Добірка наукової літератури з теми "Magnetic field simulator"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Magnetic field simulator".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Magnetic field simulator"

1

Pastena, M., L. Sorrentino, and M. Grassi. "Design and Validation of the University of Naples Space Magnetic Field Simulator (SMAFIS)." Journal of the IEST 44, no. 1 (December 19, 2001): 33–42. http://dx.doi.org/10.17764/jiet.44.1.y2401q13726534t7.

Повний текст джерела
Анотація:
This paper discusses the design and validation of the space magnetic field simulator at the university of Naples. The simulator is designed to reproduce, with predetermined uniformity, the magnetic field vector as sensed by an orbiting satellite in the an assigned volume about the simulator's geometrical center. The simulator will be used primarily for ground testing the magnetic attitude control subsystem onboard the university microsatellite SMART. The paper describes the criteria as well as the mathematical model used for the simulator design. The design aims mainly at developing a simulator configuration that maximizes the volume in which the desired magnetic field vector is realized with a predetermined uniformity with respect to a nominal field. The simulator is configured as an open-loop system, in which fixed currents are used to nullify the local magnetic field. Precision currents are then added to the fixed ones to accurately reproduce, in the test volume, the in-orbit magnetic field vector variation. Results of the simulator validation tests are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liñares, Jesús, Xesús Prieto-Blanco, Gabriel M. Carral, and María C. Nistal. "Quantum Photonic Simulation of Spin-Magnetic Field Coupling and Atom-Optical Field Interaction." Applied Sciences 10, no. 24 (December 10, 2020): 8850. http://dx.doi.org/10.3390/app10248850.

Повний текст джерела
Анотація:
In this work, we present the physical simulation of the dynamical and topological properties of atom-field quantum interacting systems by means of integrated quantum photonic devices. In particular, we simulate mechanical systems used, for example, for quantum processing and requiring a very complex technology such as a spin-1/2 particle interacting with an external classical time-dependent magnetic field and a two-level atom under the action of an external classical time-dependent electric (optical) field (light-matter interaction). The photonic device consists of integrated optical waveguides supporting two collinear or codirectional modes, which are coupled by integrated optical gratings. We show that the single-photon quantum description of the dynamics of this photonic device is a quantum physical simulation of both aforementioned interacting systems. The two-mode photonic device with a single-photon quantum state represents the quantum system, and the optical grating corresponds to an external field. Likewise, we also present the generation of Aharonov–Anandan geometric phases within this photonic device, which also appear in the simulated systems. On the other hand, this photonic simulator can be regarded as a basic brick for constructing more complex photonic simulators. We present a few examples where optical gratings interacting with several collinear and/or codirectional modes are used in order to illustrate the new possibilities for quantum simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, Jin Xian. "Design and Application of Geomagnetic Dynamic Simulator." Key Engineering Materials 467-469 (February 2011): 1200–1205. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.1200.

Повний текст джерела
Анотація:
A geomagnetic dynamic simulator was designed, and attitude simulation application method was proposed. Three pairs of square Helmholtz coil system was designed, and the geomagnetic field was cancelled by DC current, forming a zero magnetic field space and generating controlled size and direction magnetic field. Three DC current sources were adopted to produce the current for canceling geomagnetic field and the desired magnetic field. The geomagnetic field was offset without three DC power, the premise of saving cost and ensure the accuracy. As the magnetometer accuracy and dynamic capability does not take into account two indicators, so calibration mode, select high-precision magnetometer, or for remanence measurements. The selection of simulation in the dynamic simulation using magnetometers can meet the small satellite in orbit simulation requirements.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kumar, Anil, Hasina Khatun, Nitin Kumar, Udaybir Singh, V. Vyas, and A. K. Sinha. "Particle-in-cell analysis of beam-wave interaction in gyrotron cavity with tapered magnetic field." Canadian Journal of Physics 88, no. 11 (November 2010): 857–61. http://dx.doi.org/10.1139/p10-078.

Повний текст джерела
Анотація:
A commercially available electromagnetic simulator — MAGIC, a particle-in-cell (PIC) code — has been used to carry out a comparative study of the beam-wave interaction under uniform and tapered magnetic field profiles of a 42 GHz, 200 kW gyrotron. The magnetic field profile across the resonant cavity varies by ±6.5% with a peak value of 1.615 T. The MAGIC simulation shows the desire performance of the gyrotron under both magnetic field conditions with an operating mode TE03 and a pitch factor of 1.26. The analysis of the simulated results show that stability in the power growth was reached more quickly and achieved higher output power in the case of a tapered magnetic field.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pastena, M., and M. Grassi. "Optimum design of a three-axis magnetic field simulator." IEEE Transactions on Aerospace and Electronic Systems 38, no. 2 (April 2002): 488–501. http://dx.doi.org/10.1109/taes.2002.1008981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chung, Hyun-Ju, Chang-Seob Yang, and Woo-Jin Jung. "A Magnetic Field Separation Technique for a Scaled Model Ship through an Earth's Magnetic Field Simulator." Journal of Magnetics 20, no. 1 (March 31, 2015): 62–68. http://dx.doi.org/10.4283/jmag.2015.20.1.062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Wei. "The Simulation of Lane Based on Magnetic Markers Guidance in Laboratory." Advanced Materials Research 823 (October 2013): 370–73. http://dx.doi.org/10.4028/www.scientific.net/amr.823.370.

Повний текст джерела
Анотація:
It is a high expense that the experiment of the testing vehicle based on magnetic markers carrying on outdoors. The distribution and movement of magnetic markers were simulated by direct-current electromagnet, using single chip microcomputer and power amplifier to control direct-current electromagnet. It cuts down the expense of experiment. This dissertation is focus on mainly the design of lane simulator. In the lane simulator, every 0.5m arranged a direct-current electromagnet. When the speed is 80km/h,the electrifying time of the direct-current electromagnet is 0.025s. And the electric voltage of the direct-current electromagnet is 24v, and the magnetic field intensity of the direct-current electromagnet is 12000Gs.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

EMURA, Takashi, Masaaki KUMAGAI, and Ryota NOMURA. "Magnetic Field Type 6-Axis Motion Capture System for Driving Simulator." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2002 (2002): 65–66. http://dx.doi.org/10.1299/jsmermd.2002.65_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

GILSON, ERIK P., RONALD C. DAVIDSON, PHILIP C. EFTHIMION, RICHARD MAJESKI, and HONG QIN. "The Paul Trap Simulator Experiment." Laser and Particle Beams 21, no. 4 (October 2003): 549–52. http://dx.doi.org/10.1017/s0263034603214129.

Повний текст джерела
Анотація:
The assembly of the Paul Trap Simulator Experiment (PTSX) is now complete and experimental operations have begun. The purpose of PTSX, a compact laboratory facility, is to simulate the nonlinear dynamics of intense charged particle beam propagation over a large distance through an alternating-gradient transport system. The simulation is possible because the quadrupole electric fields of the cylindrical Paul trap exert radial forces on the charged particles that are analogous to the radial forces that a periodic focusing quadrupole magnetic field exert on the beam particles in the beam frame. By controlling the waveform applied to the walls of the trap, PTSX will explore physics issues such as beam mismatch, envelope instabilities, halo particle production, compression techniques, collective wave excitations, and beam profile effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Padun, O., Y. Kovalenko, B. Rassamakin, V. Ostapchuk, and A. Pynchuk. "DEVELOPING AND CREATION OF GROUND TESTING SIMULATOR FOR ORIENTATION AND STABILIZATION SYSTEM OF POLYITAN NANOSATELLITES." Journal of Rocket-Space Technology 27, no. 4 (December 30, 2019): 125–30. http://dx.doi.org/10.15421/451918.

Повний текст джерела
Анотація:
The article under the heading "Developing and creation of ground testing simulator for orientation and stabilization system of PolyITAN nanosatellites" is devoted to the research of methods of developing of the specialized simulator for the nanosatellite orientation and stabilization system ground testing. This problem is showed on the example of simulator developed in the National Technical Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”. Ground testing of the orientation and stabilization system is critically important phase of the pre-flight preparation of the nanosatellite. In order to provide precise tests, the simulator described in this article was developed. Objective of the simulator is to create targeted magnetic field in assured volume, where flight of the nanosatellite is imitated, stabilization and orientation performances are tested. The introduction describes experience of the PolyITAN team in developing of nanosatellites, the tasks of the first two nanosatellites - PolyITAN-1 and PolyITAN-2 are revealed, the actuality of this research is highlighted. The main part reveals the order of development of the simulator for orientation and stabilization system ground testing in gradual and sector-wise way. First part shows construction decisions in the simulator’s configuration to ensure accomplishment of the simulator’s objective. Second part describes calculation of the number of turns and the diameter of the wire to provide required value of the modulus of the vector of magnetic field induction, which is created by the simulator. Next part is devoted to calculation of power required for power sources, increment of magnetic field induction as a function of the current increment is provided, what is very important for power source selection. Next part is a research of the uniformity sphere - working space of the simulator, which must provide enough volume for testing of the 3U nanosatellites of CubeSat format. Final part describes control system of the simulator.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Magnetic field simulator"

1

Gieschen, Brian D. (Brian David) Carleton University Dissertation Engineering Electronics. "A two-dimensional steady-state finite difference simulator for semiconductor magnetic field sensors." Ottawa, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cui, Han. "Modeling, Implementation, and Simulation of Two-Winding Plate Inductor." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78301.

Повний текст джерела
Анотація:
Design of magnetic component is a key factor in achieving high frequency, high power-density converters. Planar magnetics are widely used in bias power supplies for the benefits of low profile and their compatibility with printed-circuit boards (PCB). The coupled inductors with winding layers sandwiched between two core plates are studied in this dissertation in order to model the self-inductance, winding loss, and core loss. The most challenging task for the plate-core inductor is to model the magnetic field with finite core dimensions, very non-uniform flux pattern, and large fringing flux. The winding is placed near the edge of the core to maximize the energy within the limited footprint and the amount of energy stored outside the core volume is not negligible. The proportional-reluctance, equal-flux (PREF) model is developed to build the contours with equal amount of flux by governing the reluctance of the flux path. The shapes of the flux lines are modeled by different functions that guided by the finite-element simulation (FES). The field from the flux lines enables calculation of inductance, winding loss, and core loss, etc. The inductance matrix including self-inductance and mutual inductance of a coupled inductor is important for circuit simulation and evaluation. The derivation of the inductance matrix of inductors with plate-core structure is described in Chapter 2. Two conditions are defined as common-mode (CM) field and differential-mode (DM) field in order to compute the matrix parameters. The proportional-reluctance, equal-flux (PREF) model introduced is employed to find the CM field distribution, and the DM field distribution is found from functions analogous to that of a solenoid's field. The inductance calculated are verified by flex-circuit prototypes with various dimensions, and the application of the inductance model is presented at the last with normalized parameters to cover structures within a wide-range. In circuit where coupled inductors are used instead of transformers, the phase shift between the primary and secondary side is not always 180 degrees. Therefore, it is important to model the winding loss for a coupled inductor accurately. The winding loss can be calculated from the resistance matrix, which is independent of excitations but only relates to the frequency and geometry. The methodology to derive the resistance matrix from winding losses of coupled inductors is discussed. Winding loss model with 2D magnetic field is improved by including the additional eddy current loss for better accuracy for the plate-core structures. The resistance matrix calculated from the model is verified by both measurement results and finite-element simulation (FES) of coupled-inductor prototypes. Accurate core loss model is required for designing magnetic components in power converters. Most existing core loss models are based on frequency domain calculation and they cannot be implemented in SPICE simulations. The core loss model in the time domain is discussed in Chapter 5 for arbitrary current excitations. An effective ac flux density is derived to simplify the core loss calculation with non-uniform field distribution. A sub-circuit for core loss simulation is established in LTSPICE that is capable of being integrated to the power stage simulation. Transient behavior and accurate simulation results from the LTSPICE matches very well with the FES results. An equivalent circuit for coupled windings is developed for inductors with significant fringing effect. The equivalent circuit is derived from a physical model that captures the flux paths by having a leakage inductor and two mutual inductors on the primary and secondary side. A mutual resistor is added to each side in parallel with one mutual inductor to model the winding loss with open circuit and phase-shift impact. Two time-varying resistors are employed to represent the core loss in the time-domain. The equivalent circuit is verified by both finite-element simulation (FES) and prototypes fabricated with flexible circuit.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Сергєєв, Дмитро Віталійович. "Імітатор магнітного поля для наносупутників". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2021. https://ela.kpi.ua/handle/123456789/44626.

Повний текст джерела
Анотація:
У даній роботі описано процес створення системи керування імітатором магнітного поля, який буде використовуватися для випробування підсистеми орієнтації та стабілізації наносупутників КПІ ім. Ігоря Сікорського. Розглянуто конструкцію та принцип роботи магнітних імітаторів. Проведений аналіз існуючих аналогів системи керування. За результатами аналізу прийнято рішення використовувати імпульсний метод регулювання та мостову схему регулятора. Розроблено структурну та принципову схему пристрою. Підібрані необхідні компоненти та створено експериментальний макет системи, для якого написано програмне забезпечення. Проведено випробування, під час якого виявлені значні пульсації струму у котушках імітатора. Для зменшення пульсацій розраховано та створено вихідний фільтр для драйвера котушки. Результати розрахунку підтверджені експериментальними даними.
This paper describes the process of creating a control system for a magnetic field simulator, which will be used to test the orientation and stabilization subsystem of nanosatellites of Igor Sikorsky Kyiv Polytechnic Institute. The design and principle of operation of magnetic simulators are considered. The analysis of existing analogues of the control system was carried out. Based on the results of the analysis, it was decided to use the pulse regulation method and the bridge circuit of the regulator. The structural and schematic diagrams of the device were developed. The necessary components were selected and an experimental system layout was created, for which software was written. A test was performed, during which significant current ripple in the simulator coils was detected. To reduce ripple, the output filter for the coil driver was calculated and created. The calculation results are confirmed by experimental data.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ueda, Hiroyuki. "Studies on low-field functional MRI to detect tiny neural magnetic fields." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263666.

Повний текст джерела
Анотація:
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」
京都大学
新制・課程博士
博士(工学)
甲第23205号
工博第4849号
京都大学大学院工学研究科電気工学専攻
(主査)教授 小林 哲生, 教授 松尾 哲司, 特定教授 中村 武恒
学位規則第4条第1項該当
Doctor of Philosophy (Engineering)
Kyoto University
DFAM
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schumacher, Kristopher Ray. "Direct numerical simulation of ferrofluid turbulence in magnetic fields /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/9892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wagner, Timothy A. (Timothy Andrew) 1974. "Field distributions within the human cortex induced by transcranial magnetic simulation." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86789.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.
Includes bibliographical references (leaves 120-125).
by Timothy A. Wagner.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ozcan, Sinan. "Simulation of field controllable fluids with suspended ferrous particles in micro tubes." abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Al, Kanale Ahmed. "Investigation of recovery of stellar magnetic field geometries from simulated spectropolarimetric data." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316290.

Повний текст джерела
Анотація:
Powerful remote sensing techniques can covert time variability of polarization profiles of stellar spectral lines into vector magnetic fields maps of stellar surfaces. These techniques are widely applied to interpret observations but have been tested using only simplistic tests. It would be of interest to test magnetic inversion methods using polarization spectra simulated for realistic and physical models of stellar magnetic fields provided by recent 3D numerical simulations. Doppler Imaging is a method to reconstruct vector magnetic field maps of stellar surfaces from variation of polarization profiles. The work in this thesis presents numerical experiments to evaluate the performance of Magnetic Doppler Imaging (MDI) code INVERS10. The numerical experiments showed that in given high-resolution observations in four Stokes parameters, the code is capable of reconstructing magnetic field vector distributions, over the stellar surface, simultaneously and without any prior assumptions about the magnetic field geometry. Input data consists of polarization measurements in the line profiles and the reconstruction is performed by solving the regularized inverse problem. Right results were obtained by testing different type of models covering simple, complex and unusual complex magnetic field distribution. Whilst using incomplete Stokes parameter datasets containing only Stokes I and V profiles, the INVERS10 code was able to reconstruct a global stellar magnetic fields of only simple models and give accurate and reliable results. Testing the code with different inclination and azimuth angle successfully gave the lowest deviation when same values are used from the true map.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dadzis, Kaspars. "Modeling of directional solidification of multicrystalline silicon in a traveling magnetic field." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2013. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-117492.

Повний текст джерела
Анотація:
Melt flow plays an important role in directional solidification of multicrystalline silicon influencing the temperature field and the crystallization interface as well as the transport of impurities. This work investigates the potential of a traveling magnetic field (TMF) for an active control of the melt flow. A system of 3D numerical models was developed and adapted based on open-source software for calculations of Lorentz force, melt flow, and related phenomena. Isothermal and non-isothermal model experiments with a square GaInSn melt were used to validate the numerical models by direct velocity measurements. Several new 3D flow structures of turbulent TMF flows were observed for different melt heights. Further numerical parameter studies carried out for silicon melts showed that already a weak TMF-induced Lorentz force can stir impurities near to the complete mixing limit. Simultaneously, the deformed temperature field leads to an increase of the deflection of crystallization interface, which may exhibit a distinct asymmetry. The numerical results of this work were implemented in a research-scale silicon crystallization furnace. Scaling laws for various phenomena were derived allowing a limited transfer of the results to the industrial scale.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Andreu, Segura Jordi. "Statistical Mechanics of Superparamagnetic Colloidal Dispersions Under Magnetic Fields." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/113485.

Повний текст джерела
Анотація:
Les dispersions col·loïdals, un terme encunyat pel científic escocès Thomas Graham el 1861, han estat objecte d’interès en diferents àrees científiques durant més d'un segle. Una dispersió col·loïdal es caracteritza per l’existència d'una fase dispersa uniformement distribuïda dins un medi dispersiu. Diferents compostos entren dins aquesta categoria, com els aerosols (fum, boira, núvols o pols), les escumes, les emulsions (maionesa o llet) o els gels (mantega o melmelada). Les millores recents en la síntesi de partícules i l'estabilitat col·loïdal han impulsat la millora en el disseny de nous col·loides, conferint-los les propietats requerides en cada aplicació. Entre la gran varietat de dispersions col·loïdals (existents en la naturalesa o dissenyades per l'home), hem estudiat un tipus singular de dispersions on les partícules col·loïdals mostren un comportament superparamagnetic anomenades dispersions col·loïdals superparamagnètiques. En aquestes dispersions, sorgeixen característiques sorprenents quan un camp magnètic extern és aplicat, com a conseqüència del balanç entre les interaccions característiques entre col·loides i la interacció magnètica anisotròpica dipol-dipol entre les partícules col·loïdals constituents. Al llarg d'aquesta tesi s'ha utilitzat diferents models teòrics i de simulació per tractar diferents fenòmens que apareixen en aquestes dispersions col·loïdals superparamagnètiques. Per una banda, hem mostrat com l’aplicació de camps magnètics uniformes a aquestes dispersions indueix l’agregació reversible de les partícules superparamagnètiques. A la vista dels models teòrics i simulacions, hem proposat un nou criteri basat en les propietats físiques de les dispersions col·loïdals per predir la formació d'agregats, i la seva validesa s'ha discutit comparant el comportament predit amb resultats experimentals. Hem aportat evidencies de la existència d'un estat d'equilibri on els agregats assoleixen una distribució de mides estable, un fet ja suggerit amb anterioritat però establert sense prou claredat. També ens hem centrat en la descripció de la cinètica de creixement d'aquests agregats i en la seva implicació en diferents fenòmens observats experimentalment. La necessitat d'assolir escales de temps grans, com en certes situacions experimentals, ha motivat el desenvolupament de nous models i estratègies de simulació per reduir els temps de càlcul requerits en simulacions estàndard. Hem presentat un nou model de simulació que proporciona un mètode fiable i més ràpid per descriure la formació d'estructures en forma de cadena que apareixen en dispersions superparamagnètiques. El model ha estat validat comparant-ne els resultats obtinguts amb altres resultats de simulacions estàndard de Dinàmica de Langevin i s'ha aplicat a situacions experimentals, com ara el temps de relaxació T2 dels protons en solucions aquoses de nanopartícules superparamagnètiques. Mencionar també que aquest model de simulació ha estat implementat i el corresponent programari s’ha posat a disposició de la comunitat científica de forma gratuïta, concebut com una eina de simulació que pot ser ampliada fàcilment per resoldre altres problemes d’interès. Per altra banda, també hem discutit diferents efectes que sorgeixen com a conseqüència de l’aplicació de camps magnètics inhomogenis a aquestes dispersions superparamagnètiques. En concret, hem estudiat el moviment de les partícules magnètiques disperses en fluids a través de camps magnètics inhomogenis, el que es coneix com magnetoforesi. Per a tal efecte, hem centrat els esforços en la descripció de la separació magnètica de col·loides mitjançant l’aplicació de gradients de camp magnètic uniformes, des de dispersions superparamagnètiques a mescles de col·loides amb diferent resposta magnètica. Hem validat aquests models teòrics comparant-los amb simulacions per ordinador i n’hem discutit la seva utilitat comparant-ne les prediccions amb resultats experimentals. L’anàlisi racional d'aquests resultats proporciona un marc idoni per a millorar el disseny i el rendiment de diferents separadors magnètics, així com plantejar noves estratègies de separació, com per exemple la separació cooperativa en dispersions superparamagnètiques. Existeixen, encara, problemes oberts que esperem que aquest treball ajudi a afrontar com, per exemple, entendre la interconnexió entre les estructures induïdes en dispersions superparamagnètiques i la seva dinàmica d’agregació. Aquest és un aspecte important en una gran varietat d'aplicacions industrials i de laboratori com són els processos de separació magnètica, tractament d’aigües residuals i eliminació de contaminants, immunoassaigs en aplicacions clíniques o la creació de nous materials supramoleculars. Tanmateix, esperem que els resultats que es presenten al llarg d'aquest document encoratgin nous estudis dins el camp de col·loides magnètics, ja sigui perfeccionant els resultats i mètodes aquí presentats o contribuint al desenvolupament de noves estratègies per afrontar problemes encara per resoldre.
Colloidal dispersions, a term coined by the Scottish scientist Thomas Graham in 1861, have been the subject of interest in different scientific areas during more than a century. A colloidal dispersion is characterized by the existence of a dispersed phase uniformly distributed throughout a dispersion medium. Many different compounds fall in this category like aerosols (smog, fog, clouds or dust), foams, emulsions (mayonnaise or milk) or gels (butter or jelly). Recent improvements in particle synthesis and colloidal stability have boosted the controlled design of new colloids on demand, targeting the required properties for each application. Among the large variety of different colloidal dispersions (either found in nature or man-made), we have studied a singular type of such dispersions where the colloids have a superparamagnetic behavior called superparamagnetic colloidal dispersions. In these dispersions, surprising features arise under the application of an external magnetic field, as a consequence of the interplay between characteristic colloidal interactions and the anisotropic magnetic dipole-dipole interaction between their constituent colloidal particles. Along this thesis we have used different theoretical and simulation methods to discuss a number of phenomena appearing in superparamagnetic colloidal dispersions. On the one hand, we have shown that the application of a uniform magnetic field to such dispersions may induce the reversible aggregation of superparamagnetic particles. In view of theoretical models and computer simulations, a new criterion based on the physical properties of the colloidal dispersion has been proposed to predict the formation of aggregates, and its validity has been discussed by comparing the predicted behavior with experimental results. We have provided evidences of the existence of an equilibrium state, where aggregate sizes acquire a steady distribution, an issue previously suggested but unclear up to now. We have also focused our attention on the growth kinetics of the aggregates and its implications in different phenomena observed in experiments. The need to reach the large time scales of some experiments has motivated the development of new models and simulation strategies to overcome the large time consuming calculations required in standard simulations. We have presented a new simulation model that provides a faster and reliable approach to address the formation of chain-like structures in superparamagnetic dispersions. The model has been validated by direct comparison with standard Langevin Dynamics simulations and has been applied to experimental situations like the T2 relaxation time of protons in aqueous solutions of superparamagnetic nanoparticles. Let us mention that the simulation model has been implemented and the corresponding computer code is free and available to the scientific community, envisaged as a new modeling tool readily extensible to other problems of interest. On the other hand, we have analyzed different effects arising as a consequence of the application of inhomogeneous magnetic fields to such superparamagnetic dispersions. Specifically, we have studied the controlled motion of magnetic particles dispersed in a liquid medium by using inhomogeneous magnetic fields, what is known as magnetophoresis. To do so, we have focused the efforts on the description of the magnetic separation of colloids by the application of uniform magnetic field gradients, from superparamagnetic dispersions to mixtures of colloids with different magnetic response. We have validated the theoretical models adopted against computer simulations and we have discussed their usefulness by comparing the predictions obtained with experimental results. The rational analysis of these results provides a proper starting framework to enhance the design and performance of different magnetic separators, as well as to shape new separation strategies, like the cooperative magnetophoretic separation in superparamagnetic dispersions. There exists, of course, open problems that we hope this work will help to deal with. For instance, a better understanding of the interplay between the induced structures in superparamagnetic dispersions and their aggregation kinetics. This is an important issue in a vast variety of industrial and lab applications as, for example, in magnetic separation-based processes, waste-water treatment and pollutant removal, immunoassays in clinical applications or in the assisted assembly of new supramolecular materials. Nevertheless, we hope that the results presented along this document could encourage further studies in magnetic colloids science, either refining the results and approaches provided here or developing new strategies to face unsolved problems.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Magnetic field simulator"

1

Looi, Thomas. Magnetic field simulator for microsatellite attitude testing. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Looi, Thomas. Magnetic field simulator for microsatellite attitude testing. Ottawa: National Library of Canada, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology (5th 1998 Budapest, Hungary). Applied electromagnetics and computational technology II: Proceedings of the 5th Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology : Budapest, Hungary, September 24-26, 1998. Amsterdam: IOS Press, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kinoshameg, Samantha E. The effects of a simulated geomagnetic sudden storm commencement complex magnetic field treatment on experimental allergic encephalomyelitis (EAE) in female lewis rats. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cook, Charles Michael. The experimental induction of the "sensed presence" by the application of magnetic fields whose temporal patterns simulate long-term potentiation. Sudbury, Ont: Laurentian University, Department of Psychology, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anwane, S. W. Fundamentals of electromagnetic fields: A computer approach. Hingham, MA: Infinity Science Press, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kratz, Robert. Principles of pulsed magnet design. Berlin: Springer, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology (4th 1996 Fukuyama, Japan). Applied electromagnetics and computational technology: Proceedings of the 4th Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology, Fukuyama, Japan, July 1-3, 1996. Amsterdam: IOS Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

United States. National Aeronautics and Space Administration., ed. Current collection in a magnetic field: Final report of E.N. Krivorutsky, Spring 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Magnetic field simulator"

1

Lipatov, Alexander S. "Magnetic Field Reconnection Simulation." In The Hybrid Multiscale Simulation Technology, 255–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05012-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yoshida, Kinjiro, Hiroshi Takami, Shinichi Ogusa, and Dai Yokota. "FEM Dynamics Simulation of Controlled-PM LSM Maglev Vehicle." In Electric and Magnetic Fields, 327–30. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1961-4_75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moriyama, K., T. Miyoshi, and K. Kusano. "Simulation Study on Magneto-Gravity Instabilities in Magnetic Shear Field." In Astrophysics and Space Science Library, 331–32. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5220-4_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lemdiasov, Rosti, Arun Venkatasubramanian, and Ranga Jegadeesan. "Estimating Electric Field and SAR in Tissue in the Proximity of RF Coils." In Brain and Human Body Modeling 2020, 293–307. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_18.

Повний текст джерела
Анотація:
AbstractMedical implants that require recharging typically use magnetic resonant coupling of transmit (external) and receive (internal) RF coils. Apart from magnetic field, the transmit coil creates a time-varying electric field that excites currents not only in the receive coil but also in the surrounding tissues. Radio frequency (RF) exposure assessment for inductive systems used in wireless powering and telemetry is done using electric field, specific absorption rate (SAR), and induced current as metrics. Full-wave analysis using RF simulation tools such as Ansys HFSS is generally used to estimate these metrics, and the results are widely accepted. However, such simulation-based analysis is quite rigorous and time-consuming, let alone the complexities with setting up the simulation.In this paper, we present a simple approach to estimating exposure (electric field, SAR, induced current) from fundamental electromagnetic principles enabling ability to arrive at results quickly. It significantly reduces the computational time in iterative approaches where multiple simulation runs are needed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nabeta, Silvio I., Albert Foggia, Marcel Ivanes, Jean-Louis Coulomb, and Gilbert Reyne. "A Finite-Element Simulation of an Out-of-Phase Synchronization of a Synchronous Machine." In Electric and Magnetic Fields, 127–30. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1961-4_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Jing, Jianping Hu, Qirui Wang, and Xun Wang. "Simulation on Magnetic Field Characteristics of Permanent-Magnet Seed-Metering Device." In Computer and Computing Technologies in Agriculture V, 230–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27275-2_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dobre, A., and A. M. Morega. "Numerical Simulation In Magnetic Drug Targeting. Magnetic Field Source Optimization." In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, 651–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13039-7_164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bishop, Robert C., Paul R. Shapiro, and Daniel C. Barnes. "Magnetohydrodynamic Simulation of the Evolution of Large-Scale Magnetic Fields in Disk Galaxies." In Galactic and Intergalactic Magnetic Fields, 151–52. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0569-6_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roi, Ihor, Iryna Vaskina, Krzysztof Jozwiakowski, Roman Vaskin, and Ivan Kozii. "Influence of the Magnetic Field Gradient on the Efficiency of Magnetic Water Treatment." In Advances in Design, Simulation and Manufacturing III, 387–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50491-5_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Fei, Ying Chen, and Wencheng Liu. "Computational Simulation of Magnetic Field of FC-Mold." In Advances in Intelligent Systems and Computing, 521–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62743-0_75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Magnetic field simulator"

1

Huang, Tao, Quan Hu, JianQing Li, ZhongHai Yang, and Bin Li. "Three dimensional magnetic field simulator." In 2012 IEEE Thirteenth International Vacuum Electronics Conference (IVEC). IEEE, 2012. http://dx.doi.org/10.1109/ivec.2012.6262212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Wenlong, Quan Hu, Tao Huang, YuLu Hu, Jianqing Li, and Bin Li. "An improved magnetic field simulator-MFS." In 2014 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2014. http://dx.doi.org/10.1109/ivec.2014.6857702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

de Loiola, Joao Victor Lopes, Leticia Camara van der Ploeg, Rodrigo Cardoso da Silva, Fernando Cardoso Guimaraes, Renato Alves Borges, Geovany Araujo Borges, Simone Battistini, and Chantal Cappelletti. "3 Axis simulator of the Earth magnetic field." In 2018 IEEE Aerospace Conference. IEEE, 2018. http://dx.doi.org/10.1109/aero.2018.8396570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Narita, Katsuyuki, Yoshiyuki Sakashita, Takashi Yamada, and Kan Akatsu. "Iron loss calculation of PM motor by coupling analysis between magnetic field simulator and control simulator." In 2009 International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2009. http://dx.doi.org/10.1109/icems.2009.5382992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nakano, Tomohito, Yoshihiro Kawase, Tadashi Yamaguchi, Yoshiyasu Shibayama, Masanori Nakamura, Noriaki Nishikawa, and Hitoshi Uehara. "Parallel computing of magnetic field for rotating machines excited from voltage sources on the Earth Simulator." In 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2010). IEEE, 2010. http://dx.doi.org/10.1109/cefc.2010.5481772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Liuhong, Cui Meng, Jiuliang Xiong, Yuebo Li, Jie Yang, and Yaohui Zhang. "Influence analysis of magnetic field coil on interior electric field of bounded-wave simulator based on circuit model." In Conference on AI in Optics and Photonics, edited by Qionghua Wang, Haibo Luo, Huikai Xie, Chengkuo Lee, Liangcai Cao, Bin Yang, Jian Cheng, et al. SPIE, 2020. http://dx.doi.org/10.1117/12.2574974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Martins Mothé, João Elias, and Cedric Cordeiro. "Nanosats’ behavior hardware in the loop simulator under earth’s low orbit magnetic field, LEO." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-2175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wong, Denise, Jeremy Wang, Edward Steager, and Vijay Kumar. "Control of Multiple Magnetic Micro Robots." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47683.

Повний текст джерела
Анотація:
A magnetic micro robot is a microscopic magnet that is controlled by a system of electromagnetic coils that generate a magnetic field to manipulate the magnetic robot. A major challenge for manipulating multiple magnets at microscale is that the applied field affects the entire workspace, making it difficult to address individual magnets. In this paper, we propose a system where electromagnetic coils are close to the magnets being manipulated to exploit spatial non-uniformities in the magnetic field. Our model considers the magnetic field generated by the electromagnetic coils and the magnetic fields present from neighboring magnetic robots to generate the desired force on each magnet. This approach is demonstrated on a macroscopic, one-dimensional system with two magnets controlled by two electromagnets using visual feedback control. Additionally, simulation results for a linear system with three magnets and three electromagnets are shown. While demonstrated at the macroscale, our results suggest that our methods can be extended for microscale manipulation, where it is advantageous to control multiple identical magnets with global fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Song, Pan, Xiaoying Tang, ShaoJun Wang, Bin Ren, Yantian Zuo, and Jielu Wang. "A Study on the Magnetic Distribution of Nd-Fe-B Permanent Magnets in Pipeline in Line Inspection Tool." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84529.

Повний текст джерела
Анотація:
The pressure pipeline in line inspection technology is the most effective nondestructive testing method to detect the quality of buried oil and gas pipelines at present. In line inspection tool usually uses magnetic flux leakage (MFL) technology to detect the change of leakage magnetic field to detect pipeline defects. Permanent magnets magnetize the wall of the pipeline as an excitation. During the detection process, the magnetic field performance of permanent magnets is required to be high. At the same time, the magnetic performance of the permanent magnet in the magnetic cleaning pipe also determine the cleaning effect inside the pipeline. In this paper, the magnetic distribution of permanent magnets is studied and the Nd-Fe-B permanent magnets with the best magnetic properties are taken as the objects. The finite element simulation is used to optimize the shape of the permanent magnets with better magnetic distribution, and the magnetic intensity factors of the preferred cylindrical permanent magnets are analyzed. In addition, three experiments of the influence of temperature, the influence of the ferromagnetic combination, and the influence of the environment medium are conducted. As a result, the relationship between the magnetic intensity of the Nd-Fe-B permanent magnets and the factors is obtained. The conclusion is of great significance to the design and research of permanent magnetic circuit in line inspection magnetization device.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hu, Chengzhi, Mingyuan Gao, Zhenzhi Chen, Honghai Zhang, and Sheng Liu. "Novel Magnetic Propulsion System for Capsule Endoscopy." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10432.

Повний текст джерела
Анотація:
For the purpose of realizing the noninvasive exploration of gastrointestinal tract, a novel magnetic propulsion system is proposed, which includes a patient support, a magnet assembly with two groups of permanent magnets positioned oppositely, and a magnet support. The proposed approach exploits permanent magnet and coupling movement of multi-axis components to generate quasi-static magnetic field for controlling the position, orientation, and movement of a self-propelled robotic endoscope in the gastrointestinal tract. By driving the five coupling axes, the proposed magnetic propulsion system is capable of steering the capsule endoscope through the intestinal tract in multi-directions of 2D space. Experiments in simulated intestinal tract are conducted to demonstrate controlled translation, rotation, and rototranslation of capsule endoscope. Finite Element Method is used to analyze navigation system’s mechanical properties and the distributions of magnetic field. The proposed technique has great potential of enabling the application of controlled magnetic navigation in the field of capsule endoscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Magnetic field simulator"

1

Novokhatski, A. Simulation of Electron Cloud Multipacting in Solenoidal Magnetic Field. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/826697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Romanov, Gennady, and Vladimir Kashikhin. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/992658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Jyeching, and Shana Groeschler. Transient Simulation of a Rotating Conducting Cylinder in a Transverse Magnetic Field. Fort Belvoir, VA: Defense Technical Information Center, September 2016. http://dx.doi.org/10.21236/ad1016771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Smolin, J. A. Simulation and measurement of an electron beam in a wiggler magnetic field. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5866535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lin, Yu. COLLABORATIVE RESEARCH: PARTICLE SIMULATION OF COLLISIONLESS MAGNETIC RECONNECTION UNDER FINITE GUIDE FIELD. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1843577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BARKHATOV, NIKOLAY, and SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, December 2021. http://dx.doi.org/10.12731/er0519.07122021.

Повний текст джерела
Анотація:
The auroral activity indices AU, AL, AE, introduced into geophysics at the beginning of the space era, although they have certain drawbacks, are still widely used to monitor geomagnetic activity at high latitudes. The AU index reflects the intensity of the eastern electric jet, while the AL index is determined by the intensity of the western electric jet. There are many regression relationships linking the indices of magnetic activity with a wide range of phenomena observed in the Earth's magnetosphere and atmosphere. These relationships determine the importance of monitoring and predicting geomagnetic activity for research in various areas of solar-terrestrial physics. The most dramatic phenomena in the magnetosphere and high-latitude ionosphere occur during periods of magnetospheric substorms, a sensitive indicator of which is the time variation and value of the AL index. Currently, AL index forecasting is carried out by various methods using both dynamic systems and artificial intelligence. Forecasting is based on the close relationship between the state of the magnetosphere and the parameters of the solar wind and the interplanetary magnetic field (IMF). This application proposes an algorithm for describing the process of substorm formation using an instrument in the form of an Elman-type ANN by reconstructing the AL index using the dynamics of the new integral parameter we introduced. The use of an integral parameter at the input of the ANN makes it possible to simulate the structure and intellectual properties of the biological nervous system, since in this way an additional realization of the memory of the prehistory of the modeled process is provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Glatzmaier, G. A., R. Hollerbach, and P. H. Roberts. A study by computer simulation of the generation and evolution of the Earth`s magnetic field. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/200713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meiqin, X., and T. Katayama. The simulation of Siberian Snakes based on calculated three dimensional magnet field. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/1149852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Drive modelling and performance estimation of IPM motor using SVPWM and Six-step Control Strategy. SAE International, April 2021. http://dx.doi.org/10.4271/2021-01-0775.

Повний текст джерела
Анотація:
This paper presents a comprehensive evaluation of the performance of an interior permanent magnet (IPM) traction motor drive, and analyses the impact of different modulation techniques. The most widely used modulation methods in traction motor drives are Space vector modulation (SVPWM), over-modulation, and six-step modulation have been implemented. A two-dimensional electromagnetic finite element model of the motor is co-simulated with a dynamic model of a field-oriented control (FOC) circuit. For accurate tuning of the current controllers, extended complex vector synchronous frame current regulators are employed. The DC-link voltage utilization, harmonics in the output waveforms, torque ripple, iron losses, and AC copper losses are calculated and compared with sinusoidal excitation. Overall, it is concluded that the selection of modulation technique is related to the operating condition and motor speed, and a smooth transition between different modulation techniques is essential to achieve a better performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії