Добірка наукової літератури з теми "Machining finishing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Machining finishing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Machining finishing":

1

Fang, J. C., Z. J. Jin, W. J. Xu, and Y. Y. Shi. "Magnetic electrochemical finishing machining." Journal of Materials Processing Technology 129, no. 1-3 (October 2002): 283–87. http://dx.doi.org/10.1016/s0924-0136(02)00666-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Farwaha, Harnam Singh, Sehijpal Singh Khangura, and Gurpreet Singh. "Design and Performance of Magnetic Abrasive Finishing Set Up for Finishing of Extended Surfaces." Asian Review of Mechanical Engineering 5, no. 1 (May 5, 2016): 1–4. http://dx.doi.org/10.51983/arme-2016.5.1.2413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Some of the materials used in modern industries and industrial applications are difficult to finish with high accuracy and minimal surface defects using conventional machining and polishing techniques. Use of traditional machining techniques for finishing of these materials may lead to various defects like micro cracks, errors in work piece geometry and work piece surface distortions. Due to the these limitations of the traditional machining processes, there was need of new family of machining and finishing methods known as non-traditional or modern machining methods has been developed. Among the various non-traditional processes, magnetic abrasive finishing is one. This process is used to machine and finish material surfaces that are otherwise very difficult to finish. The aim of this research article, To design and develop a Magnetic abrasive finishing set up for finishing of extended plane surfaces and to finish thin sheets (3-5mm), as finishing of thin sheets is difficult by conventional method like grinding due to high temperature generated by large grinding forces.
3

Zhang, Cheng Guang, Y. Z. Hu, and Bo Zhao. "Study on Model of Ultrasonic Polishing Machining - Pulse Electro- Chemical Machining Compound Finishing for the Hard and Brittle Metals." Key Engineering Materials 455 (December 2010): 653–57. http://dx.doi.org/10.4028/www.scientific.net/kem.455.653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The application of ultrasonic polishing and machining pulse electrochemical machining compound finishing is presented in the paper. The machining principle and experimental set-up of UPM-PECM compound finishing are introduced in the paper, discussing mechanism and model of the UPM-PECM in theory, and carrying on the experiment, which would co-act on hard-brittle metals in the machining. Furthermore, the material removal depth of UPM-PECM compound finishing is approximately proportional to the polishing time, and would decrease with the polishing time. This study indicates that machining velocity, machining accuracy and surface quality can be improved under UPM-PECM.
4

Edigarov, Vyacheslav, and Evgenii Litau. "Parts finishing antifriction electromechanical machining." Metal Working and Material Science, no. 3 (September 15, 2015): 6–15. http://dx.doi.org/10.17212/1994-6309-2015-3-6-15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Massarsky, Michael, and David A. Davidson. "Turbo-abrasive machining and finishing." Metal Finishing 95, no. 7 (July 1997): 29–31. http://dx.doi.org/10.1016/s0026-0576(97)87995-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sheng, P. S., and Ko-Wang Liu. "Laser Machining for Secondary Finishing Applications." Journal of Engineering for Industry 117, no. 4 (November 1, 1995): 629–36. http://dx.doi.org/10.1115/1.2803543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A laser-based technique for finishing axisymmetric parts is presented which allows the efficient finishing of polymers and ceramics without tool wear, tool breakage, or cutting forces. In this process, a laser beam impinges tangentially onto the surface of a cylindrical workpiece. A flexible machine tool can be developed to grind parts of differing geometries and materials by changing process parameters instead of setups or machines, as well as integrate primary machining and secondary finishing in one machine tool. The precision of laser finishing can be enhanced by using oblique beam impingement angles. Initial results show that Ra values less than 1 μm can be achieved on PMMA workpieces with a fixed beam. This paper presents the elements of the laser machine tool and preliminary results on parametric dependencies for laser finishing of polymer workpieces.
7

Liang, Fu Sheng, Ji Zhao, Shi Jun Ji, and Xin Wang. "Spherical Approximation of Free-Form Surface Closed to a Sphere in Semi-Finishing." Key Engineering Materials 679 (February 2016): 199–206. http://dx.doi.org/10.4028/www.scientific.net/kem.679.199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The free-form surface closed to a sphere of brittle material has been used widely, but it is difficult for machining and the efficiency of processing is insufficient. In order to get a product, several processes are needed, such as rough machining, semi-finishing and finishing. Axisymmetric curved surface can take place of the free-form surface in roughing or semi-finishing for wiping off the mass allowance efficiently. Therefore, a spherical approximation algorithm of free-form surface closed to sphere is presented in which free-form surface optical lens will be replaced by a spherical surface in semi-finishing and get the approximate sphere of the free-form surface. It can be certified in the test that this method is simple and reliable. The efficiency and precision in machining is excellent and the distribution of allowance for finishing is uniform in the whole surface, which has great practical significance in machining of optical free-form surface of brittle materials.
8

Li, Xiu Hong, Wen Hui Li, and Sheng Qiang Yang. "Preparation Technology and Surface Finishing Characteristics Research of New Magnetic Abrasive Tools." Key Engineering Materials 522 (August 2012): 21–25. http://dx.doi.org/10.4028/www.scientific.net/kem.522.21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
According to the fact that the common machining medium used in magnetic abrasive finishing (magnetic abrasive) possessed disadvantages such as high preparation cost, easier to disperse in finishing process, and low utilization and repeat -utilization, this paper puts forward spherical magnetic abrasive of a certain size as magnetic abrasive machining medium, discusses the preparation techniques, establishes the mathematical model of finishing, and analyses the main performance parameter influencing finishing quality and finishing efficiency. Compared with magnetic grinding, spherical magnetic abrasive is not easy to disperse, can be re-used, having long service life and high finishing efficiency and quality. It is a magnetic finishing medium hasing development research value.
9

Pavlushenko, Nellie, Alexandr Bachurin, and Nikolay Ryngach. "Relationship between Quenching Deformations and Machining Allowance." Applied Mechanics and Materials 698 (December 2014): 478–81. http://dx.doi.org/10.4028/www.scientific.net/amm.698.478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The amount of finishing machining allowance do not takes into account technological heredity. That may cause form defects in non-rigid high-precision parts. This article describes study of influence of finishing machining allowance value on parts quenching stresses.
10

Liao, Yu Song, and Jiang Han. "Research on Semi-Finishing of NC Milling." Key Engineering Materials 693 (May 2016): 872–77. http://dx.doi.org/10.4028/www.scientific.net/kem.693.872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Usually, bigger diameter milling tools were firstly applied in rough machining of NC Milling for improving efficiency and reducing cost before semi-finishing. In order to make the surface of parts more smooth and get accurate dimension parameters and proper shape, it is necessary to select appropriate tools to carry out the finishing of NC Milling. Moreover, higher precision dimension or shapes of parts can be achieve by the method of the semi-finishing, which it can be carried out after rough machining of high efficiency. Currently, the main methods of semi-finishing include semi-finishing of using IPW and semi-finishing of using reference tool.

Дисертації з теми "Machining finishing":

1

Qu, Xiuzhi. "An integrated approach to finish machining of RP-produced parts /." View online ; access limited to URI, 2003. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3112126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

DHULL, SACHIN. "INVESTIGATION OF HYBRID ELECTROCHEMICAL AND MAGNETIC FIELD ASSISTED ABRASIVE FLOW FINISHING PROCESS." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The current scenario of industrialization requires need for higher productivity which is met by advanced material removal process, i.e., abrasive flow machining (AFM) in which the internal surfaces of the workpiece is machined to higher accuracy level with the help of abrasive laden media. In this paper, the conventional AFM setup has been made hybrid using electrolytic and magnetic force arrangement alongwith rotational effect in order to achieve better results in terms of material removal and surface roughness. The newly developed in-house polymer media were utilized in the process and the input parameters taken during experimentation were magnetic flux, electrolytic rod size and shape, rotational speed, polymer media, abrasive particles and extrusion pressure. It was found that the material removal and surface roughness improvement were more in electrochemo magneto rotational AFM process compared to conventional AFM process. The experimental values were in confirmation with those obtained in the optimization techniques applied, i.e., Taguchi L9 OA, Matlab fuzzy logic and GRA-PCA. In addition, the hybrid mathematical model was developed and effect of different forces occurring in the process and computational flow analysis of media have been explained. With advent of need for fast productivity in terms of material removal and surface roughness of the workpiece, abrasive flow machining (AFM) process is gaining rapid importance in the industries. In this process, the fine finishing of the internal surfaces is done that are difficult to reach spaces using abrasive laden polymer media. The media is extruded past the surface under high pressure with the help of two sets of extrusion piston cylinder arrangements. Further various innovations done in the field of abrasive flow machining have been studied in detail in a tabulated form. It included the applications of the process and the different variant forms of AFM process. Hence it can be concluded that this form of non conventional machining process is efficient both in terms of surface roughness and material removal. The SBR media resulted in maximum material removal during experimentation, i.e., 3.88 mg when input parameters, i.e., electrolytic voltage, number of extrusion cycles and pressure were taken as 18 V, 4 and 10 bar respectively. The NR, NTR and SR media had intermediate effect of material removal but minimum removal of material was achieved in case of PBS media, i.e., 2.39 mg at 6 V voltage, 6 number of cycles and 30 bar pressure. The material removal was first increased with higher rod size but afterwards its increase was lesser. The surface plots obtained from RSM technique showed that MR obtained was 2.25 mg at 21 bar pressure and 7 number of cycles. As compared to conventional AFM setup, it was found that in EMR-AFM setup, 34.5 % and 17.8 % improvement in % Ra and material removal, respectively, was obtained. It was found that MR was approximately 2.9 mg on an average when machining was done on traditional AFM process, while it increased upto 4.5 mg in prepared hybrid machine setup.
3

Venkatachalam, Sivaramakrishnan. "Predictive Modeling for Ductile Machining of Brittle Materials." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.
4

森, 敏彦, Toshihiko MORI, 健治 広田, Kenji HIROTA, 進幸 千田, Shinkoh SENDA, 義人 川嶋 та Yoshihito KAWASHIMA. "磁気研磨機構に関する力学的考察". 日本機械学会, 2002. http://hdl.handle.net/2237/9029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gilmore, Rhys. "An Evaluation of Ultrasonic Shot Peening and Abrasive Flow Machining As Surface Finishing Processes for Selective Laser Melted 316L." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive Manufacturing, and specifically powder bed fusion processes, have advanced rapidly in recent years. Selective Laser Melting in particular has been adopted in a variety of industries from biomedical to aerospace because of its capability to produce complex components with numerous alloys, including stainless steels, nickel superalloys, and titanium alloys. Post-processing is required to treat or solve metallurgical issues such as porosity, residual stresses, and surface roughness. Because of the geometric complexity of SLM produced parts, the reduction of surface roughness with conventional processing has proven especially challenging. In this Thesis, two processes, abrasive flow machining and ultrasonic shot peening, are evaluated as surface finishing processes for selective laser melted 316L. Results of these experiments indicate that AFM can reliably polish as-built internal passages to 1 µm Ra or better but is unsuitable for passages with rapidly expanding or contracting cross-sections. AFM can also polish relatively small passages, but lattice components may prove too complex for effective processing. USP cannot achieve such low surface roughness, but it is a versatile process with multiple advantages. Exterior surfaces were consistently processed to 1.7 to 2.5 µm Ra. Interior surfaces experienced only partial processing and demonstrated high geometric dependence. USP significantly hardened the surface, but steel media hardened the surface better than ceramic media did. Both AFM and USP are recommended processes for the surface finishing of SLM manufactured parts. Good engineering judgement is necessary to determine when to use these processes and how to design for post-processing.
6

Costa, Ronaldo Ferreira da. "Efeitos dos parâmetros de usinagem na formação da camada branca em torneamento duro nos aços-rolamento (DIN 100 Cr6)." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-19072007-163542/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Este trabalho discute as alterações micro-estruturais superficiais nos aços usinados por torneamento duro. Uma estrutura não aceita metalurgicamente, chamada de Camada Branca (\"White Layer\" - WL), é freqüentemente encontrada na superfície torneada. A presença desta camada branca depende dos parâmetros do processo de corte, especialmente do desgaste da ferramenta e da velocidade do corte. A formação da camada branca foi investigada no presente trabalho na face plana inferior de um anel de rolamento fabricada com o aço DIN 100Cr6, usinada por torneamento duro no estado temperado e revenido (dureza 60HRC). A profundidade foi medida usando as técnicas padrões metalográficas. As propriedades mecânicas da camada superficial (módulo de rigidez, E, e microdureza Vickers, HV) foram estimadas pelo método de microidentação instrumentada em uma amostra isenta da camada branca e em duas outras amostras, com camadas brancas de diferentes espessuras (respectivamente 7 e 12 mm de espessura). De acordo com a literatura a profundidade da camada branca aumenta de acordo com o desgaste da aresta da ferramenta. Este por sua vez aumenta com a velocidade de corte, mas atinge a saturação. Em outras palavras, a profundidade de corte tem pouco efeito sobre a profundidade da camada branca; porém aumentando o avanço da ferramenta de corte ocorre o aparecimento da mesma. Os presentes resultados confirmam um efeito do avanço da ferramenta sobre a espessura da WL, tal que quanto menor o avanço, maior é a espessura, porém não confirmam o efeito do desgaste da ferramenta. A formação desta camada é discutida no contexto da sua influência sobre a rugosidade das peças.
This work deals with the microstructural changes in the surface of steels machined by hard turning. A non-acceptable microstructure, called White Layer - WL, is usually found in the hard turned surface. The presence of the white layer depends on hard turning parameters, especially on the wear of the machining tool and cutting speed. The formation of the white layer was investigated in the present work by hard turning the inferior face of a roller-bearing ring fabricated with DIN 100Cr6 steel quenched and tempered (60 HRC hardness). The depth of the WL was measured by standard metallographic procedures. The mechanical properties (stiffness modulus, E, and Vickers hardness) of the surface layer were measured by intrumented indentation in three samples: one with no WL, and two containing a WL of respectively 7 and 12 mm. According to the literature the depth of the WL increases with the wear of the machining tool. This increased with cutting speed, but reaches saturation. The presentresults confirm an effect of tool advance upon the depth of the WL, such that decreasing the advance leads to an increase in its depth, but an effect of tool wear could not be recognized. The formation of the WL is discussed in the context of its effect on surface roughness.
7

Aguiar, Marcelo Mendes de. "Análise da influência das condições de corte sobre o fresamento em acabamento de aços endurecidos usando altas velocidades." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orientador: Anselmo Eduardo Diniz
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-19T18:33:44Z (GMT). No. of bitstreams: 1 Aguiar_MarceloMendesde_M.pdf: 3795090 bytes, checksum: a76ee2a93e8e7595881459d7a6d71b50 (MD5) Previous issue date: 2012
Resumo: Normalmente, a utilização de aços ferramenta endurecidos, juntamente com as formas complexas típicas das peças utilizadas na área de moldes e matrizes, oferecem dificuldade na usinagem por fresamento, principalmente nas operações de acabamento que exijam o uso de ferramentas longas. A técnica de fresamento HSM (High Speed Machining - usinagem em altas velocidades, ou ainda High Speed Milling - fresamento em altas velocidades) tem se tornado uma alternativa para realizar este tipo de usinagem, reduzindo, ou às vezes até eliminando operações de eletro-erosão e polimento. Tipicamente, as fresas de pastilhas de metal duro intercambiáveis tem sido usadas em operações de desbaste e semi-acabamento, enquanto nas operações de acabamento ou em usinagem de geometrias que exijam ferramentas com pequenos diâmetros ainda predomina o uso de fresas inteiriças. O objetivo principal deste estudo é avaliar a influência de cinco variáveis de processo de fresamento com alta velocidade de corte, sobre o acabamento da superfície usinada. A influência do desgaste das ferramentas sobre o acabamento superficial, ao longo de 400 minutos de usinagem, também foi avaliado, além de uma comparação entre ferramentas inteiriças de metal duro e ferramentas de pastilha intercambiável montada em corpo de metal duro, a fim de avaliar a viabilidade técnica do uso deste segundo tipo de ferramenta, em substituição às tradicionais fresas inteiriças utilizadas em operações de acabamento. Na maioria dos experimentos realizados, pequenos valores de rugosidade foram mantidos, demonstrando que operações de acabamento em aço ABNT H13 IM com dureza de 50 HRC é possível com vida longa de ferramenta, mesmo utilizando-se valor de 500 m/min para velocidade de corte. Além disto, a análise da influência das variáveis de processo utilizadas neste trabalho mostrou que é possível, sob algumas condições, utilizar tanto ferramentas inteiriças, quanto de pastilha intercambiável montada em corpo de metal duro em operações de acabamento
Abstract: Typically, the use of hardened tool steels, along with complex shapes typical of the parts used in the field of molds and dies, offer difficulty in machining by milling, mainly in finishing operations that demand the use of long tool. The HSM (High Speed Machining or High Speed Milling) has become a possible alternative for making this type of machining, reducing, or sometimes eliminating electric discharge machining and polishing operations. Usually, indexable carbide insert mills has been used for roughing and semi-finishing, while in finishing operations or when the machining geometries that require tools with small diameters the integral tools are used yet. The main objective of this study is to evaluate the influence of five process variables, with high cutting speed, on the finish of the machined surface. The influence of tool wear on surface finish through 400 minutes of milling was also evaluated, as well as a comparison between integral carbide mills and indexable insert mounted at cemented carbide toolholder endmills, in order to evaluate the technical feasibility of using this second type of tool, replacing the traditional integral carbide endmills used in finishing operations. In most experiments, small roughness values were maintained, showing that finishing operations on AISI H13 IM with a hardness of 50 HRC is possible with long tool life, even using the cutting speed of 500 m/min. Furthermore, the analysis of the influence of process variables used in this study showed that is possible, under some conditions, the use either integral carbide tools, or indexable insert mounted at cemented carbide toolholder endmills on finishing operations
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
8

Filípek, Timotej. "Obrábění těžkoobrobitelných materiálů dokončovacími technologiemi." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Master‘s thesis focuses on processing of hard-to-machine materials by the finishing machining methods. The first chapter comprises division and characteristics of finishing technologies in the field of machining processes. The chapter following includes division and characteristics of the hard-to-machine materials. The experimental part – another significant part of the thesis – is focused on grinding of mostly bearing rings made of hard-to-machine materials. The aim of the experimental part is to compare and subsequently assess the use of various kinds of grinding wheels in the grinding process of a given workpiece material. Several parameters are examined from the technological and economic point of view. The assessment of the experimental part provides an overview on the advantages and disadvantages of the use of the grinding wheels in the grinding process of a given material for large-scale production. The conclusion is a summary of the results obtained in the experimental part.
9

Chardon, Grégory. "Usinage de moules en matériaux composites, expression des contraintes liées au procédé." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00678330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'étude présentée dans ce mémoire se focalise sur l'usinage de moules en matériaux composites, en considérant les problèmes d'état de surface et de gamme d'usinage. Les pièces de structure aéronautiques peuvent être obtenues par les procédés de fabrication de la famille LCM (Liquid Composite Molding). Ce procédé impose une température de fonctionnement élevée qui conduit à une dilatation du moule néfaste à la qualité de la pièce injectée. Pour remédier à ce problème, il est nécessaire de réaliser l'outillage dans un matériau à faible dilatation ou se comportant comme le matériau injecté. Pour cela, un matériau composite (Hextool™) est proposé en remplacement des moules métalliques conventionnels. L'étape d'usinage de forme est indispensable car elle donne les dimensions finales de l'outillage et conditionne le temps de polissage manuel nécessaire pour atteindre la rugosité arithmétique visée. Ce travail propose deux voies d'amélioration à travers l'étude micro-géométrique de l'opération de finition par outil coupant puis par outil abrasif. La première voie met en évidence l'existence d'une valeur minimale de rugosité accessible lors d'un usinage avec un outil coupant. L'analyse de ce phénomène permet de proposer une valeur de prise de passe radiale optimisant le ratio rugosité du moule / temps d'usinage. La deuxième conduit à la définition d'un outil abrasif utilisable sur un centre d'usinage. La faisabilité d'une telle opération et les capacités de cette technologie innovante sont discutées. Enfin, le choix des outils, des stratégies d'usinage et de la machine outil sont discutés et aboutissent à la proposition d'une gamme de référence pour l'usinage d'ébauche et de finition de moules en matériaux composites.
10

Pavézka, Vladimír. "Analýza dokončovacích způsobů obrábění." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This eleborate study is aimed at analysis of complete methods machining. There are characterized particular methods and their effect on the surface´s quality of machined area in this study. Concluding part of the study includes practical demonstration of machining by using cemented carbide-tipped tool and polycrystalline diamond and evaluation of this demonstration.

Книги з теми "Machining finishing":

1

Sharma, Ankit, Amrinder Singh Uppal, Bhargav Prajwal Pathri, Atul Babbar, and Chander Prakash. Modern Hybrid Machining and Super Finishing Processes. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003327905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Das, S., G. Kibria, B. Doloi, and B. Bhattacharyya, eds. Advances in Abrasive Based Machining and Finishing Processes. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43312-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schwartz, Mel M. Post processing treatment of composites. Covina, Calif: Society for the Advancement of Material and Process Engineering, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Intersociety, Symposium on Machining of Advanced Ceramic Materials and Components (1988 Chicago Ill ). Intersociety Symposium on Machining of Advanced Ceramic Materials and Components: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Chicago, Illinois, November 27-December 2, 1988. New York, N.Y: American Society of Mechanical Engineers, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Gregory Don, and United States. National Aeronautics and Space Administration., eds. Ion figuring of X-ray mirror mandrels: Final report, period of performance: June 14, 1996 to June 5, 1997; contract no. NAS83-8609 D.O. 166. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Intersociety Symposium on Machining of Advanced Ceramic Materials and Components (1988 Chicago, Ill.). Intersociety Symposium on Machining of Advanced Ceramic Materials and Components: Presented at the winter annual meeting of the American Society of Mechanical Engineers, Chicago, Illinois, November 27-December 2, 1988. New York: The American Society of Mechanical Engineers, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A, Gregory Don, and United States. National Aeronautics and Space Administration., eds. Ion figuring of X-ray mirror mandrels: Final report, period of performance: June 14, 1996 to June 5, 1997; contract no. NAS83-8609 D.O. 166. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A, Gregory Don, and United States. National Aeronautics and Space Administration., eds. Ion figuring of X-ray mirror mandrels: Final report, period of performance: June 14, 1996 to June 5, 1997; contract no. NAS83-8609 D.O. 166. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

A, Gregory Don, and United States. National Aeronautics and Space Administration., eds. Ion figuring of X-ray mirror mandrels: Final report, period of performance: June 14, 1996 to June 5, 1997; contract no. NAS83-8609 D.O. 166. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Walsh, Ronald A. McGraw-Hill machining and metalworking handbook. New York: McGraw-Hill, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Machining finishing":

1

El-Hofy, Hassan. "Mass Finishing Operations." In Fundamentals of Machining Processes, 351–67. Third edition. | Boca Raton, FL: CRC Press/Taylor & Francis Group,: CRC Press, 2018. http://dx.doi.org/10.1201/9780429443329-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

El-Hofy, Hassan. "Abrasive Finishing Processes." In Fundamentals of Machining Processes, 273–304. Third edition. | Boca Raton, FL: CRC Press/Taylor & Francis Group,: CRC Press, 2018. http://dx.doi.org/10.1201/9780429443329-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huda, Zainul. "Abrasive Finishing Machining Operations." In Machining Processes and Machines, 201–11. First edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003081203-15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Swavely, Donald S. "Finishing and Machining Plastics." In SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc., 657–92. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7604-4_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Choi, Byoung K., and Robert B. Jerard. "Tool-path generation for finishing." In Sculptured Surface Machining, 166–85. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5283-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Singh, Manpreet, Gagandeep Singh, and Mohammad Alshinwan. "Advanced Finishing Processes for Cylindrical Surface Finishing." In Modern Hybrid Machining and Super Finishing Processes, 161–79. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003327905-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Singh, Sachin, Vishal Gupta, and M. R. Sankar. "Magnetic Abrasive Finishing Process." In Materials Forming, Machining and Tribology, 183–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43312-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

El-Hofy, Hassan. "Magnetic Field–Assisted Finishing Processes." In Fundamentals of Machining Processes, 339–48. Third edition. | Boca Raton, FL: CRC Press/Taylor & Francis Group,: CRC Press, 2018. http://dx.doi.org/10.1201/9780429443329-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Uhlmann, Eckart, Gregor Hasper, Thomas Hoghé, Christoph Hübert, Vanja Mihotovic, and Christoph Sammler. "Machining and Finishing of Ceramics." In Ceramics Science and Technology, 247–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Uhlmann, Eckart, Gregor Hasper, Thomas Hoghé, Christoph Hübert, Vanja Mihotovic, and Christoph Sammler. "Machining and Finishing of Ceramics." In Ceramics Science and Technology, 247–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527631957.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Machining finishing":

1

Osada, Tsuginobu, Ken’ichi Yano, and Mustapha S. Fofana. "Realization of Finishing Cuts Under Changing Machining Conditions by Machining Support Robots." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Finishing processes such as deburring are performed on a wide variety of products in various quantities by workers on a piece-by-piece basis. Accordingly, the accuracy of the product depends on the worker’s skill. The aim of this research is to develop a finish machining support system. The machining is supported by using a haptic device and controlled by a bilateral control system. Here, we propose a control method based on a machining model made up of several components, including tool speed, feed speed of the tool and others, in order to control the robots under conditions in which it is possible to achieve highly accurate machining surfaces. The motion of a slave robot that requires precise control is controlled automatically, and the worker is given the force calculated by this control method. The effectiveness of this system is shown in a machining experiment.
2

MUSIL, Vaclav, Marek SADILEK, Jiri KRATOCHVIL, Robert CEP, and Jiri LICHOVNIK. "EVALUATION OF FINISHING MACHINING OF STAINLESS STEEL 1.4307." In METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Feng, Hsi-Yung (Steve), and Ning Su. "Cutting Force Modeling and Optimization in 3D Plane Surface Machining." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The prediction and optimization of cutting forces in the finishing machining of 3D plane surfaces using ball-end milling are presented in this paper. The cutting force model is developed based on the mechanistic modeling approach. This improved model is able to accurately predict the cutting forces for non-horizontal and cross-feed cutter movements typical in 3D finishing ball-end milling. Optimization of the cutting forces is used to determine both the tool path and the maximum feed rate in 3D plane surface finishing machining. The objective is to achieve highest machining efficiency and to ensure product quality. Experimental results have shown that the cutting force model gives excellent predictions of cutting forces in 3D finishing ball-end milling. The feasibility of the integrated process planning method has been demonstrated through the establishment of optimized process plans for the finishing machining of 3D plane surfaces.
4

Khatri, Atul, and Vinod Yadava. "Finite Element Simulation of Plane Magnetic Abrasive Finishing." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The final machining (or finishing) of precision parts with high accuracy level is making the application of abrasive finishing technologies increasingly important. Magnetic abrasive finishing (MAF) is a new advanced finishing process used for fine finishing of extremely hard materials. It is employed for finishing of metals and non-metals. This paper focuses on the modeling and simulation for the prediction of surface roughness in plane magnetic abrasive finishing. A finite element based model is developed to find the magnetic potential distribution in gap between tool and workpiece. Further, magnetic potential is used to evaluate machining pressure, material removal and finally surface roughness of the workpiece surface. The simulation results are confirmed compared with the experimental results available in the literature. The simulated workpiece surface roughness shows features which are similar in nature to the experimental results.
5

Bennett, Jean M., and Yoshiharu Namba. "Ductile Grinding Study of Glass Using an Ultra-Precision Surface Grinder and Different Grinding Wheels." In Science of Optical Finishing. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/sciof.1990.smb3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fine grinding or ductile grinding is a way of putting a shiny surface on certain types of glass. As such, it is an alternative to conventional polishing, and offers the possibility of mass production of aspheric or other hard-to-produce shapes on lenses and mirrors. However, the parameters of ductile grinding are only imperfectly understood. A key factor is the stability of the machine used for the ductile grinding. Recently an ultra-precision surface grinder has been built1 that contains a low expansion Zerodur glass ceramic spindle to eliminate the changes in length (and hence depth of cut) that result from temperature changes during machining. Studies have been made with this machine to determine the optimum conditions for operating the diamond-impregnated grinding wheels to obtain the smoothest surface finish.2 These conditions are: a surface rotation speed of the wheel ~1200 meter/min, rotation speed of the workpiece ~0.01 meter/min, and depth of cut ~0.2 μm, making a repeating groove pattern of 3.6 μm, much like a diamond-turned surface.
6

Brar, B. S., R. S. Walia, V. P. Singh, and P. Singh. "Effects of Helical Rod Profiles in Helical Abrasive Flow Machining (HLX-AFM) Process." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abrasive flow machining (AFM) process is a fine finishing process employing abrasive laden self modulating putty for the finishing of mainly internal recesses. Though the AFM is suitable for the finishing of internal cavities, but the material removal is very low during this finishing process. Helical abrasive flow machining (HLX-AFM) has been recently developed to improve the machining efficiency of AFM process. This process employs a coaxially fixed helical twist drill-bit during the extrusion of the abrasive laden media through an internal cylindrical recess. The presence of a fixed drill-bit inside a cylindrical cavity of the work-piece results in considerable increase in material removal and improvement in surface finish. In the present investigation, the same HLX-AFM setup has been used and the effects of two more helical profile rods viz. a 3-start helical profile and a spline have been studied along with the helical twist drill-bit for improving the quality characteristics of material removal and percentage improvement in the surface roughness during the fine finishing of internal cylindrical surface of brass work-pieces. The experiments were planned according to L9 orthogonal array of Taguchi method and the optimal process parameters were selected. The employment of a rod with six splines and a 3-start helical profile results in improved finishing in comparison to the drill-bit profile, due to the presence of more number of flutes and grooves on the coaxially held stationary rods. The helical profile type has 3.75% contribution towards the percentage improvement in the surface roughness, but is not significant in affecting material removal. The presence of 3-start helical profile led to 61.40% improvement in surface roughness (from Ra - 1.3 μm to 0.5 μm) at optimal level with no effect on material removal, which means no extra machining is taking place. The parameter of abrasive-to-media concentration ratio (varying from 0.75 to 1.25) is the most contributing factor with 85.90% contribution toward suface finish improvement and 71.71% contribution towards material removal. The finishing performance of 3-start profile is 15% better than the standard helical drill-bit with no increase in the operating pressures. SEM micrographs corroborated the fact that 3-start profile led to more number of light abrasive cutting grooves and thus more surface finish. HLX-AFM with 3-start helical profile rods can be employed for the finishing, form corrections of internal cylindrical cavities of any size. Presence of the profile rod results in increase in the reduction ratio and thus more machining action. The developed process can also generate cross-hatch lay pattern on internal cylindrical surfaces.
7

Davies, S. T., and D. J. Whitehouse. "Computer Controlled Ion Beam Machining For Precision Surface Finishing And Figuring." In Hague International Symposium, edited by Manfred Weck. SPIE, 1987. http://dx.doi.org/10.1117/12.941273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

AOKI, I., T. TAKAHASHI, K. SUZUKI, and T. KITAJIMA. "EDGE FINISHING OF PRODUCTS WITH COMPLEX-SHAPE BY MAGNETIC ABRASIVE MACHINING." In Proceedings of the Third International Conference on Abrasive Technology (ABTEC '99). WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817822_0038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

OKADA, A., Y. UNO, T. FURUKAWA, S. NAKA, S. YAMAMOTO, and A. KINOSHITA. "INTERNAL SURFACE FINISHING OF SMALL HOLE BY ELECTROCHEMICAL MACHINING AFTER HONING." In Proceedings of the Third International Conference on Abrasive Technology (ABTEC '99). WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817822_0039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barletta, M., G. Rubino, G. Bolelli, L. Lusvarghi, and A. Bassani. "Fast Regime – Fluidized Bed Machining (FR-FBM) of Thermally Sprayed Coatings." In ITSC2008, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2008. http://dx.doi.org/10.31399/asm.cp.itsc2008p0701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Finishing of thermally sprayed metallic, ceramic and cermet coatings is required in order to meet tolerances and requirements on surface roughness in most industrial applications. Conventional machining is a costly and time-consuming process, difficult to automate. Therefore, this study investigates and develops a new technique highly amenable for automation: Fast Regime - Fluidized Bed Machining (FR-FBM). Atmospheric Plasma Sprayed (APS) TiO2, Cr2O3 and HVOF-sprayed WC-17%Co and Tribaloy-800 coatings, deposited on AISI 1040 steel substrates, were subjected to FR-FBM treatment. The effects of the leading operational parameters, namely, abrasive size, jet pressure and processing time, were evaluated on all coatings by using a two/three-levels full factorial Design Of Experiments (DOE). The FR-FBM treated surfaces were observed by FE-SEM and their surface finishing was evaluated by contact profilometry. Significant improvements in surface finishing of all the machined thermally sprayed coatings can always be detected, with FR-FBM being able to guarantee the precision and the respect of the closest geometrical tolerances.

До бібліографії