Добірка наукової літератури з теми "Lower boundary of clouds"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lower boundary of clouds".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Lower boundary of clouds"
Chen, G., H. Xue, G. Feingold, and X. Zhou. "Vertical transport of pollutants by shallow cumuli from large eddy simulations." Atmospheric Chemistry and Physics Discussions 12, no. 5 (May 3, 2012): 11391–413. http://dx.doi.org/10.5194/acpd-12-11391-2012.
Повний текст джерелаWang, Yuqing, Shang-Ping Xie, Bin Wang, and Haiming Xu. "Large-Scale Atmospheric Forcing by Southeast Pacific Boundary Layer Clouds: A Regional Model Study*." Journal of Climate 18, no. 7 (April 1, 2005): 934–51. http://dx.doi.org/10.1175/jcli3302.1.
Повний текст джерелаChen, G., H. Xue, G. Feingold, and X. Zhou. "Vertical transport of pollutants by shallow cumuli from large eddy simulations." Atmospheric Chemistry and Physics 12, no. 23 (December 3, 2012): 11319–27. http://dx.doi.org/10.5194/acp-12-11319-2012.
Повний текст джерелаLin, Wuyin, Minghua Zhang, and Norman G. Loeb. "Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast." Journal of Climate 22, no. 10 (May 15, 2009): 2624–38. http://dx.doi.org/10.1175/2008jcli2478.1.
Повний текст джерелаEirund, Gesa K., Anna Possner, and Ulrike Lohmann. "The Impact of Warm and Moist Airmass Perturbations on Arctic Mixed-Phase Stratocumulus." Journal of Climate 33, no. 22 (November 15, 2020): 9615–28. http://dx.doi.org/10.1175/jcli-d-20-0163.1.
Повний текст джерелаAhlgrimm, Maike, David A. Randall, and Martin Köhler. "Evaluating Cloud Frequency of Occurrence and Cloud-Top Height Using Spaceborne Lidar Observations." Monthly Weather Review 137, no. 12 (December 1, 2009): 4225–37. http://dx.doi.org/10.1175/2009mwr2937.1.
Повний текст джерелаSolomon, Amy, and Matthew D. Shupe. "A Case Study of Airmass Transformation and Cloud Formation at Summit, Greenland." Journal of the Atmospheric Sciences 76, no. 10 (September 19, 2019): 3095–113. http://dx.doi.org/10.1175/jas-d-19-0056.1.
Повний текст джерелаHarrison, R. Giles, Keri A. Nicoll, Evgeny Mareev, Nikolay Slyunyaev, and Michael J. Rycroft. "Extensive layer clouds in the global electric circuit: their effects on vertical charge distribution and storage." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2238 (June 2020): 20190758. http://dx.doi.org/10.1098/rspa.2019.0758.
Повний текст джерелаAchtert, Peggy, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström. "Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014." Atmospheric Chemistry and Physics 20, no. 23 (December 4, 2020): 14983–5002. http://dx.doi.org/10.5194/acp-20-14983-2020.
Повний текст джерелаKravitz, Ben, Hailong Wang, Philip J. Rasch, Hugh Morrison, and Amy B. Solomon. "Process-model simulations of cloud albedo enhancement by aerosols in the Arctic." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2031 (December 28, 2014): 20140052. http://dx.doi.org/10.1098/rsta.2014.0052.
Повний текст джерелаДисертації з теми "Lower boundary of clouds"
Новосьол, Катерина Ігорівна. "Математичне та програмне забезпечення для формулювання авіаційної метеодовідки". Master's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/40116.
Повний текст джерелаThe master's dissertation consists of an introduction, four chapters, a conclusion and two appendices, contains 14 figures, 29 tables and 15 sources. The full volume of the master's dissertation is 98 pages, of which the appendices are 8 pages. To Kateryna Ihorivna Novosyol's master's thesis on the topic: " Mathematical and software application for aviation meteorological report formulation ". Actuality of theme. The aim of the study. The purpose of the master's dissertation is to study the operation of airports in difficult weather conditions, to develop indicators of airport operation under these conditions, to develop methods for their analytical and statistical modeling and to develop application software for reference code that can be used to transmit in closed message. To achieve this goal it is necessary to solve a set of the following interrelated tasks: - to analyze the existing indicators of meteorological conditions that affect the functioning of airports in difficult meteorological conditions; - to analyze the methods of forming meteorological reports and their dependence on weather parameters; - to investigate the influence of meteorological conditions (namely climatic characteristics) on the flight of the aircraft; - to study the dynamic processes of development of climatic characteristics taking into account meteorological conditions; - to develop a method of analytical and statistical modeling of indicators; - to design and develop the software for formation of the reference with application of the offered technique. The object of the study is application software for generating help code, which can be used for transmission in a closed message. The subject of the research is the means of automating the formation of meteorological reference codes taking into account the influence of climatic characteristics on the flight of aircraft in difficult meteorological conditions. Research methods are general scientific principles of research. The study used the following methods: - scientific analysis and synthesis to identify problematic aspects of modeling systems; - methods of probability theory; - method of statistical modeling. Scientific novelty. For the first time a meteorological report was formed, which differs from the existing ones by a new method of deriving the horizontal range of visibility, which allows to increase the accuracy of flight forecasting. The practical significance of the results. The result of the work is an applied software application for assessing the meteorological characteristics of the aerodrome and the formulation of aviation meteorological information. Connection of work with scientific programs, plans, themes. The dissertation of the master was performed at the National Technical University of Ukraine "Kyiv Polytechnic Institute named after Igor Sikorsky" according to the plan of research work of the department of automated information processing and control systems. Publications. The scientific provisions of the dissertation were published at the V All-Ukrainian scientific-practical conference of young scientists and students "Information systems and management technologies" (ISTU-2020).
Aronsson, Oskar, and Julia Nyman. "Boundary Representation Modeling from Point Clouds." Thesis, KTH, Bro- och stålbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278543.
Повний текст джерелаBesiktning av broar utförs i dagsläget okulärt av en inspektör som på en armlängds avstånd bedömer skadetillståndet. Okulär besiktning kräver därmed ofta speciell utrustning för att inspektören ska kunna nå samtliga delar av bron. Detta resulterar i att det nuvarande tillvägagångssättet för brobesiktning beaktas som tidkrävande, kostsamt samt riskfyllt för inspektören. Syftet med denna uppsats var att utveckla en metod för att modellera broar på ett automatiserat sätt utifrån punktmolnsdata. Punktmolnen skapades genom fotogrammetri, utifrån en samling bilder tagna med en drönare. Uppsatsen har varit en insats för att bidra till det långsiktiga målet att effektivisera brobesiktning genom drönarteknik. Flera metoder för att identifiera konstruktionselement i punktmoln har undersökts. Baserat på detta har en metod utvecklats som identifierar plana ytor med regressionsmetoden Random Sample Consensus (RANSAC). Den utvecklade metoden består av en samling algoritmer skrivna i programmeringsspråket Python. Metoden grundar sig i att beräkna skärningspunkter mellan plan samt använder konceptet k-Nearest-Neighbor (k-NN) för att identifiera konstruktionselementens hörnpunkter. Metoden har testats på både simulerade punktmolnsdata och på punktmoln av fysiska broar, där bildinsamling har skett med hjälp av en drönare. Resultatet från de simulerade punktmolnen visade att hörnpunkterna kunde identifieras med en medelavvikelse på 0,13 − 0,34 mm jämfört med de faktiska hörnpunkterna. För ett punktmoln av en rektangulär pelare lyckades algoritmerna identifiera alla relevanta ytor och skapa en rekonstruerad modell med en avvikelse på mindre än 2 % med avseende på dess bredd och längd. Metoden testades även på två punktmoln av riktiga broar. Algoritmerna lyckades identifiera många av de relevanta ytorna, men geometriernas komplexitet resulterade i bristfälligt rekonstruerade modeller.
Barber, Claire. "Observations and modelling of tropical marine boundary layer clouds." Thesis, University of Reading, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590117.
Повний текст джерелаEhrlich, André, Eike Bierwirth, and Manfred Wendisch. "Airborne remote sensing of Arctic boundary-layer mixed-phase clouds." Universität Leipzig, 2010. https://ul.qucosa.de/id/qucosa%3A16357.
Повний текст джерелаPaunova, Irena T. "Explicit numerical study of aerosol-cloud interactions in boundary layer clouds." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100670.
Повний текст джерелаThree summertime cases have been evaluated: a marine stratus and a cold frontal system over the Bay of Fundy near Nova Scotia, formed on 1 Sep 1995 and extensively sampled as a part of the Radiation, Aerosol, and Cloud Experiment (RACE); and a continental stratocumulus, formed over the southern coast of Lake Erie on 11 July 2001. The marine stratus and the frontal system have been examined for the effects of aerosol on cloud properties and thoroughly evaluated against the available observations. The frontal system and the continental stratocumulus have been evaluated for the effects of cloud processing on the aerosol spectrum.
The marine stratus simulations suggest a significant impact of the aerosol on cloud properties. A simulation with mechanistic activation and a uni-modal aerosol showed the best agreement with observations in regards to cloud-base and cloud-top height, droplet concentration, and liquid water content. A simulation with a simple activation parameterization failed to simulate essential bulk cloud properties: droplet concentration was significantly underpredicted and the vertical structure of the cloud was inconsistent with the observations. A simulation with a mechanistic parameterization and a bi-modal aerosol, including a coarse mode observed in particle spectra below cloud, showed high sensitivity of droplet concentration to the inclusion of the coarse mode. There was a significant reduction in droplet number relative to the simulation without the coarse mode. A similar change occurred in the precipitating system preceding the stratus formation, resulting in an enhancement of precipitation in the weaker (upstream) part of the system while the precipitation in the more vigorous (downstream) part of the system remained almost unaffected.
Aerosol processing via collision-coalescence and aqueous chemistry in the non-drizzling stratocumulus case suggests that impact of the two mechanisms is of similar magnitude and can be as large as a 3-5 % increase in particle mean radius. A more detailed analysis reveals that the impact of chemical processing is oxidant-limited; beyond times when the oxidant (H 2O2) is depleted (∼ 40 minutes), the extent of processing is determined by supply of fresh oxidant from large-scale advection (fresh gaseous emissions are not considered). Aerosol processing via drop collision-coalescence alone suggests, as expected, sensitivity to the strength of the collection process in clouds. Larger particle growth, up to 5-10 %, is observed in the case of the frontal clouds, which exhibit stronger drop collection compared to that in the stratocumulus case. The processed aerosol exerted a measurable impact on droplet concentrations and precipitation production in the frontal clouds. For the case modeled here, contrary to expectations, the processed spectrum (via physical processing) produced higher droplet concentration than the unprocessed spectrum. The reasons explaining this phenomenon and the resulting impact on precipitation production are discussed.
The current work illustrates the complexity of the coupled system at the cloud system scales, revealed earlier at much smaller large eddy scales. If future parameterizations of the regional effect of aerosols on clouds are to be developed, careful consideration is required of the many of feedbacks in the boundary layer.
Wang, Zhen, Ramirez Marco Mora, Hossein Dadashazar, Alex B. MacDonald, Ewan Crosbie, Kelvin H. Bates, Matthew M. Coggon, et al. "Contrasting cloud composition between coupled and decoupled marine boundary layer clouds." AMER GEOPHYSICAL UNION, 2016. http://hdl.handle.net/10150/622150.
Повний текст джерелаEleuterio, Daniel P. "Coastal stratocumulus topped boundary layers and the role of cloud-top entrainment." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FEleuterio%5PhD.pdf.
Повний текст джерелаSchäfer, Michael, Eike Bierwirth, André Ehrlich, Evi Jäkel, and Manfred Wendisch. "Three-dimensional radiative effects in Arctic boundary layer clouds above ice edges." Universität Leipzig, 2015. https://ul.qucosa.de/id/qucosa%3A16651.
Повний текст джерелаMit Hilfe flugzeuggetragener abbildender spektraler Beobachtungen wurden 3-D Strahlungseffekte zwischen arktischen Grenzschichtwolken sowie der hochvariablen arktischen Bodenoberfläche identifiziert und quantifiziert. Eine Methode zur Differenzierung von Meereis und offener Wasserflächen, auf Grundlage flugzeuggetragener Messungen der aufwärtsgerichteten Strahldichte im sichtbaren Spektralbereich, während bewölkter Bedingungen wird vorgestellt. Diese Differenzierung zeigt gleichzeitig auf, dass die Strahldichtereduzierung beim Übergang vom Meereis zu den offenen Wasserflächen nicht unmittelbar erfolgt, sondern horizontal geglättet ist. Allgemein verringern Wolken in der Umgebung von Eiskanten die Nadir-Strahldichte über den hellen Eisflächen und erhöhen sie über dunklen Meeresoberflächen. Mit Hilfe von 3-D Strahlungstransferrechnungen wurde dieser Effekt quantifiziert. Die Reichweite dieses Effektes wird sowohl von den Wolken- als auch den Oberflächeneigenschaften beeinflusst. Für eine flache Wolke zwischen 0 und 200 m, so wie sie während der arktischen Feldkampagne Vertical Distribution of Ice in Arctic Clouds (VERDI), 2012 beobachtet werden konnte, führt eine Erhöhung der wolkenoptischen Dicke von tau = 1 zu tau = 10 zu einer Verringerung in deltaL von 600 zu 250 m. Zudem führt eine Erhöhung der Wolkenhöhe und ihrer geometrischen Dicke zu einer Zunahme von deltaL. Anschließend wurde der Einfluss dieser 3-D Strahlungseffekte auf die Ableitungsergebnisse von tau untersucht. Die Aufhellung eines dunkleren Pixels neben der Eiskante führt zu Unsicherheiten von bis zu 90 % bei der Ableitung von . Beim effektiven Radius zu bis zu 30 %. DeltaL ist ein Maß mit Hilfe dessen die Entfernung zur Eiskante bestimmt werden kann, ab welcher die Unsicherheiten bezüglich der 3-D Effekte vernachlässigt werden können.
Kanngießer, Franz, André Ehrlich, and Manfred Wendisch. "Observations of glories above arctic boundary layer clouds to identify cloud phase." Universität Leipzig, 2017. https://ul.qucosa.de/id/qucosa%3A16743.
Повний текст джерелаDie Glorie ist eine optische Erscheinung, die über Flüssigwasserwolken beobachtet werden kann und aus farbigen Ringen um den Gegensonnenpunkt besteht. Da die Glorie durch Streuung an sphärischen Partikeln entsteht, kann sie zur Identifikation von Flüssigwasser am Wolkenoberrand genutzt werden. Bilder, die mit einer CANON Digitalkamera, die mit einem Fischaugenobjektiv ausgestattet war, von Bord des Forschungsflugzeugs Polar 5 während der Messkampagne RACEPAC aufgenommen worden, wurden auf das Auftreten von Glorien untersucht. Zur Identifikation wurde ein Algorithmus mit fünf Kriterien entwickelt, die mit Hilfe von Simulationen der streuwinkelabhängigen Radianz und einem Testdatensatz der Messungen erstellt wurden. Der Algorithmus wurde getestet und ist in der Lage zwischen Bildern mit und ohne Glorie zu unterscheiden.
Teixeira, João Carlos Martins. "WRF sensitivity to lower boundary and urban canopy parametrizations." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/10175.
Повний текст джерелаAo longo dos anos avanços, na tecnologia de satélite viabilizaram a aquisição de informações sobre a superfície da Terra, tais como elevação e uso do solo, com grande detalhe e resolução. Esta informação pode ser incluída em modelos numérico da atmosfera, atualizando e dando-lhes mais detalhes sobre as condições de fronteira inferior. Assim sendo, este trabalho visa estudar a sensibilidade do Weather Research and Forecasting model a três conjuntos de dados de topografia, e dois de uso do solo diferentes. Um caso de estudo em que a precipitação orográfica foi dominante sobre a Ilha da Madeira foi considerado mostrando que, em geral não existe um aumento significativo da performance do modelo ao usar topografia ou uso do solo de alta resolução. Contudo, existe uma melhor performance do modelo em simular a precipitação a barlavento e o fluxo a sotavento da ilha. Dada a natureza deste estudo, considerou-se também um teste à sensibilidade de três parametrizações de microfísica, sendo que os resultados encontrados não mostram alterações significativas aos resultados encontrados. Além disso, a introdução de um novo conjunto de dados de uso do solo tornou possível realizar simulações usando modelos urbanos acoplados. Assim, de forma a estudar a sensibilidade a estes modelos considerou-se um caso de estudo sobre a região de Lisboa. Ao utilizar um modelo urbano verificou-se que sobre a região urbana existe um arrefecimento à superfície quando comparando com as simulações de controlo. Além disso verificou-se uma grande diferença no escoamento e na energia turbulenta produzida sobre esta zona. Estas diferenças podem por sua vez intaragem com ondas gravíticas, alterando a sua fase e amplitude. Além disso, ao comparar os resultados com dados observados verificou-se que, em geral, não existe melhoria na performance do modelo para este caso de estudo. No entanto o uso do modelo urbano BEP melhora significativamente os resultados relativos à altura da camada de mistura.
Through the years, the advances in satellite technology made feasible the acquisition of information about the Earth surface, such as elevation and land use, with great detail and resolution. This information can be included in numerical atmospheric models, updating and giving them more details about the lower boundary. Given so, this work aims to study the sensitivity of the Weather Research and Forecast model to three different topography datasets as well as two different land use datasets. A test case study in which topography driven precipitation was dominant over Madeira Island was considered. Overall, results show that there is no enhancement of model skill when using higher resolution topography or land use. However, there is a higher model skill simulating precipitation on Madeira leeward and wind flow windward. Additionally, given the nature of this event, a sensitivity test was also performed considering three different microphysics parametrizations. This test showed that the choice of the microphysics parametrizations does not significantly change the results found for this event. Furthermore, the introduction of a new land use dataset turned possible to perform simulations using Urban Canopy Models. Therefore, the sensitivity of the model to these urban parametrizations was also performed. In this work, a case study for the Lisbon region was chosen and showed that the simulations that used a urban canopy model presented a cooling in the urban region. Moreover, larger changes were observed for wind flow and turbulence kinetic energy over the area. In addition, it was shown that these could change the phase and amplitude of gravity waves that were generated in the region. When comparing to observed data it was seen that there is no enhancement of model skill when using these models. However, the planetary boundary layer is better represent by BEP urban model.
Книги з теми "Lower boundary of clouds"
Mouskos, Michael. Droplet growth in turbulent boundary layer clouds. Manchester: UMIST, 1997.
Знайти повний текст джерелаMartin, G. M. The interaction netween cumulus clouds and warm stratocumulus clouds in the marine boundary layer. Manchester: UMIST, 1995.
Знайти повний текст джерелаGultepe, Ismail, ed. Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8419-7.
Повний текст джерелаCoster, Colette De. Two-point boundary value problems: Lower and upper solutions. Amsterdam: Elsevier, 2006.
Знайти повний текст джерелаPatrick, Habets, ed. Two-point boundary value problems: Lower and upper solutions. Amsterdam: Elsevier, 2006.
Знайти повний текст джерелаCoster, Colette De. Two-point boundary value problems: Lower and upper solutions. Amsterdam: Elsevier, 2006.
Знайти повний текст джерелаBryant, Laurie J. Non-dinosaurian lower vertebrates across the Cretaceous-Tertiary boundary. Berkeley, DC: University of California Press, 1989.
Знайти повний текст джерелаNat︠s︡ionalen arkheologicheski institut i muzeĭ (Bŭlgarska akademii︠a︡ na naukite). The Lower Danube Roman Limes (1st - 6th c. AD). Sofia: National Archaeological Institute and Museum, Bulgarian Academy of Sciences, 2012.
Знайти повний текст джерелаNon-dinosaurian lower vertebrates across the Cretaceous-Tertiary boundary in northeastern Montana. Berkeley: University of California Press, 1989.
Знайти повний текст джерелаMoczydlowska, Malgorzata. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian--Cambrian boundary in southeastern Poland. Oslo: Universitetsforlaget, 1991.
Знайти повний текст джерелаЧастини книг з теми "Lower boundary of clouds"
Lohmann, Ulrike. "Marine boundary layer clouds." In Surface Ocean—Lower Atmosphere Processes, 57–68. Washington, D. C.: American Geophysical Union, 2009. http://dx.doi.org/10.1029/2008gm000761.
Повний текст джерелаStull, Roland B. "Boundary Layer Clouds." In An Introduction to Boundary Layer Meteorology, 545–85. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3027-8_13.
Повний текст джерелаDickman, R. L., T. H. Jarrett, and W. Herbst. "Probing the Lower Main Sequence with Molecular Clouds." In Submillimetre Astronomy, 171–72. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-015-6850-0_62.
Повний текст джерелаLee, Xuhui. "Tracer Diffusion in the Lower Boundary Layer." In Springer Atmospheric Sciences, 121–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60853-2_7.
Повний текст джерелаGinoux, Nicolas. "Lower eigenvalue estimates on compact manifolds with boundary." In The Dirac Spectrum, 69–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01570-0_4.
Повний текст джерелаAkin-Bohner, Elvan, Ferhan Merdivenci Atici, and Billûr Kaymakçalan. "Lower and Upper Solutions of Boundary Value Problems." In Advances in Dynamic Equations on Time Scales, 165–88. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9_6.
Повний текст джерелаPlekhanova, Marina V., and Guzel D. Baybulatova. "Semilinear Equations in Banach Spaces with Lower Fractional Derivatives." In Nonlinear Analysis and Boundary Value Problems, 81–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26987-6_6.
Повний текст джерелаSugiyama, Takuya. "Ionic Nucleation of Ice Particles in Noctilucent Clouds." In The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, 209–14. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm087p0209.
Повний текст джерелаXu, Zezhong, Cheng Qian, Xianju Fei, Yanbing Zhuang, Shibo Xu, and Reinhard Klette. "Boundary Extraction of Planar Segments from Clouds of Unorganised Points." In Lecture Notes in Computer Science, 209–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41404-7_15.
Повний текст джерелаLiu, Xian-Feng, and Adam M. Dziewonski. "Global analysis of shear wave velocity anomalies in the lower-most mantle." In The Core‐Mantle Boundary Region, 21–36. Washington, D. C.: American Geophysical Union, 1998. http://dx.doi.org/10.1029/gd028p0021.
Повний текст джерелаТези доповідей конференцій з теми "Lower boundary of clouds"
Che, Bangxiang, and Dazhuan Wu. "Study on Vortex Generators for Control of Attached Cavitation." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69405.
Повний текст джерелаTatarov, Boyan I., Nikolai I. Kolev, Boiko K. Kaprielov, and Ivan N. Kolev. "Lidar observation of planetary boundary-layer clouds." In 12th International School on Quantum Electronics Laser Physics and Applications, edited by Peter A. Atanasov, Alexander A. Serafetinides, and Ivan N. Kolev. SPIE, 2003. http://dx.doi.org/10.1117/12.519497.
Повний текст джерелаSha, Zhengchuan, Qing Zhu, Yiping Chen, Cheng Wang, Abdul Nurunnabi, and Jonathan Li. "A Boundary-Enhanced Supervoxel Method for 3D Point Clouds." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323330.
Повний текст джерелаBernstein, Ben C., Frank Mcdonough, and Cory Wolff. "A Regional Comparison of Icing Conditions in Boundary Layer Clouds." In SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-38-0021.
Повний текст джерелаNguyen, Van Sinh, Trong Hai Trinh, and Manh Ha Tran. "Hole Boundary Detection of a Surface of 3D Point Clouds." In 2015 International Conference on Advanced Computing and Applications (ACOMP). IEEE, 2015. http://dx.doi.org/10.1109/acomp.2015.12.
Повний текст джерелаVillalonga, Joan, Susan L. Beveridge, Marcos Paulo Araujo Da Silva, Robin L. Tanamachi, Francesc Rocadenbosch, David D. Turner, and Stephen J. Frasier. "Convective boundary-layer height estimation from combined radar and Doppler lidar observations in VORTEX-SE." In Remote Sensing of Clouds and the Atmosphere XXV, edited by Adolfo Comerón, Evgueni I. Kassianov, Klaus Schäfer, Richard H. Picard, Konradin Weber, and Upendra N. Singh. SPIE, 2020. http://dx.doi.org/10.1117/12.2576046.
Повний текст джерелаRocadenbosch, Francesc, Robin L. Tanamachi, Marcos Paulo Araujo Da Silva, Joan Villalonga, Stephen J. Frasier, and David D. Turner. "Atmospheric boundary layer height disambiguation using synergistic remote sensing observations: case examples from VORTEX-SE." In Remote Sensing of Clouds and the Atmosphere XXV, edited by Adolfo Comerón, Evgueni I. Kassianov, Klaus Schäfer, Richard H. Picard, Konradin Weber, and Upendra N. Singh. SPIE, 2020. http://dx.doi.org/10.1117/12.2576093.
Повний текст джерелаCespedes, Jonnathan, Carlos A. Melo, and John H. Reina. "A first measurement of the planetary boundary layer top in Cali-Colombia: elastic LiDAR application." In Remote Sensing of Clouds and the Atmosphere XIII, edited by Adolfo Comerón, Evgueni I. Kassianov, Klaus Schäfer, Richard H. Picard, and Konradin Weber. SPIE, 2018. http://dx.doi.org/10.1117/12.2503534.
Повний текст джерелаLiu, Xiaoqin, Zaihong Hou, Laian Qin, and Ningquan Weng. "A portable imaging lidar for lower boundary layer atmospheric measurement." In SPIE Remote Sensing, edited by Upendra N. Singh and Doina N. Nicolae. SPIE, 2015. http://dx.doi.org/10.1117/12.2195614.
Повний текст джерелаBarros, Rui, Lydia Yatcheva, Sarah Keary Andreas Zepp, and Szymon Gladysz. "Monostatic system for turbulence measurement in the lower boundary layer." In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/aoms.2015.jw4f.3.
Повний текст джерелаЗвіти організацій з теми "Lower boundary of clouds"
Orchard, M. J., and H. Bucher. Conodont - Ammonoid Intercalibration Around the Lower - Middle Triassic Boundary: Nevadan Clocks Help Tell British Columbian Time. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133566.
Повний текст джерелаOrville, Harold D. The Numerical Simulation of Marine Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada273669.
Повний текст джерелаAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531259.
Повний текст джерелаAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions In Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532783.
Повний текст джерелаAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada541857.
Повний текст джерелаAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada575522.
Повний текст джерелаAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada574045.
Повний текст джерелаAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557114.
Повний текст джерелаAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598037.
Повний текст джерелаKogan, Yefim L. Midlatitude Aerosol-Cloud-Radiation Feedbacks in Marine Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532932.
Повний текст джерела