Добірка наукової літератури з теми "Malate transport"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Malate transport".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Malate transport"
Osothsilp, C., and R. E. Subden. "Malate transport in Schizosaccharomyces pombe." Journal of Bacteriology 168, no. 3 (1986): 1439–43. http://dx.doi.org/10.1128/jb.168.3.1439-1443.1986.
Повний текст джерелаAgbanyo, F. R., G. Moses, and N. F. Taylor. "L-Malate transport and proton symport in vesicles prepared from Pseudomonas putida." Biochemistry and Cell Biology 64, no. 11 (November 1, 1986): 1190–94. http://dx.doi.org/10.1139/o86-156.
Повний текст джерелаGünzel, Dorothee, Karin Hintz, Simone Durry, and Wolf-Rüdiger Schlue. "Mg2+-Malate Co-Transport, a Mechanism for Na+-Independent Mg2+ Transport in Neurons of the Leech Hirudo medicinalis." Journal of Neurophysiology 94, no. 1 (July 2005): 441–53. http://dx.doi.org/10.1152/jn.01221.2004.
Повний текст джерелаPallotta, Maria Luigia, Alessandra Fratianni, and Salvatore Passarella. "Metabolite transport in isolated yeast mitochondria: fumarate/malate and succinate/malate antiports." FEBS Letters 462, no. 3 (November 30, 1999): 313–16. http://dx.doi.org/10.1016/s0014-5793(99)01535-5.
Повний текст джерелаKrom, Bastiaan P., Ronald Aardema, and Juke S. Lolkema. "Bacillus subtilis YxkJ Is a Secondary Transporter of the 2-Hydroxycarboxylate Transporter Family That Transports l-Malate and Citrate." Journal of Bacteriology 183, no. 20 (October 15, 2001): 5862–69. http://dx.doi.org/10.1128/jb.183.20.5862-5869.2001.
Повний текст джерелаZhang, Lihua, Baiquan Ma, Changzhi Wang, Xingyu Chen, Yong-Ling Ruan, Yangyang Yuan, Fengwang Ma, and Mingjun Li. "MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5)." Plant Physiology 188, no. 4 (January 25, 2022): 2059–72. http://dx.doi.org/10.1093/plphys/kiac023.
Повний текст джерелаZoglowek, Cornelia, Silke Krömer, and Hans W. Heldt. "Oxaloacetate and Malate Transport by Plant Mitochondria." Plant Physiology 87, no. 1 (May 1, 1988): 109–15. http://dx.doi.org/10.1104/pp.87.1.109.
Повний текст джерелаWang, Yuqi, Ruihong Li, Demou Li, Xiaomin Jia, Dangwei Zhou, Jianyong Li, Sangbom M. Lyi, et al. "NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis." Proceedings of the National Academy of Sciences 114, no. 19 (April 24, 2017): 5047–52. http://dx.doi.org/10.1073/pnas.1618557114.
Повний текст джерелаRamesh, Sunita A., Muhammad Kamran, Wendy Sullivan, Larissa Chirkova, Mamoru Okamoto, Fien Degryse, Michael McLaughlin, Matthew Gilliham, and Stephen D. Tyerman. "Aluminum-Activated Malate Transporters Can Facilitate GABA Transport." Plant Cell 30, no. 5 (April 4, 2018): 1147–64. http://dx.doi.org/10.1105/tpc.17.00864.
Повний текст джерелаWaters, James K., Thomas P. Mawhinney, and David W. Emerich. "Nitrogen Assimilation and Transport by Ex Planta Nitrogen-Fixing Bradyrhizobium diazoefficiens Bacteroids Is Modulated by Oxygen, Bacteroid Density and l-Malate." International Journal of Molecular Sciences 21, no. 20 (October 13, 2020): 7542. http://dx.doi.org/10.3390/ijms21207542.
Повний текст джерелаДисертації з теми "Malate transport"
Charbonnier, Teddy. "Transport du pyruvate et régulations du métabolisme central par le malate chez Bacillus subtilis." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS076/document.
Повний текст джерелаIn Bacillus subtilis like for all the bacteria, the central carbon metabolism is essential for growth. It uses glucose (a glycolytic carbon source) and malate (a gluconeogenic carbon source) as preferential carbon sources. These two carbon sources are able to induce carbon catabolite repression through the transcription factor CcpA and thus establishing a hierarchy in the use of alternative carbon sources. The pyruvate is in the middle of the carbon metabolism, and can be used by B. subtilis as sole carbon source; however its transporter remains unknown.Transcriptome analyses revealed that the only operon specifically expressed in cells grown on pyruvate is ysbAB, and we showed that its deletion led to a strong growth defect on pyruvate. Using tagged proteins, we highlighted that YsbA and YsbB formed a complex localized at the membrane. We next showed that this complex is the major pyruvate transporter, and operates as a facilitated transporter. Using a reporter fusion, we showed that the operon lytST located upstream of ysbAB, and coding for a two-component system, is responsible for the induction of ysbAB. We also showed that besides the CcpA-mediated repression by both glucose and malate, an additional regulation mechanism through the malic enzyme activity of MaeA is acting on ysbAB. This regulation is due to the accumulation of pyruvate in the cell which hinders the LytST-mediated induction of ysbAB.We also showed that a CcpA-independent repression is exerted on dctP, the gene coding for the succinate and fumarate transporter, in the presence of malate, suggesting a regulation mechanism similar to the one observed for ysbAB. Finally, we showed that the metabolic flux going through MaeA is also involved in the CcpA-dependent repression of the genes coding for glycolytic transporter in presence of malate
Saayman, Maryna. "Characterisation of the malate transporter and malic enzyme from Candida utilis." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/16520.
Повний текст джерелаENGLISH ABSTRACT: Yeast species differ remarkably in their ability to degrade extracellular dicarboxylic acids and to utilise them as their only source of carbon. The fission yeast Schizosaccharomyces pombe effectively degrades L-malate, but only in the presence of an assimilable carbon source. In contrast, the yeast Saccharomyces cerevisiae is unable to effectively degrade L-malate, which is ascribed to the slow uptake of L-malate by diffusion. In contrast, the yeast Candida utilis can utilise L-malate as the only source of carbon and energy, but this is subject to substrate induction and catabolite repression. Very little research has been done on a molecular level in C. utilis and only a few of its genes have been studied. In this study, we have shown that the yeast C. utilis effectively degraded extracellular L-malate and fumarate, but in the presence of glucose or other assimilable carbon sources, the transport and degradation of these dicarboxylic acids was repressed. The transport of both dicarboxylic acids was shown to be strongly inducible by either L-malate or fumarate and kinetic studies suggest that the same transporter protein transports the two dicarboxylic acids. In contrast, S. pombe effectively degraded extracellular L-malate, but not fumarate, only in the presence of glucose or other assimilable carbon sources. The S. pombe malate transporter was unable to transport fumarate, although fumarate inhibited the uptake of L-malate. In order to clone the C. utilis dicarboxylic acid transporter, a cDNA library from C. utilis was constructed using a number of strategies to ensure representativeness and high transformation frequencies. The cDNA library was transformed in a S. cerevisiae strain carrying a plasmid containing the S. pombe malic enzyme gene (mae2) to allow screening for a malate-degrading S. cerevisiae clone. However, no positive clones that would indicate the successful cloning of the C. utilis malate transporter were obtained. The C. utilis malic enzyme gene, CuME, was subsequently isolated from the cDNA library based on conserved sequence homologies with the genes of S. cerevisiae and S. pombe, and characterised on a molecular and biochemical level. Sequence analysis revealed an open reading frame of 1926 bp, encoding a 641 amino acid polypeptide with a predicted molecular weight of 70.2 kDa. The optimum temperature for the C. utilis malic enzyme was 52°C and the enzyme was stable at 50°C for 2 hours. The inferred amino acid sequence showed significant homology with the malic enzymes of S. pombe and S. cerevisiae. Expression of the CuME gene is subject to glucose repression and substrate induction, as was observed for the dicarboxylic acid transporter from C. utilis. The CuME gene was successfully coexpressed with the S. pombe malate permease gene (mae1), resulting in a recombinant strain of S. cerevisiae able to effectively degrade L-malate.
AFRIKAANSE OPSOMMING: Daar is ’n merkwaardige verskil in die vermoë van verskillende gisspesies om ektrasellulêre dikarboksielsure af te breek en dit as enigste bron van koolstof te benut. Die splitsingsgis Schizosaccharomyces pombe kan L-malaat effektief afbreek, maar slegs in die teenwoordigheid van ’n ander benutbare koolstofbron. In teenstelling hiermee is dit vir die gis Saccharomyces cerevisiae onmoontlik om L-malaat effektief af te breek en te benut, wat hoofsaaklik toegeskryf kan word aan die stadige opname van L-malaat deur middel van diffusie. Die gis Candida utilis kan egter L-malaat as die enigste bron van koolstof en energie benut, maar dit is onderhewig aan substraat-induksie en kataboliet onderdrukking. Baie min navorsing op molekulêre vlak is tot hede in C. utilis uitgevoer en slegs ’n paar gene in hierdie gis is al bestudeer. In hierdie studie het ons aangetoon dat die gis C. utilis L-malaat en fumaraat effektief afbreek, maar dat glukose of ander benutbare koolstofbronne die opname en afbraak van hierdie dikarboksielsure onderdruk. Die opname van beide dikarboksielsure is sterk induseerbaar deur L-malaat óf fumaraat, terwyl kinetiese studies toon dat beide dikarboksielsure deur dieselfde transporter-proteïen vervoer word. In teenstelling hiermee kan S. pombe ekstrasellulêre L-malaat, maar nie fumaraat nie, in die teenwoordigheid van glukose of ’n ander benutbare koolstofbron effektief afbreek. Die S. pombe L-malaat transporter was nie in staat om fumaraat te vervoer nie, alhoewel fumaraat die opname van L-malaat onderdruk het. Ten einde die dikarboksielsuur transporter van C. utilis te kloneer, is verskeie strategieë gevolg ten einde ’n cDNA-biblioteek van C. utilis te konstrueer wat verteenwoordiging en hoë transformasie-frekwensies kan verseker. Die cDNA-biblioteek is getransformeer in ’n S. cerevisiae ras wat die S. pombe malaatensiem geen (mae2) bevat om die sifting van ’n S. cerevisiae kloon wat malaat effektief kan afbreek, moontlik te maak. Geen positiewe klone wat dui op die klonering van die C. utilis malaat transporter kon egter gevind word nie. Die C. utilis malaatensiem geen, CuME, is vervolgens van uit die cDNA biblioteek geïsoleer deur van gekonserveerde DNA-homologie met S. cerevisiae en S. pombe gebruik te maak, en op molekulêre en biochemiese vlak gekarakteriseer. DNA-volgordebepaling het ’n oopleesraam van 1926 bp onthul, wat kodeer vir ’n 641 aminosuur polipeptied met ’n verwagte molekulêre gewig van 70.2 kDa. Die optimale temperatuur van die C. utilis malaatensiem was 52°C en die ensiem was vir 2 ure stabiel by 50°C. Die afgeleide aminosuurvolgorde het beduidende homologie met die malaatensieme van S. pombe en S. cerevisiae getoon. Die CuME geen is suksesvol saam met die S. pombe malaat permease geen (mae1) uitgedruk om ’n rekombinante S. cerevisiae ras te genereer wat in staat is om L-malaat effektief af te breek.
Li, Youzhong, and Youzhong Li@health gov au. "Respiration and nitrogen fixation by bacteroids from soybean root nodules : substrate transport and metabolism in relation to intracellular conditions." The Australian National University. Faculty of Science, 2003. http://thesis.anu.edu.au./public/adt-ANU20040630.114138.
Повний текст джерелаVogl, Malte [Verfasser], and Tobias [Akademischer Betreuer] Brandes. "Collective and critical effects in bosonic transport / Malte Vogl. Betreuer: Tobias Brandes." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2013. http://d-nb.info/103199369X/34.
Повний текст джерелаMUNOZ, RIVERO MANUEL. "Evaluation medicale des transports primaires heliportes." Aix-Marseille 2, 1989. http://www.theses.fr/1989AIX20230.
Повний текст джерелаGUILLEMIN, OLIVIER. "Transport des nouveau-nes de tres faible poids : a propos de 122 cas d'enfants de poids de naissance inferieur ou egal a 1 500 grammes transportes par le samu de lyon." Lyon 1, 1993. http://www.theses.fr/1993LYO1M351.
Повний текст джерелаBOSSARD, SYLVAIN. "Bilan des transports intra-hospitaliers des patients adultes effectues par le samu 44 du 01. 01. 1988 au 31. 12. 1988." Nantes, 1990. http://www.theses.fr/1990NANT146M.
Повний текст джерелаDUPEYRE, CHRISTOPHE. "Les helistations et helisurfaces des hopitaux et cliniques de midi-pyrenees." Toulouse 3, 1994. http://www.theses.fr/1994TOU31022.
Повний текст джерелаBERREGHIS, SORAYA. "Le transport heliporte des malades cardiaques au samu 72 : bilan, incidents, perspectives." Nantes, 1993. http://www.theses.fr/1993NANT048M.
Повний текст джерелаMorel, Marina. "Régulation du transport des mitochondries dans les neurones et expression des moteurs moléculaires dans le cortex humain: implication pour l'étude des anomalies du transport axoplasmique dans la maladie d'Alzheimer." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209885.
Повний текст джерелаDes observations morphologiques précédentes ont permis de mettre en évidence des anomalies du transport axoplasmique dans les neurones chez les patients atteints de la maladie d’Alzheimer. Les mécanismes menant à cette perturbation du transport axoplasmique ne sont pas encore bien établis. La glycogen synthase kinase-3β (GSK-3β) et la cyclin-dependent kinase 5 (Cdk5) associée à son activateur pathologique p25, sont deux kinases clés dont la dérégulation intervient dans la pathogenèse de la maladie d’Alzheimer (MA). Nous avons émis l'hypothèse que ces kinases pourraient jouer un rôle dans la perturbation du transport axoplasmique dans cette maladie.
Dans la première partie de notre travail, nous nous sommes intéressés à l’effet de la GSK-3β et de Cdk5/p25 sur la croissance des neurites (un processus dépendant du transport axoplasmique) dans un modèle cellulaire, les PC12 différenciées prétraitées au NGF.
La surexpression de GSK-3β et de p25 provoque une importante réduction de la croissance neuritique dans ces cellules. Par western blot, nous avons montré que cette réduction est associée à des modifications post-traductionnelles des protéines impliquées dans la régulation du cytosquelette. Ces modifications sont la phosphorylation de la protéine tau et des neurofilaments et l’acétylation de la tubuline α.
Cette étude indique donc que la GSK-3β et la protéine p25 contrôlent négativement la croissance neuritique.
Dans la deuxième partie de notre travail, afin d’étudier la relation entre ces kinases et le transport axoplasmique, nous avons analysé dans des neurones en culture l’effet d’une augmentation d’activité de la GSK-3β et de Cdk5/p25 sur le transport des mitochondries.
Pour étudier le déplacement des mitochondries, les neurones en cultures ont été doublement transfectées avec deux plasmides :un marqueur mitochondrial combiné avec la GSK-3β ou p25. Après transfection, le mouvement des mitochondries a été enregistré grâce à la technique du time-lapse.
L’étude de la fréquence de trois comportements (mouvement antérograde, mouvement rétrograde et état stationnaire) nous a indiqué que les mitochondries sont normalement en position immobile pendant 70 % de leur temps. La surexpression de GSK-3β ou de p25 augmente la fréquence de cet état stationnaire et diminue de manière plus importante les mouvements antérogrades que rétrogrades sans affecter la vitesse des mitochondries. L’observation au microscope électronique a permis de démontrer la persistance du réseau de microtubules dans les cellules surexprimant GSK-3β ou p25.
Le transport des mitochondries est un processus actif faisant intervenir les moteurs moléculaires (kinésine et dynéine) dont le rôle est le transport d’organelles qui repose sur un réseau intact de microtubules.
Cette étude suggère donc que la GSK-3β et p25 contrôlent négativement le transport des mitochondries en agissant au niveau des moteurs moléculaires (kinésine et dynéine) plutôt qu’en détruisant le réseau de microtubules.
Dans la troisième partie de notre travail, nous nous sommes intéressés à l’expression et à la localisation dans le cortex frontal humain et dans le cortex cérébelleux de deux protéines appartenant aux moteurs moléculaires responsables des transports axoplasmiques antérograde et rétrograde :la chaîne légère de la kinésine (KLC1) et la chaîne intermédiaire de la dynéine (DIC).
Nous avons observé une diminution du niveau d’expression de la KLC1 et de la DIC dans le cortex frontal (une zone atteinte dans la MA) mais pas dans le cortex cérébelleux chez les patients atteints de la maladie d’Alzheimer par rapport à des sujets contrôles. Une diminution du niveau d’expression de la tubuline-β3 et de la synaptophysine -deux marqueurs neuronaux- a aussi été observée dans le cortex frontal mais pas dans le cortex cérébelleux. Nous avons aussi démontré une hausse de l’état de phosphorylation de la KLC1 dans un modèle cellulaire surexprimant la GSK-3β. Dans le cortex frontal dans la MA, nous avons observé une augmentation de la forme active de la GSK-3β, et une hausse de la phosphorylation de la KLC1. Cette phosphorylation accrue de la KLC1 diminue son activité de transport des organelles.
Ces anomalies de l’expression et de la phosphorylation des moteurs moléculaires pourraient jouer un rôle dans les perturbations des transports axoplasmiques dans la MA.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Книги з теми "Malate transport"
D, Patterson Christina, ed. Critical care patient transport: Principles and practice. 5th ed. [Suffolk, Va.]: Critical Care Concepts, 2008.
Знайти повний текст джерелаLanglet, Michèle. Ergonomie et soins infirmiers: La santé des soignants. Paris: Lamarre, 1990.
Знайти повний текст джерелаAdvanced emergency care and transportation of the sick and injured. 2nd ed. Boston: Jones & Bartlett Learning, 2012.
Знайти повний текст джерелаEmergency medical responder: A skills approach. 2nd ed. Toronto: Pearson Prentice Hall, 2006.
Знайти повний текст джерелаEmergency medical responder: A skills approach. 3rd ed. Toronto: Pearson Canada, 2009.
Знайти повний текст джерелаAssociation, National Fire Protection, and International Association of Fire Chiefs, eds. Vehicle extrication level I & II: Principles and practice. Boston: Jones & Bartlett Learning, 2012.
Знайти повний текст джерелаMinor, Mary Alice D. Patient care skills: Documentation, vital signs, bandaging, aseptic techniques, positioning, range of motion, wheelchairs, and transfer. 2nd ed. Norwalk, Conn: Appleton & Lange, 1990.
Знайти повний текст джерелаDuesterhaus, Minor Scott, ed. Patient care skills. 6th ed. Upper Saddle River, N.J: Pearson Education, 2010.
Знайти повний текст джерелаDuesterhaus, Minor Scott, ed. Patient care skills. 3rd ed. Norwalk, Conn: Appleton & Lange, 1995.
Знайти повний текст джерелаMinor, Mary Alice D. Patient care skills. 4th ed. Stamford, Conn: Appleton & Lange, 1999.
Знайти повний текст джерелаЧастини книг з теми "Malate transport"
Martinoia, E., and D. Rentsch. "Uptake of Malate and Citrate into Plant Vacuoles." In Transport and Receptor Proteins of Plant Membranes, 101–9. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3442-6_9.
Повний текст джерелаLu, Ming, Suhanti Banerjee, Gerald M. Saidel, and Xin Yu. "Regulation of Cytosolic and Mitochondrial Oxidation via Malate-Aspartate Shuttle: An Observation Using Dynamic 13C NMR Spectroscopy." In Oxygen Transport to Tissue XXXII, 185–92. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7756-4_25.
Повний текст джерелаEllis, L. C., and B. R. Nemetallah. "Sperm maturation and transport." In Male Fertility and Its Regulation, 397–409. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4894-5_27.
Повний текст джерелаRousseau, G. G., J. I. Quivy, C. F. Rolin Jacquemyns, D. A. N. Sirett, M. T. de Reviers, M. C. Viguier-Martinez, S. Delpech, and G. Colas. "Non-steroidal inhibitors of androgen transport and metabolism." In Male Fertility and Its Regulation, 331–42. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4894-5_22.
Повний текст джерелаWright, Tessa. "Gender Segregation in the Construction and Transport Sectors." In Gender and Sexuality in Male-Dominated Occupations, 61–84. London: Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/978-1-137-50136-3_3.
Повний текст джерелаEsteves, Sandro, and Deborah Spaine. "Sperm Transport and Maturation." In Medical and Surgical Management of Male Infertility, 14. Jaypee Brothers Medical Publishers (P) Ltd., 2014. http://dx.doi.org/10.5005/jp/books/11840_3.
Повний текст джерелаSylvester, Steven R., and Michael D. Griswold. "Molecular Biology of Iron Transport in the Testis." In Molecular Biology of the Male Reproductive System, 311–26. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-08-091764-1.50013-1.
Повний текст джерелаTwidale, C. R. "Granitic Terrains." In The Physical Geography of Southeast Asia. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780199248025.003.0019.
Повний текст джерелаBeinart, William, and Lotte Hughes. "Rubber and the Environment in Malaysia." In Environment and Empire. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780199260317.003.0019.
Повний текст джерелаSimpson, Juliet. "Imaging the Uncanny Memory." In W.G. Sebald’s Artistic Legacies. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2023. http://dx.doi.org/10.5117/9789463729758_ch02.
Повний текст джерелаТези доповідей конференцій з теми "Malate transport"
GRINDLAY, ALEJANDRO L., and SERGIO MARTÍNEZ-HORNOS. "CITY–PORT RELATIONSHIPS IN MALAGA, SPAIN: EFFECTS OF THE NEW PORT PROPOSALS ON URBAN TRAFFIC." In URBAN TRANSPORT 2017. Southampton UK: WIT Press, 2017. http://dx.doi.org/10.2495/ut170051.
Повний текст джерелаFu, Yu, Zhe Jia, Lu Yu, Xingsi Zhong, and Richard Brooks. "A covert data transport protocol." In 2016 11th International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2016. http://dx.doi.org/10.1109/malware.2016.7888734.
Повний текст джерелаde Paula Diniz, Daniel, Ana Katarina Pessoa de Oliveira, and Monica Carvalho. "PEGADA DE CARBONO ASSOCIADA AO TRANSPORTE DE MALTE EM CERVEJARIAS NO NORDESTE BRASILEIRO." In XVII Encontro Nacional de Estudantes de Engenharia Ambiental e V Fórum Latino-Americano de Engenharia e Sustentabilidade. Recife, Brasil: Even3, 2019. http://dx.doi.org/10.29327/15304.17-155555.
Повний текст джерелаSastre González, Julián, Maria Cuello León, Cinta Romero Adame, and Noemí Vaquero Redondo. "¿Qué es un DOT? Análisis de casos." In CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.3182.
Повний текст джерелаGonzález Peréz, Luis Miguel, Johan Wideberg, and Borja GONZALEZ PEREZ-SOMARRIBA. "Bicycling-related accidents and factors contributing to injury." In CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.3718.
Повний текст джерелаBerrones Sanz, Luis David, and Victoria Alejandra Muro Báez. "Accidentes viales de los motociclistas en México: subgrupos y factores de riesgo." In CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.2172.
Повний текст джерелаShanley, Kevin T., Goodarz Ahmadi, Philip K. Hopke, and Yung-Sung Cheng. "Fibrous and Spherical Particle Transport and Deposition in the Human Nasal Airway: A Computational Fluid Dynamics Model." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78204.
Повний текст джерелаBrooks, Joseph Bruno Bidin. "De novo variant in the MAPK8IP3 gene in the differential diagnosis of global development delay. Case report." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.181.
Повний текст джерелаShaghaghian, Sana, Arash Naseri, Omid Abouali, and Goodarz Ahmadi. "Numerical Simulation of the Virtual Maxillary Sinus Surgery Effects on the Heat Transfer in Human Nasal Airway." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-26371.
Повний текст джерелаYuy, N. D., N. N. Malyutina, and E. A. Leskovets. "THE MAIN ASPECTS OF THE LOCOMOTIVE WORKERS’ INDUSTRIAL MEDICAL REHABILITATION AFTER COVID-19." In The 16th «OCCUPATION and HEALTH» Russian National Congress with International Participation (OHRNC-2021). FSBSI “IRIOH”, 2021. http://dx.doi.org/10.31089/978-5-6042929-2-1-2021-1-601-606.
Повний текст джерелаЗвіти організацій з теми "Malate transport"
Beck, Aaron. RiverOceanPlastic: Land-ocean transfer of plastic debris in the North Atlantic, Cruise No. AL534/2, 05 March – 26 March 2020, Malaga (Spain) – Kiel (Germany). GEOMAR Helmholtz Centre for Ocean Research Kiel, 2020. http://dx.doi.org/10.3289/cr_al534-2.
Повний текст джерелаLenz, Mark. RV POSEIDON Fahrtbericht / Cruise Report POS536/Leg 1. GEOMAR, October 2020. http://dx.doi.org/10.3289/geomar_rep_ns_56_2020.
Повний текст джерелаIzhar, Shamay, Maureen Hanson, and Nurit Firon. Expression of the Mitochondrial Locus Associated with Cytoplasmic Male Sterility in Petunia. United States Department of Agriculture, February 1996. http://dx.doi.org/10.32747/1996.7604933.bard.
Повний текст джерелаMcKinnon, Mark, Sean DeCrane, and Steve Kerber. Four Firefighters Injured in Lithium-Ion Battery Energy Storage System Explosion -- Arizona. UL Firefighter Safety Research Institute, July 2020. http://dx.doi.org/10.54206/102376/tehs4612.
Повний текст джерелаFiron, Nurit, Prem Chourey, Etan Pressman, Allen Hartwell, and Kenneth J. Boote. Molecular Identification and Characterization of Heat-Stress-Responsive Microgametogenesis Genes in Tomato and Sorghum - A Feasibility Study. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7591741.bard.
Повний текст джерелаFowler, Joanna, and Michael Furey. An open-label, randomized positron emission tomography (PET)study in healthy male volunteers consisiting of Part A and Part B.Part A: Clinical validation of norepinephrine transporter (NET) PET ligand, (S,S)-[11C]O-methylreboxetine ([11C]MRB) using different doses of oral atomoxetine as NET reuptake inhibitor.Part B: Evaluation of NET occupancy, as measured by [11C]MRB, with multiple dosing regimens of orally administered GSK372475. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/973576.
Повний текст джерела