Добірка наукової літератури з теми "Low pressure gas carburizing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Low pressure gas carburizing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Low pressure gas carburizing":

1

Wołowiec-Korecka, Emilia, Maciej Korecki, Michał Sut, Agnieszka Brewka, and Piotr Kula. "Calculation of the Mixture Flow in a Low-Pressure Carburizing Process." Metals 9, no. 4 (April 15, 2019): 439. http://dx.doi.org/10.3390/met9040439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The right selection of carburizing gas flow rates in the low-pressure carburization process is a key factor in terms of its efficiency. However, a correct calculation of the amount of carburizing gas required for uniform carburization of parts, taking into account the process temperature and batch size, is still problematic. For this reason, modern carburizing processes are carried out using an excessive belaying flow of carburizing gases. In this work steel parts (16MnCr5) were carburized in a variable-flow carburizing process (960 °C) individually matched to each segment of saturation. The effect of the variable-flow on the microstructure, surface hardness, and case hardness depth was evaluated and compared to that of a control group. It was proven that the amount of the mixture used in the variable-flow carburizing process can be significantly reduced to 54% of that consumed during the regular constant-flow carburizing without affecting the properties of the hardened layer of the steel parts.
2

Jones, Trevor, Virginia Osterman, and Donald Jordan. "Copper Evaporation During Low Pressure Carburization." AM&P Technical Articles 176, no. 2 (February 1, 2018): 63–64. http://dx.doi.org/10.31399/asm.amp.2018-02.p063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Stringent pressure control and gas species type both play an important role in minimizing the evaporation rate of not only copper, but other elements susceptible to evaporation in vacuum systems. The article describes a study investigating the effect of temperature, pressure, and carrier gas species on the amount of copper evaporation that occurs from copper foil test samples in low pressure carburizing.
3

Wołowiec-Korecka, Emilia. "Modeling methods for gas quenching, low-pressure carburizing and low-pressure nitriding." Engineering Structures 177 (December 2018): 489–505. http://dx.doi.org/10.1016/j.engstruct.2018.10.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Haojie, Jing Liu, Yong Tian, Zhaodong Wang, and Xiaoxue An. "Mathematical Modeling of Carbon Flux Parameters for Low-Pressure Vacuum Carburizing with Medium-High Alloy Steel." Coatings 10, no. 11 (November 9, 2020): 1075. http://dx.doi.org/10.3390/coatings10111075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Low-pressure vacuum carburizing adopts a pulse process mode to improve the carburizing efficiency and reduces gas and energy consumption. Carbon flux is the key to accurately control the time of strong infiltration and diffusion in each pulse. In order to obtain the carbon fluxes with various materials under diffident carburizing process conditions, an evenly segmented carbon flux method is proposed. A systematic study with each model using different materials (12Cr2Ni4A, 16Cr3NiWMoVNbE, and 18Cr2Ni4WA represent different initial carbon concentrations and different alloy compositions), carburizing temperatures, and carburizing pressures to determine the effect of these conditions on carbon flux is conducted. Compared with traditional segmented carbon flux method, an evenly segmented carbon flux method can predict the actual carbon flux more precisely and effectively in order to finely control the pulse carburization process. The paper also indicates that carbon fluxes increase with the increase of pressure. The optimal carburization pressure for low-pressure vacuum carburization is 300 Pa. Raising the carburization temperature to 980 °C instead of 920 °C can increase effective carbon flux by more than 30%. Among the material compositions, alloy content has the biggest impact over the carbon, initial carbon concentration the second, and saturated carbon concentration the third biggest impact.
5

Wang, Huizhen, Yuewen Zhai, Leyu Zhou, Bo Liu, and Guojian Hao. "Study on the Process of Vacuum Low Pressure Carburizing and High Pressure Gas Quenching for Carburizing Steels." Journal of Physics: Conference Series 1624 (October 2020): 042076. http://dx.doi.org/10.1088/1742-6596/1624/4/042076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krupanek, Krzysztof, Jacek Sawicki, and Victoria Buzalski. "Numerical simulation of phase transformation during gas quenching after low pressure carburizing." IOP Conference Series: Materials Science and Engineering 743 (March 19, 2020): 012047. http://dx.doi.org/10.1088/1757-899x/743/1/012047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pauty, E., P. Bertoni, M. Dahlström, and M. Larsson. "Optimization of Low Pressure Carburizing and High Pressure Gas Quenching for Cr-alloyed PM parts." HTM Journal of Heat Treatment and Materials 73, no. 2 (April 11, 2018): 106–13. http://dx.doi.org/10.3139/105.110349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Iżowski, Bartosz, Artur Wojtyczka, and Maciej Motyka. "Numerical Simulation of Low-Pressure Carburizing and Gas Quenching for Pyrowear 53 Steel." Metals 13, no. 2 (February 12, 2023): 371. http://dx.doi.org/10.3390/met13020371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The hardness and phase composition are, among other things, the critical material properties considered in the quality control of aerospace gears made from Pyrowear 53 steel after high-pressure gas quenching. The low availability of data on and applications of such demandingstructures justify investigating the choice of the material and the need to improve its manufacturability. In this study, computational finite-element analyses of low-pressure carburizing followed by oil and gas quenching of Pyrowear 53 steel were undertaken, the objective of which was to examine the influence of the process parameters on the materials’ final phase composition and hardness. The material input was prepared using JMatPro. The properties computed by the CALPHAD method were calibrated by the values obtained from physical experiments. The heat transfer coefficient was regarded as an objective variable to be optimized. A 3D model of the Standard Navy C-ring specimen was utilized to predict the phase composition after the high-pressure gas quenching of the steel and the hardness at the final stage. These two parameters are considered good indicators of the actual process parameters and are used in the industry. The results of the simulation, e.g., optimized heat transfer coefficients, cooling curves, and hardness and phase composition, are presented and compared with experimental values. The accuracy of the simulation was validated, and a good correlation of the data was found, which demonstrates the quality of the input data and setup of the numerical procedure. A computational approach to heat treatment processes’ design could contribute to accelerating new procedures’ implementation and lowering the development costs.
9

Sawicki, Jacek, Krzysztof Krupanek, Wojciech Stachurski, and Victoria Buzalski. "Algorithm Scheme to Simulate the Distortions during Gas Quenching in a Single-Piece Flow Technology." Coatings 10, no. 7 (July 19, 2020): 694. http://dx.doi.org/10.3390/coatings10070694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Low-pressure carburizing followed by high-pressure quenching in single-piece flow technology has shown good results in avoiding distortions. For better control of specimen quality in these processes, developing numerical simulations can be beneficial. However, there is no commercial software able to simulate distortion formation during gas quenching that considers the complex fluid flow field and heat transfer coefficient as a function of space and time. For this reason, this paper proposes an algorithm scheme that aims for more refined results. Based on the physical phenomena involved, a numerical scheme was divided into five modules: diffusion module, fluid module, thermal module, phase transformation module, and mechanical module. In order to validate the simulation, the results were compared with the experimental data. The outcomes showed that the average difference between the numerical and experimental data for distortions was 1.7% for the outer diameter and 12% for the inner diameter of the steel element. Numerical simulation also showed the differences between deformations in the inner and outer diameters as they appear in the experimental data. Therefore, a numerical model capable of simulating distortions in the steel elements during high-pressure gas quenching after low-pressure carburizing using a single-piece flow technology was obtained, whereupon the complex fluid flow and variation of the heat transfer coefficient was considered.
10

Tapar, O. B., M. Steinbacher, J. Gibmeier, N. Schell, and J. Epp. "In situ Investigation during Low Pressure Carburizing by Means of Synchrotron X-ray Diffraction*." HTM Journal of Heat Treatment and Materials 76, no. 6 (December 1, 2021): 417–31. http://dx.doi.org/10.1515/htm-2021-0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In situ X-ray diffraction investigations during low pressure carburizing (LPC) processes were performed with a specially developed process chamber at the German Electron Synchrotron Facility (DESY) in Hamburg, Germany. Carbon saturation in austenite was reached in less than 20 seconds for all processes with different parameters and carbides formed at the surface. Therefore, the direct contribution of carbon donor gas to the carbon profile after 20 seconds was reduced to very low levels. After that point, further supply of carbon donor gas increased the amount of carbides formed at the surface, which will contribute to the carbon profile indirectly by dissolution in the following diffusion steps. During quenching, martensite at higher temperatures had a lower c/a ratio than later formed ones. This difference is credited to self-tempering effects and reordering of carbon atoms within the martensite lattice.

Дисертації з теми "Low pressure gas carburizing":

1

Matamoros, Marin Fatima. "Modélisation et optimisation des fours de cémentation gazeuse basse pression." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse s'intéresse au développement d'une méthodologie d'optimisation des fours de cémentation gazeuse basse pression. L'objectif est de déterminer les conditions opératoires optimales qui permettent aux opérateurs exposés aux sous-produits toxiques générés (les hydrocarbures aromatiques polycycliques (HAP) et les suies en l'occurrence) de travailler dans des conditions plus sûres. Un modèle phénoménologique du procédé basé sur les équations du bilan de matière et des équations issues d'un mécanisme cinétique détaillé de pyrolyse d'acétylène en phase gazeuse, est d'abord développé. Le mécanisme cinétique est ensuite simplifié afin de réduire la taille du système différentiel, puis complété par un modèle de formation de suies, une réaction de formation de carbone pyrolytique et des phénomènes hétérogènes ayant lieu à la surface des pièces à cémenter qui sont décrits à l'aide du modèle de Langmuir-Hinshelwood-Hougen-Watson. Une première campagne expérimentale sur un réacteur tubulaire et un réacteur sphérique de laboratoire est réalisée en absence de pièces métalliques et permet de comparer les résultats expérimentaux de pyrolyse d'acétylène, de formation de suies et de carbone pyrolytique aux résultats de simulations en réacteur piston et réacteur parfaitement agité. Les résultats montrent l'importance du rôle joué par la formation de carbone pyrolytique et suies sur la formation des HAP. Une deuxième campagne expérimentale est menée sur un four industriel de cémentation gazeuse basse pression ; elle consiste à cémenter des pièces en adoptant une « recette » industrielle, c'est-à-dire en adoptant des conditions opératoires préétablies de manière empirique pour satisfaire le cahier des charges. Les résultats expérimentaux sont utilisés pour estimer les paramètres de la réaction hétérogène de surface en supposant un modèle complet de cémentation gazeuse basse pression en réacteur parfaitement agité. Le modèle est ensuite utilisé dans la formulation du problème d'optimisation dynamique sous contraintes qui vise à minimiser la production de composés toxiques tout en assurant la qualité industrielle des pièces cémentées. Des conditions opératoires optimales permettant d'obtenir des pièces de même qualité que celles obtenues avec la recette industrielle sont alors déterminées par résolution du problème d'optimisation établi et des expériences avec la recette optimisée sont menées sur le four industriel. Les résultats permettent de corroborer que la recette optimisée conduit à des pièces de même qualité que la recette classique industrielle, tout en réduisant la formation de la toxicité du procédé
This PhD work deals with the development of an optimization methodology for low-pressure gas carburizing furnaces. The objective is to determine the optimal operating conditions allowing operators exposed to the toxic by-products generated (polycyclic aromatic hydrocarbons (PAHs) and soot in this case) to work in safer conditions. A first-principles model of the process based on mass balance equations as well as equations derived from a detailed kinetic mechanism of gas-phase acetylene pyrolysis is first developed. The kinetic model is then reduced in order to reduce the size of the differential system; then completed by a model of soot formation, a pyrolytic carbon formation reaction and heterogeneous phenomena occurring on the surface of the steel parts to be cemented which are described by means of Langmuir-Hinshelwood-Hougen-Watson model. Experiments conducted on a laboratory scale tubular reactor and a jet stirred reactor are carried out without steel parts. The results are then compared to the results of simulations of acetylene pyrolysis, soot and pyrolytic carbon formation in a plug flow reactor and in a perfectly stirred tank reactor. The results show the importance of the role played by the formation of pyrolytic carbon and soot on the formation of PAH. Experiments on an industrial low-pressure gas-carburizing furnace are conducted as well; they consist in the carburization of steel parts using an industrial "recipe", i.e. predetermined operating conditions obtained by trial-and-error basis in order to meet the desired carburizing depth. The experimental results are used to estimate the parameters of the heterogeneous surface reaction by assuming a complete model of low-pressure gas carburizing in a perfectly stirred tank reactor. The model is then used in the formulation of the dynamic constrained optimization problem which aims to minimize the production of toxic compounds while ensuring the industrial quality of the carburized steel parts. Optimal operating conditions allowing to obtain steel parts of the same quality as those obtained with the industrial recipe are then determined by solving the optimization problem and experiments using the new operating conditions are conducted in the industrial furnace. The results corroborate that the optimized recipe leads to steel parts of the same quality as the industrial recipe, while reducing the process toxicity
2

Wang, Danqi. "LOW-TEMPERATURE GAS-PHASE CARBURIZING AND NITRIDING OF 17-7 PH STAINLESS STEEL." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1386165240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weatherup, Clifford Robert. "New low pressure gas switches." Thesis, University of St Andrews, 1991. http://hdl.handle.net/10023/14040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes an investigation the aim of which was the development of low pressure gas switches with the advantages of zero standby power consumption and instant readiness. Hydrogen thyratrons use a hollow anode to give the switch a convenient reverse conduction capability. The hollow anode structure has been shown to pass a 4 kA pulse current at 500 Hz for 1010 shots. The use of the hollow anode structure as a cold cathode for a low pressure switch is proposed and triggering of the structure by ions is demonstrated. Under conditions of low gas pressure and high discharge voltage, electrons make few collisions in the cathode dark space of a glow discharge and form extensive beams which travel many centimetres in the gas. Current/voltage characteristics of this 'electron beam' type of discharge are presented for deuterium at pressures between 0.2 and 1.0 torr. The electron beam discharge was found to be space-charge limited with I V3/2 at pressures below about 0.25 torr and I V3/2 at pressures above about 0.25 torr. It is proposed that the current in the electron beam discharge is limited by the flow of positive ions in the cathode dark space. Control of the emission area of a discharge in a hollow metal cylinder is demonstrated and is used as a triggering method for a new type of low pressure gas switch. Tests in a pulse modulator at repetition rates up to 1 kHz show that the switch operates satisfactorily. The triggering mechanism is shown to depend on the properties of the cold cathode glow discharge which, in certain circumstances, leads to the unusual phenomenon of post trigger-pulse firing of the switch. The phenomenon is shown to result from the interaction of the trigger discharge cathode dark space and the geometry of the switch. The glow discharge electron beam is successfully applied as a triggering method in several new low pressure gas switches. In one arrangement, the electron beam is used to pre-ionise the switch and subsidiary grids are used to trigger main conduction. In another arrangement, the electron beam is directed into the high voltage region to trigger conduction directly. The designs of these switches are discussed and their operation is demonstrated.
4

Андріїшин, Mихайло Петрович, Костянтин Іванович Капітанчук, Назар Михайлович Андріїшин, Kostiantyn Kapitanchuk, and Константин Иванович Капитанчук. "Natural gas turbine flow meters calibrations in low gas flow pressure situations." Thesis, Національний авіаційний університет, 2018. http://er.nau.edu.ua/handle/NAU/39801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the article criteria of possible turbine flow meters calibrations with natural gas, parameters fluctuations are determined Article presents experimentation results of natural gas parameters influence on processes that occur in turbine flow meters. In the article criteria of possible turbine flow meters calibrations with natural gas, parameters fluctuations are determined. It is known that metrological parameters of the turbine flow meter in operating systems will deter from certificated values. With pressure, temperature or other fluctuations of a flow physical parameters the flow meter's results will occur within of an error space determined by Reynolds number equation for current flow passing through turbine grille. With Reynolds numbers constant aspect ratio the relative error of a flow meter will stay irrelevant of type of the environment. It is suggested to use this value as a criterion that is not affected by thermodynamic parameters and physical characteristics of an environment but of turbine grille model and mechanical state of a flow meter. Turbine flow meter SM-RI-X-KG1000, DN200 was used for experiment with flow volume varies of 80 m3/h to 1600 m3/h and pressure varies of 100 kPa to 700. Results of theoretical calculations and experimental research data for Reynolds number ratio is shown on a graph of a turbine flow meter speed on pressure dependency. It is determined that the flow meter designed for the low-pressure environment should be calibrated for actual range of operating environment pressure and temperature values
У статті визначено критерії калібрувань турбінних витратомірів природного газу. Запропоновано використовувати значення числа Рейнольдса як критерій, на який не впливає термодинамічні параметри та фізичні характеристики середовища, параметри турбінної решітки. модель і механічний стан витратоміра. Для експерименту використовували турбінний витратомір SM-RI-X-KG1000, DN200 з об'ємом потоку від 80 м3 / год до 1600 м3 / год, а тиск змінювався від 100 кПа до 700. Результати теоретичних розрахунків та даних експериментальних досліджень для числа Рейнольдса показано на графіку швидкості турбінного витратоміра на залежність від тиску. Встановлено, що витратомір, призначений для середовища низького тиску, повинен бути відкалібрований для фактичного діапазону тисків робочого середовища та значень температури
В статье определены критерии калибровок турбинных расходомеров природного газа. Предложено использовать значение числа Рейнольдса как критерий, на который не влияет термодинамические параметры и физические характеристики среды, параметры турбинной решетки. модель и механическое состояние расходомера. Для эксперимента использовали турбинный расходомер SM-RI-X-KG1000, DN200 с объемом потока от 80 м3 / ч до 1600 м3 / ч, а давление изменялось от 100 кПа до 700 Результаты теоретических расчетов и данных экспериментальных исследований для числа Рейнольдса показано на графике скорости турбинного расходомера в зависимости от давления. Установлено, что расходомер, предназначенный для среды низкого давления, должен быть откалиброван для фактического диапазона давлений рабочей среды и значений температуры
5

Yang, Suidong. "Diagnostics and modelling of an inductively coupled RF low-pressure low-temperature plasma." Thesis, n.p, 1998. http://oro.open.ac.uk/19841/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Parkinson, J. S. "Control system design for low pressure gas distribution networks." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ingram, S. G. "Investigations of low pressure RF discharges in argon." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.480534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schirlin, Julien T. "Targeting low vapour pressure compounds in gas-phase electron diffraction." Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/11377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gas-phase electron diffraction (GED) has remained the most valuable technique for the collection of structural information in the gas phase, for the last 70 years. Unfortunately, this structural technique had reached a limiting factor: the volatility of chemicals.  Therefore this work aims to provide new ways to overcome both the kinetic and thermodynamic aspects of this problem by the adoption of a new nozzle design and by the use of a reservoir. The new nozzle extends the capabilities of gas electron diffraction to compounds with lower vapour pressures or with vaporisation rates not adequate for the existing GED experimental conditions. The shape of the new nozzle allows the user to operate at a lower vapour pressure by increasing the diffraction area. The design investigated is the slit type. It allows the electron beam diameter to be kept small, but permits the gas to emerge from a slit running parallel to the beam. Collected and simulated data have confirmed our intuition that the amplitudes will be affected slightly by the slit nozzle. Superimposing simulated and collected data allowed us to establish the profile of the gaseous output from the new design nozzle and shows that the count of electrons being diffracted increase 5.5 fold, with respect to the conventional nozzle. Gas-phase electron diffraction data have been collected and analysed for 2,5-dichlorothiophene and 3,4­dichloro-1,2,5-thidiazole. An extensive series of ab initio calculations has also been undertaken on these molecules, together with 2,5-difluoro and 3,4-dichlorothiophene, allowing the accurate determination of their gas-phase molecular structures. The structures are compared to those of their parent compounds in order to assess the effects of halogen substitution on the rings.
9

Craig, G. "Thomson scattering measurements in low pressure inert and molecular gas plasmas." Thesis, Queen's University Belfast, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moss, Graham James. "A time-dependent collisional-radiative model of low pressure gas discharges." Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Low pressure gas carburizing":

1

Board, United States National Transportation Safety. Over-pressure of Peoples Gas Light and Coke Company low-pressure distribution system, Chicago, Illinois, January 17, 1992. Washington, D.C: National Transportation Safety Board, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. National Transportation Safety Board. Over-pressure of Peoples Gas Light and Coke Company low-pressure distribution system, Chicago, Illinois, January 17, 1992. Washington, D.C: National Transportation Safety Board, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

United States. National Transportation Safety Board. Over-pressure of Peoples Gas Light and Coke Company low-pressure distribution system, Chicago, Illinois, January 17, 1992. Washington, D.C: National Transportation Safety Board, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Center, Lewis Research, ed. Measurement of xenon viscosity as a function of low temperature and pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Center, Lewis Research, ed. Measurement of xenon viscosity as a function of low temperature and pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pavese, Franco. Modern Gas-Based Temperature and Pressure Measurements. 2nd ed. Boston, MA: Springer US, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

C, Nunes A., and George C. Marshall Space Flight Center., eds. Low-pressure gas effects on the potency of an electron beam against ceramic cloth. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

C, Nunes A., and George C. Marshall Space Flight Center., eds. Low-pressure gas effects on the potency of an electron beam against ceramic cloth. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

C, Nunes A., and George C. Marshall Space Flight Center., eds. Low-pressure gas effects on the potency of an electron beam against ceramic cloth. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Engineers, Institution of Gas. Safety recommendations. IGE/SR/4(1986): Low-pressure gas holders storing lighter-than-air gases. London: Institution of Gas Engineers, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Low pressure gas carburizing":

1

Lister, Graeme, and Yang Liu. "Low-Pressure Gas Discharge Lamps." In Handbook of Advanced Lighting Technology, 1065–77. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-00176-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lister, Graeme, and Yang Liu. "Low-Pressure Gas Discharge Lamps." In Handbook of Advanced Lighting Technology, 1–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00295-8_3-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rowe, Stephen William. "Pressure Dependence of Breakdown Times in Low Pressure Gas." In Gaseous Dielectrics IX, 313–20. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0583-9_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Horioka, K., H. Tamura, H. Kanazawa, and K. Kasuya. "Initiation Processes and Development of Laser-Induced Low-Pressure Spark Channels." In Gas Flow and Chemical Lasers, 402–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71859-5_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tamazawa, Kaoru, Yoshinori Tamazawa, and Hidetoshi Shimauchi. "Sterilization Effect in Low-Pressure Discharge Plasma Using Non-toxic Gas." In Interface Oral Health Science 2011, 275–77. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54070-0_81.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Yefei, Lun Zhao, and Qingying Hou. "Unstable Pressure Analysis of Gas Drive in Low Permeability Carbonate Reservoirs." In Springer Series in Geomechanics and Geoengineering, 34–50. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0264-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Prakhova, M. Yu, A. N. Krasnov, and E. A. Khoroshavina. "Automatic System of Low-Pressure Gas Recycling at Liquid Removal from Wells and Gas Collectors." In Lecture Notes in Mechanical Engineering, 951–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22041-9_101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pinheiro, M. J., C. M. Ferreira, and G. Gousset. "Multicomponent Reactive Gas Dynamic Model for Low-Pressure Discharges in Flowing Oxygen." In Molecular Physics and Hypersonic Flows, 485–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0267-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Niu, Pengtao, Guangtao Fu, Xuemei Wei, Xinyi Chen, and Bo Zhang. "Exploration of the application of hydrogen-doped natural gas in low-pressure gas transmission and distribution networks." In Advances in Energy Materials and Environment Engineering, 476–82. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003332664-67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bian, Jiang, Xuewen Cao, Yang Liu, Yuan Sun, and Qi Chu. "Influence of Swirl Vane on the Low-Pressure Gas Flow in Supersonic Separators." In Proceedings of the International Field Exploration and Development Conference 2018, 1841–49. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7127-1_174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Low pressure gas carburizing":

1

Heuer, Volker. "Advances in Low Pressure Carburizing and High-Pressure Gas Quenching." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021exabp0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Low Pressure Carburizing (LPC) in combination with High Pressure Gas Quenching (HPGQ) has been established as an advanced and robust technology for case hardening. The process can be applied with batches consisting of multiple layers as well as batches consisting of single-layers. The paper shows the latest progress in LPC and HPGQ for the heat treatment of automotive and aerospace components. Significant progress has been made by continuous improvements in the fields of- Fixturing / load densities,- Reduction of cycle times,- Control of distortion,- Digitalization / Automation,- Quality control and- Integration of heat treatment into the manufacturing line. Practical applications are shown for both multiple- and single layer treatment.
2

Lelong, Vincent, and Dennis Beauchesne. "Low Pressure Carburizing Distortion Data Comparing Oil and High Pressure Gas Quenching." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This presentation will discuss data on parts tested in Low Pressure Carburizing using oil and gas quenching. We will present data on metallurgy, distortion and load design to optimize each quenching media. As we know oil and gas quench respond differently, we will explore the evolution of high pressure gas quenching as it exist in today’s market. Low Pressure Carburizing has been growing among OEM’s and now Tier 2 suppliers as well as heat treaters in the Automotive and Aerospace markets. These details should help show the audience that they also can take advantage of the clean environment from Low Pressure Carburizing and just in time processing along with possible distortion control for all their parts currently being atmosphere carburized.
3

Lord, Thomas. "Low Pressure Carburizing in a Vacuum Furnace." In HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Historically, this carburizing has been performed in an endothermic gas consisting of CO2, CH4, CO, etc, but carburizing in low pressure with the proper gas mixture changes the landscape. Using C2 H2, the process is no longer endothermic as C2H2 is a catalytically decomposable hydrocarbon and dissociates in the presence of an iron catalyst. LPC is a recipe driven in contrast to the constant monitoring of the carbon potential in atmospheric gas carburizing, and with the wide acceptance of simulation programs, recipes are no longer created by trial and error. Introduction of nitrogen to the steel, followed by carbon with higher temperatures, can dramatically reduce cycle times and still control grain growth.
4

Heuer, Volker, Gunther Schmitt, Philipp Kauffmann, Katharina Faerber, Roger Lawcock, and Rohith Shivanath. "Low-Pressure Carburizing of Powder Metal Components." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Transmission-manufacturers constantly need to adapt their products and manufacturing technologies to meet future’s market and legislation requirements such as cost-efficiency, running-smoothness and drivetrain-agility. Components made of powder metal (“PM-components”) are established in today’s transmission industry as a cost efficient alternative even for high strength and high precision powertrain applications. The PM-material and the applied heat treatment processes have made significant improvements in recent years. One major step in the development was to combine the freedom in alloying-concepts of the PM-technology with the advantages of the Low Pressure Carburizing (LPC) heat treatment process. PM-components must be case-hardened to meet design-intent regarding wear resistance and strength. But when case hardening PM-components using a conventional atmospheric carburizing process, this can lead to serious overcarburizing and even massive carbide-formation. Another major challenge when using the conventional process is to clean PM-parts after the traditional oil-quenching process. Therefore, the process of Low Pressure Carburizing (LPC) combined with High Pressure Gas Quenching (HPGQ) was adapted to the special needs of serial production of PM-components. This heat treatment process offers significant benefits, such as: - no overcarburizing and excessive carbide-formation due to precise diffusion of carbon into the components - reproducible microstructures from part to part and from load to load - clean and shiny parts after quenching - superior control of distortion, - no intergranular oxidation, - better fatigue resistance and - the benefits of an environmentally friendly process. Over the past 25 years, Stackpole and ALD worked on powder metal technology and advanced heat treatment processes. Material, process and equipment have seen significant improvements over the last decades to offer true benefits. This presentation will give an insight into benefits and challenges of PM-components heat treated in low pressure with subsequent gas quenching. The paper refers to the industrial series production of components and it refers to R&D - case studies as well.
5

Ming, Qin, Tsuyoshi Sugimoto, Youichi Watanabe, Kazuhiko Katsumata, and Takahiro Semura. "Uniform Quenching Technology by Using Controlled High Pressure Gas after Low Pressure Carburizing." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-0365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Beauchesne, Dennis. "The Use of Low Pressure Carburizing and High Pressure Gas Quenching for In-Line Heat Treat Processing." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The evolution of Low Pressure Vacuum Carburizing in the automotive industry is well embedded in assembly plants with continuous batch loading. This batch loading, which causes a need for high cost WIP (work in progress), can now be reduced with the Low Pressure Vacuum Carburizing furnace equipment being sized to fit into single piece flow line with small batches. This presentation will look into the recent integration of heat treatment for in-line machining cells and the overall influences for the customer to provide equipment for heat treating in-line. These details will be compared to batch or continuous batch heat treatment as we know it today in the automotive industry. High Pressure gas quenching will be illustrated in both in-line and continuous batch integration.
7

Jacquet, Philippe, Daniel R. Rousse, and Clemente C. Ibarra. "Predictions of Carbon Fluxes During a Low Pressure Carburizing Treatment." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper presents the qualitative assessment of a novel device developed for the regulation of carburizing processes in industrial vacuum furnaces. The proposed device involves a U-shaped thin wall iron tube: the outside surface of the tube is exposed to the carburizing atmosphere simultaneously with the workload, while the decarburizing gas mixture (here H2 + H2O) is circulated inside the tube. The outflow of decarburizing mixture is then continuously analyzed and eventually permits to determine the carbon potential and the transfer coefficient at the interface between the carburizing atmosphere and the workloads. To assess the principle, the probe has been used to compare the carburizing powers of different gases (propane, methane, ethylene, and acetylene) for a specific set of parameters. The results reported here, compared with microhardness and micrographies of the samples, indicate that the probe can indeed be used to carry out this task.
8

Lelong, Vincent, and Amberlee Welch. "How It’s Done and Why— Transitioning Parts from Atmosphere Carburizing to Low-Pressure Vacuum Carburizing." In HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract For more than 20 years now Low Pressure Vacuum Carburizing (LPC) has taken over several industries as the main carburizing choice. These industries take advantage of LPC’s clean environment, versatility, “just in time” processing, along with possible distortion control that comes with gas quenching capabilities to process millions of parts each month. However, there are still hundreds of types of parts that can be converted to LPC with minimal effort. The authors will show the recent history and products currently being processed in LPC and how they were transitioned to LPC. Metallurgical results will be shown along with production loading scenarios. In addition, the process of a particular part showing timing and cost of each treatment process will be reviewed. These facts will show the audience the benefits and how they can take advantage of low pressure vacuum carburizing.
9

Hu, Guiming, Changyu Zhou, Cheng Chen, and Na Lei. "Metal Dusting Corrosion of Alloy Cr5Mo in H2-CO Gas Mixtures." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal dusting is a catastrophic phenomena of high temperature corrosion, which occurs in severe carburizing environments (carbon activity aC>1.0) at temperatures 400–900 °C. It causes not only phase changes but also removal of materials (pitting or thinning) and serious material deterioration. The present study focuses on the fundamental understanding of the corrosion of low alloy steels Cr5Mo in carbon-supersaturated environments (50CO-50H2) at 600 °C over different holding times. Scanning-electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), nano-indentation, and nano-scratch tester are used to investigate the microstructure and its mechanical properties. An interesting continuous thick layer composed of Ha¨gg carbide (Fe5C2) and less cementite (Fe3C) was present on top of the samples, which was ever observed in pure iron but not in alloy steels. This layer grew thicker with increasing holding times and showed very different mechanical properties with the carburized layer which was below the Ha¨gg carbide layer. And the carburized layer could not form a continuous and homogeneous layer of Fe3C even in longer holding times. The cementite only formed at grain boundaries. The results show that also as for low alloy steels at very high carbon activities a second iron carbide, Ha¨gg carbide (Fe5C2), forms on the surface instead of the decomposing process of the metastable carbide, cementite (Fe3C).
10

Marteeny, Don, Maciej Korecki, and Agnieszka Brewka-Stanulewicz. "Vacuum Carburizing in a Pit Furnace: A 21st Century Solution to Large Component Case Hardening." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021p0334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Low pressure carburizing (LPC) is a proven, robust case hardening process whose potential is only limited by the style and size of vacuum furnace. Today, LPC is typically used in horizontal vacuum furnaces where the opportunity to carburize large parts is limited. In this paper we present a new adaptation of the technology in large pit type vacuum furnaces, capable of opening to air at elevated temperature. This underscores the potential of LPC to carburize larger, more massive parts in a clean, effective and efficient process. The result is quality casehardened parts without the undesirable side effects of atmosphere gas carburizing such as the use of a flammable atmosphere, reduced CO and NOx emissions, no intergranular oxidation, and limited retort life. Another significant advantage is decreased process time. The case study presented here shows that eliminating furnace conditioning and increasing process temperature can significantly reduce cycle durations by nearly three times and cut utility costs in half. Under these conditions, a return on investment (ROI) is in the neighborhood of 1 – 2 years is possible, making LPC in a pit style furnace a cost-effective solution than traditional atmosphere gas carburizing technologies.

Звіти організацій з теми "Low pressure gas carburizing":

1

Tampe, L. A., R. G. Frenkel, D. J. Kowalick, H. M. Nahatis, S. M. Silverstein, and D. G. Wilson. Low-pressure-ratio regenerative exhaust-heated gas turbine. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5086383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tampe, L. A., R. G. Frenkel, D. J. Kowalick, H. M. Nahatis, S. M. Silverstein, and D. G. Wilson. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/10153458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sacks, Richard D., Alex Lockwood Robinson, Gordon R. Lambertus, Joseph A. Potkay, and Kensall D. Wise. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/902593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duggal, V. K., E. J. Lyford-Pike, J. F. Wright, M. Dunn, D. Goudie, and S. Munshi. Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/15007602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Igor D. Kaganovich, Oleg V. Polomarov, and Constantine E. Theodosiou. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/821522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Osterheld, T. H., M. D. Allendorf, and R. Larson. Gas-phase chemistry during the conversion of cyclohexane to carbon: Flow reactor studies at low and intermediate pressure. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/83841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gentile, C. A., W. R. Blanchard, T. A. Kozub, M. Aristova, C. McGahan, S. Natta, K. Pagdon, and J. Zelenty. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/971199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R03 Residual Gas Fraction Estimation Based on Measured In-Cylinder Pressure - Phase III. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2021. http://dx.doi.org/10.55274/r0011996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An experimental study was carried out to characterize the scavenging behavior of a cross-scavenged, piston-aspirated, two-stroke, natural gas engine to aid in the development of computationally inexpensive simple scavenging models for onboard engine control by (1) studying the effects of changing operational parameters on the engine's scavenging performance, and (2) identifying the underlying phenomena driving the observed effects. Tracer based methods were used to quantify the scavenging and trapping performance of the engine - CO2 was used as a tracer for combustion products and pre-mixed fuel was used as a fresh charge tracer. CO2 concentration was measured on a crank angle resolved basis both in the engine cylinder and exhaust using portable NDIR sensors, while unburned fuel concentration was measured in the exhaust using the FID module of a standard five gas analyzer. It was found that scavenging took place in three stages, an initial perfect displacement type stage, followed by a short-circuiting, and a perfect mixing type stage. Engine speed and load changes were found to have the strongest effects on the trapping and scavenging performance of the engine; spark timing effects were less significant. Changes in measured scavenging and trapping efficiencies at different operating points resulted from a combination of influences, namely (1) reduced time for gas exchange at high speeds, (2) higher expansion and scavenging pressures at high loads and retarded spark timings, and (3) phasing of the reflected 'scavenging' and 'plugging' pulses in the exhaust pipe relative to BDC and EPC, respectively. Increasing engine load made the engine scavenge significantly better and increasing engine speed resulted in a larger fraction of the delivered air being trapped. The combined effect of these scavenging changes and changes in the engine's fuel conversion efficiency resulted in the engine running leaner at high speeds (more air delivered and higher trapping efficiency) and at low loads (higher trapped residuals). The results were then used to gauge the performance of the simple scavenging model (the hybrid model) developed in phase II of the project. While encouraging results were obtained at high speed, the trapped air mass was overestimated at medium speed; suggesting the need for adding a low scavenging efficiency sub-model. Recommendations have been made about adding a short-circuiting zone to address this limitation of the model.
9

Olsen and Willson. L51916 Pressure Based Parametric Emission Monitoring Systems (PEMS). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2002. http://dx.doi.org/10.55274/r0010181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The natural gas industry operates over 8000 stationary large bore (bore greater than 14 in) natural gas engines for natural gas compression on pipelines and power generation. As emissions regulations become increasingly more stringent, the need for low cost methods for compliance demonstration arises. A PEMS model is one such approach. Research in this area has increased significantly during the last decade. PEMS models for this application utilize parameters commonly measured on industrial engines in the field to predict engine-out emissions. Monitoring emissions in this manner represents a significant cost savings over the periodic use of chemiluminescence NOX analyzers, which are not standard equipment in natural gas compressor stations. PEMS model accuracy is dependent on the quality of the input data, both the training NOX measurements and the selection of input parameters. Hence, it is important to have both reliable data measurement methods and an understanding of engine operating parameters relation to NOX. This work is part of the body of work referred to as the Integrated Test Plan (ITP), performed at the Engines and Energy Conversion Laboratory (EECL). This report details an investigation into Parametric Emissions Monitoring System (PEMS) models. It is the final document to be delivered under the ITP program. Much of the work performed under the ITP program focused on Hazardous Air Pollutants (HAPs) research. However, the emphasis of the PEMS work is on the prediction of oxides of nitrogen (NOX) emissions from large bore natural gas engines. In this work two different PEMS models are developed, a semi-empirical model and a neural network model. The semi-empirical model is based on general relationships between NOX emissions and engine parameters, but contains empirical constants that are determined based on the best fit to engine experimental data. The neural network model utilizes a similar set of input parameters, but relies on the neural network code to determine the relationships between input parameters and measured NOX emissions. The neural network model also contains empirical constants. The mathematics involved in both models is described. A single term semi-empirical model, which has been utilized in the literature as a PEMS model, is applied for comparative purposes.
10

Biagio, M. Di, A. Fonzo, and F. Marchesani. JTM13-CAD Crack Arrestor Design for High Grade Gas Transportation Pipeline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2001. http://dx.doi.org/10.55274/r0011813.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The interest of gas companies in the use of high-grade steel pipes, equivalent to X100 and higher, for the construction of long-distance gas pipelines is now a consolidated trend in the world; these pipelines are demanded to operate under extreme operating conditions, such as low temperature, high pressure and high design factor. Under this severe operating scenario the running shear fracture control can not be only assured by the inherent pipe body material self arrestability, and in this case, the use of external mechanical devices, i.e. crack arrestors, becomes mandatory as also envisaged by the draft of the new pipeline ISO standards under discussion. At the same time the knowledge available on the matter mainly dated back to the past, and the existing crack arrestor design guidelines, as those published by PRCI in the 80's, make reference to experimental experience gained on conventional, lower toughness and lower pressure gas linepipe.

До бібліографії