Добірка наукової літератури з теми "Low temperature heat valorisation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Low temperature heat valorisation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Low temperature heat valorisation"
Buchin, Oliver, and Felix Ziegler. "Valorisation of low-temperature heat: Impact of the heat sink on performance and economics." Applied Thermal Engineering 50, no. 2 (February 2013): 1543–48. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.002.
Повний текст джерелаLaurenz, Eric, Gerrit Füldner, Lena Schnabel, and Gerhard Schmitz. "A Novel Approach for the Determination of Sorption Equilibria and Sorption Enthalpy Used for MOF Aluminium Fumarate with Water." Energies 13, no. 11 (June 11, 2020): 3003. http://dx.doi.org/10.3390/en13113003.
Повний текст джерелаGrocholski, Brent. "Recovering low-temperature heat." Science 370, no. 6514 (October 15, 2020): 305.2–305. http://dx.doi.org/10.1126/science.370.6514.305-b.
Повний текст джерелаVasiliev, L. L. "Low-temperature heat pipes." Journal of Heat Recovery Systems 5, no. 3 (January 1985): 203–16. http://dx.doi.org/10.1016/0198-7593(85)90078-5.
Повний текст джерелаBeyermann, W. P., M. F. Hundley, J. D. Thompson, F. N. Diederich, and G. Grüner. "Low-temperature specific heat ofC60." Physical Review Letters 68, no. 13 (March 30, 1992): 2046–49. http://dx.doi.org/10.1103/physrevlett.68.2046.
Повний текст джерелаLasjaunias, J. C., M. Saint-Paul, O. Laborde, O. Thomas, J. P. Sénateur, and R. Madar. "Low-temperature specific heat ofMoSi2." Physical Review B 37, no. 17 (June 15, 1988): 10364–66. http://dx.doi.org/10.1103/physrevb.37.10364.
Повний текст джерелаFeng, Y. P., A. Jin, D. Finotello, K. A. Gillis, M. H. W. Chan, and J. E. Greedan. "Low-temperature specific heat ofLa1.85Sr0.15CuO4andLa2CuO4." Physical Review B 38, no. 10 (October 1, 1988): 7041–44. http://dx.doi.org/10.1103/physrevb.38.7041.
Повний текст джерелаOeschler, N., S. Hartmann, A. P. Pikul, C. Krellner, C. Geibel, and F. Steglich. "Low-temperature specific heat of." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 1254–56. http://dx.doi.org/10.1016/j.physb.2007.10.119.
Повний текст джерелаTokiwa, Y., F. Ronning, V. Fritsch, R. Movshovich, J. D. Thompson, and J. L. Sarrao. "Low-temperature specific heat of." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 325–27. http://dx.doi.org/10.1016/j.jmmm.2006.10.022.
Повний текст джерелаHamilton, J. J., E. L. Keatley, H. L. Ju, A. K. Raychaudhuri, V. N. Smolyaninova, and R. L. Greene. "Low-temperature specific heat ofLa0.67Ba0.33MnO3andLa0.8Ca0.2MnO3." Physical Review B 54, no. 21 (December 1, 1996): 14926–29. http://dx.doi.org/10.1103/physrevb.54.14926.
Повний текст джерелаДисертації з теми "Low temperature heat valorisation"
Idir, Anis. "Procédé thermochimique de production/stockage de froid pour le refroidissement et la valorisation de chaleur basse température de panneaux photovoltaïques." Thesis, Perpignan, 2022. http://www.theses.fr/2022PERP0016.
Повний текст джерелаPhotovoltaic technology (PV) is one of the most widely used renewable electricity generation techniques. However, the photoelectric conversion process generates a large amount of heat in the solar cells, causing a significant increase in their operating temperature, which has a significant impact on the conversion efficiency. When the panels operate in areas with high solar irradiation and arid climatic conditions, the operating temperatures can reach 80°C to 100°C, which also impacts their durability. Thus, the objective of this thesis work is to improve the global solar energy conversion by limiting the operating temperature increase of PV modules through an active cooling in order to increase their electrical performance and to valorize in cold the thermal energy generated by a gas sorption thermal process. The aim is to demonstrate the technical feasibility of such a coupling and to evaluate its energy relevance. A gas sorption process exploiting a saturated solution, allowing to exploit the low temperature heat extracted from the PV panels and to valorize it in cold has thus been defined, designed, experimented and analyzed. A simulation tool has been developed to evaluate under realistic operating conditions the electrical performance a PV solar power plant and cooling performance of the thermally coupled sorption process. Such a coupling, which allows for electricity/cooling cogeneration, shows that it is possible to improve the overall energy gain by 10.5 % compared to that of standard PV panels, while resulting in a small overall energy loss of 1.3 % due to the additional conversion of heat to cold
Segond, Guillaume. "Etudes des couplages thermohydrauliques en régime variable d'un système thermique avec stockage : application à la production d'eau chaude sanitaire à partir de la valorisation d'une source de chaleur basse température." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4722.
Повний текст джерелаThe work presented here aims to study and optimize the energy efficiency of a heat pump water heater coupled with a sensible heat storage. The resource used consists of heat recovery from exhaust air of a collective type of housing. The challenge is to characterize the conditions in which the system is capable of ensuring the needs with performance required when the boundary conditions are very volatile. Functionally, the system should be as simple as possible from the viewpoint of its hydraulic configuration and its control strategy.For this study, we developed a TRNSYS numerical model to simulate and analyze different scenarios and thermal hydraulic couplings between the system components. In parallel with this modeling approach, we designed and implemented an experimental set up with realistic scale to validate the model over a wide range of operating conditions.The analysis of the results, including the nature of flows within the storage tank, highlighted the major influence on a number of parameters on the system performance. In particular, the robust performance in the face of significant fluctuations of the boundary conditions can be ensured through appropriate control strategy.This study eventually led to propose a model for the design of the system that takes into account the most relevant parameters for the control strategy
Midtsjø, Alexander. "Power Production from Low Temperature Heat Sources." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9902.
Повний текст джерелаAs part of the energy recovery part of the ROMA (Resource Optimization and recovery in the Materials industry) project, a laboratory prototype power production system is being built and completed in 2009. The laboratory prototype is based on a new technology for power production from low to medium temperature heat sources (the off gas from electrolysis cells in the aluminum industry) where CO2 is used as a working medium in a trans-critical Rankine cycle. The laboratory rig consists of the power cycle with a prototype expander as the core unit, an air loop to provide the heat, and an ethylene glycol loop to provide condensation of the working fluid in the power cycle. As a preparation to the assembling and instrumentation of the prototype rig, a simulation and an uncertainty analysis were conducted for the prototype rig in the autumn of 2008. This report focuses on the continuation of that work by an experimental investigation of the individual loops and the components of the prototype rig. The emphasis of this investigation has been put on the air loop and the expander unit of the power cycle. This is basically because these are of great importance to the performance of the power production prototype rig. The air loop was thoroughly tested, and from the investigations it was discovered that there was an unfavorable temperature distribution of the air going into the air-to-CO2 heat exchanger. This is the heat exchanger where heat is provided to the power cycle. The source for this temperature maldistribution was identified, and solutions were investigated to improve on the problem without results. The reduced performance of the air loop was incorporated in a new simulation of the power cycle in order to quantify the consequences for the optimization of the power cycle. The simulation was carried out for warm air temperature of 80 °C. The new calculations showed a reduction in maximum net work output of 27 % compared to the original simulation. The optimal conditions for the power cycle were also changed as a consequence of the reduced air loop performance. The investigation of the expander unit revealed that the expander isentropic efficiency was a strong function of the pressure difference across the expander, and a weak function of the expander inlet pressure. It also revealed that overall the isentropic efficiency was much less than the value of 80 % which was used in the original simulation. A new simulation of the power cycle was carried out where the expander isentropic efficiency was incorporated as a function of the pressure difference across the expander. This function was based on the data from the expander testing. The simulation showed a reduction in maximum net work output from 225 W to about 60 W, for warm air temperature of 80 °C. The new expander characteristics also affected the optimization of the power cycle. The simulation results and the results from the prototype investigation will be important in the optimization and control procedures of the assembled prototype power production system.
Pfaff, Michael. "Power Production from Low Temperature Heat Sources." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18330.
Повний текст джерелаMaalouf, Samer. "Étude et conception d'un système thermodynamique producteur du travail mécanique à partir d'une source chaude à 120°C." Thesis, Paris, ENMP, 2013. http://www.theses.fr/2013ENMP0074/document.
Повний текст джерелаLow-temperature waste-gas heat sources (< 120-150°C) exiting several industrial processes could be recovered for electricity production and constitute an effective mean to reduce primary energy consumption and carbon dioxide emissions. However, technical barriers such as low conversion efficiency, large needed heat transfer area, and the presence of chemically corrosive substances associated with high moisture content when operating in harsh environment impede their wider application. This thesis focuses on particularly energy-hungry industrial sectors characterized by presently unsolved challenges in terms of environmentally hostile low-temperature heat sources. Existing thermodynamic cycles based on Organic Rankine Cycle (ORC) are adapted and optimized for this temperature level. Two conventional heat recovery methods are studied more particularly: indirect and direct contact dehumidification. Optimized design methods for heat exchangers are elaborated and experimentally validated. For the indirect contact dehumidification, advanced anti-corrosion coated materials are proposed and laboratory tested. For the direct contact dehumidification, the effects of packing material and geometry on the corresponding hydraulic performances are underlined. Innovative thermodynamic cycles based on the liquid desiccant technology are investigated. An improved regeneration cycle (IRC) is developed. Compared to the conventional heat recovery technologies, the proposed “IRC” improves both net power and turbine expansion ratio besides preventing faced corrosions problems
Dahn, Douglas Charles. "Low temperature specific heat of LixNbS2 intercalation compounds." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25563.
Повний текст джерелаScience, Faculty of
Physics and Astronomy, Department of
Graduate
Farrokhpanah, Sonia. "Design of heat integrated low temperature distillation systems." Thesis, University of Manchester, 2009. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:228854.
Повний текст джерелаDeng, Guangnan. "Embedded heat speaders in low temperature cofired ceramic substrates." FIU Digital Commons, 2002. http://digitalcommons.fiu.edu/etd/2770.
Повний текст джерелаPloskic, Adnan. "Technical solutions for low-temperature heat emission in buildings." Doctoral thesis, KTH, Strömnings- och klimatteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133221.
Повний текст джерелаQC 20131029
Toal, B. R. H. "The application of heat pumps to low temperature drying." Thesis, University of Ulster, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378669.
Повний текст джерелаКниги з теми "Low temperature heat valorisation"
Cryogenic regenerative heat exchangers. New York: Plenum Press, 1997.
Знайти повний текст джерелаCoccia, Gianluca, Giovanni Di Nicola, and Alejandro Hidalgo. Parabolic Trough Collector Prototypes for Low-Temperature Process Heat. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27084-5.
Повний текст джерелаToal, Bernard Robert Hugh. The application of heat pumps to low temperature drying. [S.l: The Author], 1985.
Знайти повний текст джерелаCryogenic heat transfer. Philadelphia, PA: Taylor and Francis, 1999.
Знайти повний текст джерелаO'Rourke, Gareth. The cryogenic heat treatment of tool steels. Dublin: University College Dublin, 1998.
Знайти повний текст джерелаVerkin, B. I. Teploobmen pri kipenii kriogennykh zhidkosteĭ. Kiev: Nauk. dumka, 1987.
Знайти повний текст джерелаMeeting, Materials Research Society. High temperature radiator materials for applications in the low earth orbital environment. Cleveland, Ohio: [National Aeronautics and Space Administration], Lewis Research Center, 1987.
Знайти повний текст джерелаYen, Yin-Chao. Sensible heat flux measurements near a cold surface. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1995.
Знайти повний текст джерелаYen, Yin-Chao. On the temperature distribution near a cold surface. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1993.
Знайти повний текст джерелаYen, Yin-Chao. On the temperature distribution near a cold surface. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1993.
Знайти повний текст джерелаЧастини книг з теми "Low temperature heat valorisation"
Collings, E. W. "Low-Temperature Specific Heat." In Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys, 307–33. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2095-1_8.
Повний текст джерелаDenlinger, David L., Karl H. Joplin, Cheng-Ping Chen, and Richard E. Lee. "Cold Shock and Heat Shock." In Insects at Low Temperature, 131–48. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-0190-6_6.
Повний текст джерелаVasiliev, L. L., D. A. Mishkinis, A. A. Antukh, A. G. Kulakov, and L. L. Vasiliev. "Multisalt-Carbon Portable Resorption Heat Pump." In Low Temperature and Cryogenic Refrigeration, 387–400. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_22.
Повний текст джерелаVasiliev, L. L., and A. G. Kulakov. "Heat Pipe Applications in Sorption Refrigerators." In Low Temperature and Cryogenic Refrigeration, 401–14. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_23.
Повний текст джерелаWu, Wei, Xianting Li, and Tian You. "Low Evaporation Temperature Absorption Heat Pump." In Absorption Heating Technologies, 75–108. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0470-9_3.
Повний текст джерелаEsquinazi, P., M. Scherl, J. Li, and F. Pobell. "Low-Temperature Heat Release in Polymers." In Springer Series in Solid-State Sciences, 287–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_113.
Повний текст джерелаZheng, Qiu-Yun, Xin-Rong Zhang, and Shuang Han. "Sludge Treatment by Low-Temperature Heat." In Lecture Notes in Energy, 293–306. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26950-4_14.
Повний текст джерелаFisher, R. A., S. E. Lacy, C. Marcenat, J. A. Olsen, N. E. Phillips, Z. Fisk, A. L. Giorgi, J. L. Smith, and G. R. Stewart. "Low-Temperature Specific Heat of UBe13." In Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions, 345–48. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0947-5_40.
Повний текст джерелаLeontiev, A. I., and I. V. Derevich. "Numerical Simulation of Heat and Mass Transfer in Heat Pump Working on Supercritical R-744." In Low Temperature and Cryogenic Refrigeration, 165–80. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_10.
Повний текст джерелаSmirnov, H. F. "Heat Pipe Technology for Refrigeration and Cooling." In Low Temperature and Cryogenic Refrigeration, 349–72. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_20.
Повний текст джерелаТези доповідей конференцій з теми "Low temperature heat valorisation"
Choi, H., J. P. Davis, J. Pollanen, N. Mulders, and W. P. Halperin. "Specific Heat of Disordered 3He." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354683.
Повний текст джерелаHori, J., A. Katai, Y. Tange, A. Furukawa, Y. Fujii, T. Ohtani, and M. Harada. "Specific Heat of Chalcogenide Superconductor TlV6S8." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354867.
Повний текст джерелаBourgeois, O., F. Ong, S. E. Skipetrov, and J. Chaussy. "Specific Heat Measurements of Mesoscopic Loops." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354916.
Повний текст джерелаTien, Chang-Lin, and A. J. Stretton. "HEAT TRANSFER IN LOW-TEMPERATURE INSULATION." In Archives of Heat Transfer. Washington: Hemisphere, 1988. http://dx.doi.org/10.1615/ichmt.1988.20thaht.380.
Повний текст джерелаTien, Chang-Lin, and A. J. Stretton. "HEAT TRANSFER IN LOW-TEMPERATURE INSULATION." In Archives of Heat Transfer. Connecticut: Begellhouse, 1988. http://dx.doi.org/10.1615/ichmt.1988.aht.380.
Повний текст джерелаUmeyama, N., S. I. Ikeda, I. Nagai, Y. Tanaka, Y. Yoshida, and N. Shirakawa. "Specific Heat of Layered Ruthenates Sr2Ru1−xZrxO4." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354822.
Повний текст джерелаTakeya, H., M. El Massalami, R. E. Rapp, K. Hirata, K. Yamaura, K. Yamada, and K. Togano. "Heat Capacity Measurement on Li2Pd3B and Li2Pt3B." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354868.
Повний текст джерелаBoyd, S. T. P., A. R. Chatto, R. A. M. Lee, R. V. Duncan та D. L. Goodstein. "Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ". У LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354638.
Повний текст джерелаTien, Chang-Lin, and A. J. Stretton. "Heat Transfer in Low-Temperature Insulation." In International Symposium on Heat and Mass Transfer in Refrigeration and Cryogenics. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ichmt.1986.intsymphmtinrefcryo.20.
Повний текст джерелаKatagiri, M., M. Maeda, K. Shinn, T. Tsurutani, Y. Fujii, and K. Hatanaka. "Heat Transfer Properties of Liquid 3He below 1K." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354624.
Повний текст джерелаЗвіти організацій з теми "Low temperature heat valorisation"
Anderson, James H. Jr, and Benjamin W. Dambly. Low Temperature Heat Source Utilization Current and Advanced Technology. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/860859.
Повний текст джерелаJohnson, R. K. Measured Performance of a Low Temperature Air Source Heat Pump. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1260317.
Повний текст джерелаThekdi, Arvind, Sachin Nimbalkar, Senthil Sundaramoorthy, Kristina Armstrong, Anthony Taylor, Jack Gritton, Thomas Wenning, and Joe Cresko. Technology Assessment on Low-Temperature Waste Heat Recovery in Industry. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819547.
Повний текст джерелаXinguo, Li. Improving Water Loop Heat Pump Performance by Using Low Temperature Geothermal Fluid. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/895959.
Повний текст джерелаHays, Lance G. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1183048.
Повний текст джерелаRao, Vivek, Marc-Olivier Delchini, Mohammad Bani Ahmad, and Prashant Jain. High Performance Computing to Enable Next-Generation Low-Temperature Waste Heat Recovery. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1649390.
Повний текст джерелаEastman, Alan D. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1164240.
Повний текст джерелаFuller, Robert L. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/838860.
Повний текст джерелаWiczynski, T. A., and T. A. Marolewski. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/140583.
Повний текст джерелаCho, Y. I., and H. G. Lorsch. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/10107172.
Повний текст джерела