quantisation. It is shown that interactions of particles, among themselves and with external potentials, are altered as a result of the fuzziness induced by non-commutativity. For potential scattering, generic increases are found for the differential and total scattering cross sections. Furthermore, the recovery of a scattering potential from scattering data is shown to involve a suppression of high energy contributions, disallowing divergent interaction forces. Likewise, the effective statistical interaction among fermions and bosons is modified, leading to an apparent violation of Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities.
AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate. Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet. ’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika, wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi ¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak. Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata ’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied. Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander, wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge vir termodinamika by ho¨e digthede.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Paolini, Fabio. "Dinâmica gaussiana de sistemas atômicos de Bose-Einstein frios." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24042009-145044/.

Повний текст джерела
Анотація:
Estudamos as excitações de baixa energia, presentes em um gás de bosons homogêneo, de spin nulo, sujeitos a uma interação de dois corpos repulsiva e a temperatura zero, utilizando a aproximação gaussiana, que consiste num caso particular de aproximação de campo médio. As equações dinâmicas resultantes foram linearizadas ao redor da solução estática de Hartree-Fock-Bogoliubov. Obtivemos uma banda contínua e limitada inferiormente, além de um segundo ramo discreto, que define um limite inferior para as excitações e que, ao contrário do resultado proveniente do tratamento de Hartree-Fock-Bogoliubov, possui um comportamento linear sem gap com respeito ao momento da excitação no limite de grandes comprimentos de onda, ou seja, possui uma equação de dispersão do tipo fônon. Discutimos também a forma através da qual é possível gerar desvios do equilíbrio, vinculados aos estados excitados, e concluímos haver restrições sobre os possíveis desvios das grandezas características em campo médio gaussiano, quando tais desvios são gerados por transformações infinitesimais unitárias de um corpo tomadas até primeira ordem.
We study low-lying excitations of a spinless, homogeneous bose gas, with repulsive interaction, at zero temperature, in terms of a gaussian mean field approximation. The dynamical equations of this approximation have been linearized in small displacements from the well known static Hartree-Fock-Bogoliubov solution. We obtain a gapped continous band of excitations above a discrete branch with phonon behavior at large wavelengths. We also discuss the allowed forms of excitations and conclude that restrictions exist for the allowed deviations of the general set of gaussian mean field parameters, when they are generated in first orders by infinitesimal unitary transformations.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ricaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude mathématique de deux systèmes quantiques décrits par des modèles non linéaires : le polaron anisotrope et les électrons d'un cristal périodique. Après avoir prouvé l'existence de minimiseurs, nous nous intéressons à la question de l'unicité pour chacun des deux modèles. Dans une première partie, nous montrons l'unicité du minimiseur et sa non-dégénérescence pour le polaron décrit par l'équation de Choquard--Pekar anisotrope, sous la condition que la matrice diélectrique du milieu est presque isotrope. Dans le cas d'une forte anisotropie, nous laissons la question de l'unicité en suspens mais caractérisons précisément les symétries pouvant être dégénérées. Dans une seconde partie, nous étudions les électrons d'un cristal dans le modèle de Thomas--Fermi--Dirac--Von~Weizsäcker périodique, en faisant varier le paramètre devant le terme de Dirac. Nous montrons l'unicité et la non-dégénérescence du minimiseur lorsque ce paramètre est suffisamment petit et mettons en évidence une brisure de symétrie lorsque celui-ci est grand
This thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lentz, Simon. "Exact eigenstates of the Inozemtsev spin chain." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297571.

Повний текст джерела
Анотація:
This thesis deals with the following question: are there more eigenfunctions, other than the already known eigenfunctions, of the spin chain with elliptic interactions known as the Inozemtsev spin chain? The Inozemtsev spin chain interpolates between two quantum integrable spin chains, theHeisenberg spin chain and the Haldane-Shastry spin chain. Therefore it is interesting to explore eigenfunctions of the Inozemtsev spin chain in greater detail. Moreover, there exists connections between spin chains and their corresponding spinless continuum model, namely theCalogero-Sutherland models; a derivation of the connection between the Haldane-Shastry spin chain and the trigonometric interacting Calogero-Sutherland model is presented in this thesis. These connections state that the eigenfunctions of the Calogero-Sutherland model are also eigenfunctionsof the corresponding spin chain. An established connection between the Inozemtsev spin chain and the elliptic interacting Calogero-Sutherland model yields exact eigenfunctions with simple poles at coinciding arguments of the Inozemtsev spin chain. However, there are eigenfunctions of theelliptic Calogero-Sutherland model with second order zeros instead of simple poles at coinciding arguments. It is therefore interesting to see if a connection exists that relates the eigenfunctions of the elliptic Calogero-Sutherland model with second order zeros to eigenfunctionsof the Inozemtsev spin chain also with second order zeros. The main goal of this thesis is to explore eigenfunctions of the Inozemtsev spin chain with second order zeros for two magnons. This thesis uses analytical methods for finding these eigenfunctions and numerical methods have beenresorted to in the end. The numerical results indicate that the functions explored in this thesis fail to parametrise the eigenfunctions of the Inozemtsev spin chain, except for a few special cases.
Den här avhandlingen behandlar följande frågeställning: finns det fler egenfunktioner än de redan kända till spinnkedjan med elliptisk växelverkan känd som Inozemtsevs spinnkedja? Inozemtsevs spinnkedja interpolerar mellan Heisenbergs spinnkedja och Haldane-Shastrys spinnkedja som båda ärkvant-integrerbara. Därför är det intressant att vidare utforska egenfunktionerna hos Inozemtsevs spinnkedja. Det finns kopplingar mellan spinnkedjor och spinnfria en-dimensionella kontinuumsystem, nämligen Calogero-Sutherlands system; en sådan koppling mellan Haldane-Shastrysspinnkedja och Calogero-Sutherlands modell med trigonometrisk växelverkan härleds i denna avhandling. Dessa kopplingar konstaterar att egenfunktionerna för Calogero-Sutherland systemet är egenfunktioner för spinnkedjan också. En koppling existerar mellan Calogero-Sutherland modellen med elliptisk växelverkan och Inozemtsevs spinnkedja vilket ger exakta egenfunktioner hos Inozemtsevs modell med enkla poler vid sammanfallande argument. Däremot existerar det egenfunktioner till Calogero-Sutherland modellen med elliptisk växelverkan med andra ordningens nollor vid sammanfallande argument istället för enkla poler. Det är därför intressant att undersöka om det existerar en koppling mellan dessa två system med egenfunktioner med andra ordningens nollor; det här skulle då ge exakta egenfunktioner till Inozemtsevs spinnkedja med andra ordningens nollor. Detta är huvudsyftet med avhandlingen. Egenfunktioner med andra ordningens nollor för två magnoner undersöks. Avhandlingen använder sig av analytisk metod och har prövats med numeriska metoder. De numeriska resultaten indikerar att de undersökta funktionerna i denna avhandling misslyckas med att parametrisera egenfunktionerna till Inozemtsevs spinnkedja förutom vissa specifika fall.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hanssen, James Louis. "Controlling atomic motion: from single particle classical mechanics to many body quantum dynamics." Thesis, 2004. http://hdl.handle.net/2152/1193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Many-body quantum mechanic"

1

March, Norman H. The many-body problem in quantum mechanics. New York: Dover Publications, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bethe, Hans Albrecht. Quantum mechanics of one- and two-electron atoms. Mineola, N.Y: Dover Publications, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Van, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. 2nd ed. Hackensack, NJ: World Scientific, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Van, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Hackensack, NJ: World Scientific, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dickhoff, Willem Hendrik. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Singapore: World Scientific, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Balslev, Erik, ed. Schrö'dinger Operators The Quantum Mechanical Many-Body Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55490-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Erik, Balslev, ed. Schrödinger operators: The quantum mechanical many-body problem. Berlin: Springer-Verlag, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

M, Eisenberg Judah, ed. Quantum mechanics of many degrees of freedom. New York: Wiley, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trump, M. A. Classical Relativistic Many-Body Dynamics. Dordrecht: Springer Netherlands, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mathematical methods of many-body quantum field theory. Boca Raton: Chapman & Hall/CRC, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Many-body quantum mechanic"

1

Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 95–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05384-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 109–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20556-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hecht, K. T. "Many-Body Formalism." In Quantum Mechanics, 721–38. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Flügge, Siegfried. "IV. Many-Body Problems." In Practical Quantum Mechanics, 379–470. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hecht, K. T. "Many-Body Techniques: Some Simple Applications." In Quantum Mechanics, 739–52. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Greiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 335–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57974-5_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Greiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 367–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56826-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Greiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-00707-5_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Greiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-30374-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salasnich, Luca. "Quantum Mechanics of Many-Body Systems." In UNITEXT for Physics, 139–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93743-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Many-body quantum mechanic"

1

Briegel, Hans. "Entanglement in quantum many-body systems far away from thermodynamic equilibrium." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs1.

Повний текст джерела
Анотація:
We show that quantum mechanical entanglement can prevail even in noisy open quantum many-body systems at high temperature and far away from thermodynamical equilibrium, despite the deteriorating effect of decoherence. The system consists of a number N of interacting quantum particles, and it can interact and exchange particles with some environment. The effect of decoherence is counteracted by a simple mechanism, where system particles are randomly reset to some standard initial state, e.g. by replacing them with particles from the environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhao, Xuncheng, Mingfan Li, Qian Xiao, Junshi Chen, Fei Wang, Li Shen, Meijia Zhao, et al. "AI for Quantum Mechanics: High Performance Quantum Many-Body Simulations via Deep Learning." In SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2022. http://dx.doi.org/10.1109/sc41404.2022.00053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Koch, S. W., F. Jahnke, and H. C. Schneider. "Theory of Semiconductor Microcavities and Lasers." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qfb1.

Повний текст джерела
Анотація:
A fully quantum mechanical theory for the coupled electron-hole-pair and photon dynamics of semiconductor microcavity systems is presented. Based on a nonequilibrium Green’s functions approach, the carrier system is described by a generalized Boltzmann equation which includes contributions for carrier generation, carrier scattering by other carriers and phonons, as well as the spontaneous and stimulated recombination. The photon dynamics is described in terms of coupling to the carriers as well as by the mode confinement through the cavity. The many-body Coulomb effects are included on the level of a screened Hartree-Fock approximation.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії