Добірка наукової літератури з теми "Low inertia power systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Low inertia power systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Low inertia power systems"
Mujcinagic, Alija, Mirza Kusljugic, and Emir Nukic. "Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area." Energies 13, no. 23 (November 24, 2020): 6177. http://dx.doi.org/10.3390/en13236177.
Повний текст джерелаWorsnopp, Tom, Michael Peshkin, Kevin Lynch, and J. Edward Colgate. "Controlling the Apparent Inertia of Passive Human-Interactive Robots." Journal of Dynamic Systems, Measurement, and Control 128, no. 1 (November 14, 2005): 44–52. http://dx.doi.org/10.1115/1.2168165.
Повний текст джерелаNguyen, Ha Thi, Guangya Yang, Arne Hejde Nielsen, and Peter Højgaard Jensen. "Challenges and Research Opportunities of Frequency Control in Low Inertia Systems." E3S Web of Conferences 115 (2019): 02001. http://dx.doi.org/10.1051/e3sconf/201911502001.
Повний текст джерелаKosmecki, Michał, Robert Rink, Anna Wakszyńska, Roberto Ciavarella, Marialaura Di Somma, Christina N. Papadimitriou, Venizelos Efthymiou, and Giorgio Graditi. "A Methodology for Provision of Frequency Stability in Operation Planning of Low Inertia Power Systems." Energies 14, no. 3 (January 31, 2021): 737. http://dx.doi.org/10.3390/en14030737.
Повний текст джерелаAdrees, Atia, J. V. Milanović, and Pierluigi Mancarella. "Effect of inertia heterogeneity on frequency dynamics of low-inertia power systems." IET Generation, Transmission & Distribution 13, no. 14 (July 23, 2019): 2951–58. http://dx.doi.org/10.1049/iet-gtd.2018.6814.
Повний текст джерелаHeylen, Evelyn, Fei Teng, and Goran Strbac. "Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems." Renewable and Sustainable Energy Reviews 147 (September 2021): 111176. http://dx.doi.org/10.1016/j.rser.2021.111176.
Повний текст джерелаBarrueto Guzmán, Aldo, Héctor Chávez Oróstica, and Karina A. Barbosa. "Stability Analysis: Two-Area Power System with Wind Power Integration." Processes 11, no. 8 (August 18, 2023): 2488. http://dx.doi.org/10.3390/pr11082488.
Повний текст джерелаChae, Dong-Ju, and Kyung Soo Kook. "Inertia Energy-Based Required Capacity Calculation of BESS for Achieving Carbon Neutrality in Korean Power System." Energies 17, no. 8 (April 12, 2024): 1843. http://dx.doi.org/10.3390/en17081843.
Повний текст джерелаZhou, Jinghua, and Hao Yan. "Research on Parallel Control Strategy of Grid-forming of Power Conversion System." Journal of Physics: Conference Series 2592, no. 1 (September 1, 2023): 012075. http://dx.doi.org/10.1088/1742-6596/2592/1/012075.
Повний текст джерелаWang, Feng, Lizheng Sun, Zhang Wen, and Fang Zhuo. "Overview of Inertia Enhancement Methods in DC System." Energies 15, no. 18 (September 13, 2022): 6704. http://dx.doi.org/10.3390/en15186704.
Повний текст джерелаДисертації з теми "Low inertia power systems"
Qureshi, Fassahat Ullah. "Fast frequency response services for low inertia power systems." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20764.
Повний текст джерелаNiemelä, Elvira, and Lucas Wallhager. "Fast Power Support of Electrical Batteries in Future Low Inertia Power Systems." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281935.
Повний текст джерелаFör att skapa mer hållbara kraftsystem, men även uppnå miljömål, är fortsatt integrering av förnyelsebara energikällor viktigt. Dock kan detta resultera i ett kraftsystem som är mer sårbart mot störningar, då förnyelsebara energikällor inte bidrar till systemets svängmassa. Ett kraftsystems förmåga att möta störningar är direkt relaterad till svängmassan i systemet. Detta är på grund av att systemet använder kinetisk energi från roterande maskiner, deras svängmassa, för att återställa balans mellan produktion och konsumtion efter en störning. Dock orsakar detta en avvikelse hos systemets frekvens, som måste hållas inom vissa gränser, annars kan det i värsta fall leda till strömavbrott. Primärreglering stabiliserar frekvensen först dussin sekunder efter en störning, därför är det svängmassan som spelar den avgörande rollen för att kontollera den initiella avvikelsen. En möjlig lösning för att möta störningar i ett kraftsystem med mindre svängmassa är att använda elektriska batterier som snabbt kraftstöd, genom att tillföra effekt till systemet vid behov. Detta projekt syftar till att undersöka dynamiken hos primärregleringen men även huruvida batterier kan användas som snabbt kraftstöd. Olika parametrar hos batterierna analyseras även. Projektet görs genom en fallstudie av en model av ett kraftsystem i Simulink och Matlab. Andra aspekter, så som hållbarhet, kostnadseffektivitet samt framtida forskning diskuteras.
Alahmad, Bashar. "The role of location of low inertia in power systems." Thesis, Uppsala universitet, Institutionen för elektroteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444863.
Повний текст джерелаMOSCA, CARMELO. "Methodologies for Frequency Stability Assessment in Low Inertia Power Systems." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2895393.
Повний текст джерелаSchmitt, Andreas Joachim. "Power System Parameter Estimation for Enhanced Grid Stability Assessment in Systems with Renewable Energy Sources." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83459.
Повний текст джерелаPh. D.
Dalal, Milap. "Low noise, low power interface circuits and systems for high frequency resonant micro-gyroscopes." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44861.
Повний текст джерелаZhang, Shengqi. "Investigating the impacts of renewable energy generators and energy storage systems on power system frequency response." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/94463/1/Shengqi_Zhang_Thesis.pdf.
Повний текст джерелаKelada, Fadi Sameh Aziz. "Étude des dynamiques et de la stabilité des réseaux électriques faible inertie avec une forte pénétration de ressources renouvelables." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT065.
Повний текст джерелаPower systems are evolving significantly due to economic, geopolitical, and environmental factors, notably the increasing integration of Renewable Energy Sources (RES) interfaced through power electronic converters, known as Inverter-Based Resources (IBR). This shift from synchronous machine (SM)-dominated systems to IBR-dominated systems introduces challenges such as reduced inertia, intermittency, and stability issues. Traditional stability analysis and modeling techniques, which assume slower dynamics inherent in SMs, are inadequate for the fast dynamics of IBRs. The emerging dominance of IBRs necessitates the development of detailed Electromagnetic Transient (EMT) models, which are computationally intensive but essential for capturing the fast dynamics of modern power systems. Existing stability classification frameworks, historically based on SM-dominated systems, are being revised to incorporate IBR influences, introducing new stability categories like Converter-Driven Stability (CDS). This work investigates novel insights into the interactions between SMs, IBR unit dynamics, and network dynamics that have been overlooked in the literature. It provides a comprehensive framework that is open-source and adaptable for generic power system topologies, allowing for scalable results and analyses. Furthermore, the proposed framework is utilized to determine optimal allocations of virtual inertia and damping in low inertia power systems to enhance frequency stability metrics
El-Damak, Dina Reda. "Power management circuits for ultra-low power systems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99821.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 137-145).
Power management circuits perform a wide range of vital tasks for electronic systems including DC-DC conversion, energy harvesting, battery charging and protection as well as dynamic voltage scaling. The impact of the efficiency of the power management circuits is highly profound for ultra-low power systems such as implantable, ingestible or wearable devices. Typically the size of the system for such applications does not allow the integration of a large energy storage device. Therefore, extreme energy efficiency of the power management circuits is critical for extended operation time. In addition, flexibility and small form factor are desirable to conform to the human body and reduce the system's over all size. Thus, this thesis presents highly efficient and miniature power converters for multiple applications using architecture and circuit level optimization as well as emerging technologies. The first part presents a power management IC (PMIC) featuring an integrated reconfigurable switched capacitor DC-DC converter using on-chip ferroelectric caps in 130 nm CMOS process. Digital pulse frequency modulation and gain selection circuits allow for efficient output voltage regulation. The converter utilizes four gain settings (1, 2/3, 1/2, 1/3) to support an output voltage of 0.4 V to 1.1 V from 1.5 V input while delivering load current of 20 [mu]A to 1 mA. The PMIC occupies 0.366 mm² and achieves a peak efficiency of 93% including the control circuit overhead at a load current of 500 [mu]A. The second part presents a solar energy harvesting system with 3.2 nW overall quiescent power. The chip integrates self-startup, battery management, supplies 1 V regulated rail with a single inductor and supports power range of 10 nW to 1 [mu]W. The control circuit is designed in an asynchronous fashion that scales the effective switching frequency of the converter with the level of the power transferred. The ontime of the converter switches adapts dynamically to the input and output voltages for peak-current control and zero-current switching. The system has been implemented in 180 nm CMOS process. For input power of 500 nW, the proposed system achieves an efficiency of 82%, including the control circuit overhead, while charging a battery at 3 V from 0.5 V input. The third part focuses on developing an energy harvesting system for an ingestible device using gastric acid. An integrated switched capacitor DC-DC converter is designed to efficiently power sensors and RF transmitter with a 2.5 V regulated voltage rail. A reconfigurable Dickson topology with four gain settings (3, 4, 6, 10) is used to support a wide input voltage range from 0.3 V to 1.1 V. The converter is designed in 65 nm CMOS process and achieves a peak efficiency of 80% in simulation for output power of 2 [mu]W. The last part focuses on flexible circuit design using Molybdenum Disulfide (MoS₂), one of the emerging 2D materials. A computer-aided design flow is developed for MoS₂-based circuits supporting device modeling, circuit simulation and parametric cell-based layout - which paves the road for the realization of large-scale flexible MoS₂ systems.
by Dina Reda El-Damak.
Ph. D.
Maalouf, Divine. "Contribution to nonlinear adaptive control of low inertia underwater robots." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20196/document.
Повний текст джерелаUnderwater vehicles have gained an increased interest in the last decades given the multiple tasks they can accomplish in various fields, ranging from scientific to industrial and military applications. In this thesis, we are particularly interested in the category of vehicles having a high power to weight ratio. Different challenges in autonomous control of such highly unstable systems arise from the inherent nonlinearities and the time varyingbehavior of their dynamics. These challenges can be increased by the low inertia of this class of vehicles combined with their powerful actuation. A self tuning controller is therefore required in order to avoid any performance degradation during a specific mission. The closed-loop system is expected to compensate for different kinds of disturbances or changes in the model parameters. To solve this problem, we propose in this work the design,analysis and experimental validation of different control schemes on an underwater vehicle. Classical methods are initially proposed, namely the PID controller and the nonlinear adaptive state feedback (NASF) one, followed by two more advanced schemes based on the recently developed L1 adaptive controller. This last method stands out among the other developed ones in its particular architecture where robustness and adaptation are decoupled. In this thesis, the original L1 adaptive controller has been designed and successfullyvalidated then an extended version of it is proposed in order to deal with the observed time lags occurring in presence of a varying reference trajectory. The stability of this latter controller is then analysed and real-time experimental results for different operating conditions are presented and discussed for each proposed controller, assessing their performance and robustness
Книги з теми "Low inertia power systems"
Arland, Richard H. Low power communications. Lake Geneva, WI, U.S.A: Tiare Publications, 1992.
Знайти повний текст джерелаRabaey, Jan M. Low Power Design Methodologies. Boston, MA: Springer US, 1996.
Знайти повний текст джерелаPal, Ajit. Low-Power VLSI Circuits and Systems. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-1937-8.
Повний текст джерелаJ, Sarmiento Charles, and United States. National Aeronautics and Space Administration., eds. Low power arcjet performance. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Знайти повний текст джерелаOtte, Rob. Low-Power Wireless Infrared Communications. Boston, MA: Springer US, 1999.
Знайти повний текст джерелаChandrakasan, Anantha P. Low Power Digital CMOS Design. Boston, MA: Springer US, 1995.
Знайти повний текст джерелаOtte, Rob. Low-power wireless infrared communications. Boston, MA: Kluwer Academic Publishers, 1999.
Знайти повний текст джерелаSilvano, Cristina. Low Power Networks-on-Chip. Boston, MA: Springer Science+Business Media, LLC, 2011.
Знайти повний текст джерелаBenini, Luca, Mahmut Kandemir, and J. Ramanujam, eds. Compilers and Operating Systems for Low Power. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9292-5.
Повний текст джерела1967-, Benini Luca, Kandemir Mahmut, and Ramanujam J, eds. Compilers and operating systems for low power. Boston: Kluwer Academic Publishers, 2003.
Знайти повний текст джерелаЧастини книг з теми "Low inertia power systems"
Magdy, Gaber, Gaber Shabib, Adel A. Elbaset, and Yasunori Mitani. "Dynamic Security Assessment of Low-inertia Microgrids Based on the Concept of Virtual Inertia Control." In Renewable Power Systems Dynamic Security, 59–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33455-0_4.
Повний текст джерелаMagdy, Gaber, Gaber Shabib, Adel A. Elbaset, and Yasunori Mitani. "A Comprehensive Digital Protection Scheme for Low-inertia Microgrids Considering High Penetration of Renewables." In Renewable Power Systems Dynamic Security, 39–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33455-0_3.
Повний текст джерелаSetiadi, Herlambang, Ismayahya Ridhan Mutiarso, and Feby Ananta Sari. "Analysis of Virtual Inertia Control Implementation Based on Redox Flow Batteries for Frequency Stability in Low Inertia Power Systems." In Advances in Engineering Research, 5–19. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-566-9_2.
Повний текст джерелаDu, Pengwei. "System Inertia Trend and Critical Inertia." In Power Electronics and Power Systems, 199–222. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28639-1_7.
Повний текст джерелаKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe, and Yasunori Mitani. "Synthesis of Robust Virtual Inertia Control." In Power Systems, 203–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_8.
Повний текст джерелаBilbao, Javier, Eugenio Bravo, Carolina Rebollar, Concepcion Varela, and Olatz Garcia. "Virtual Power Plants and Virtual Inertia." In Power Systems, 87–113. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23723-3_5.
Повний текст джерелаKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe, and Yasunori Mitani. "Multiple-Virtual Inertia Synthesis for Interconnected Systems." In Power Systems, 91–110. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_4.
Повний текст джерелаKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe, and Yasunori Mitani. "Model Predictive Control for Virtual Inertia Synthesis." In Power Systems, 141–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_6.
Повний текст джерелаKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe, and Yasunori Mitani. "Fuzzy Logic Control for Virtual Inertia Synthesis." In Power Systems, 167–201. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_7.
Повний текст джерелаKerdphol, Thongchart, Fathin Saifur Rahman, Masayuki Watanabe, and Yasunori Mitani. "An Overview of Virtual Inertia and Its Control." In Power Systems, 1–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57961-6_1.
Повний текст джерелаТези доповідей конференцій з теми "Low inertia power systems"
Hurtado, Manuel, Mohammad Jafarian, Taulant Kërçi, Simon Tweed, Marta Val Escudero, Eoin Kennedy, and Federico Milano. "Stability Assessment of Low-Inertia Power Systems: A System Operator Perspective." In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688904.
Повний текст джерелаColak, Ayse, Mohamed Abouyehia, and Khaled Ahmed. "Resilience and Frequency Control in Low-Inertia Power Systems: Challenges and Solutions." In 2024 13th International Conference on Renewable Energy Research and Applications (ICRERA), 1277–84. IEEE, 2024. https://doi.org/10.1109/icrera62673.2024.10815552.
Повний текст джерелаSingh, Manohar. "Damping Enhancemnet for LFO in Electric Grid Hosting Low Inertia Power Generation." In 2024 7th International Conference on Electric Power and Energy Conversion Systems (EPECS), 93–99. IEEE, 2024. https://doi.org/10.1109/epecs62845.2024.10805498.
Повний текст джерелаSyahputra, Dede, Herlambang Setiadi, Agus Mukhlisin, and Maulana Iqwan Habibi. "Analysis of Frequency Stability in Low Inertia Power Systems Using EV Charging Battery." In 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), 542–47. IEEE, 2024. http://dx.doi.org/10.1109/isitia63062.2024.10667850.
Повний текст джерелаAtallah, A., A. Hernandez, and G. Varhegyi. "Power System Frequency Regulation in Low Inertia Systems." In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216959-ms.
Повний текст джерелаXianyong Feng. "Dynamic balancing for low inertia power systems." In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672566.
Повний текст джерелаKërçi, Taulant, Manuel Hurtado, Mariglen Gjergji, Simon Tweed, Eoin Kennedy, and Federico Milano. "Frequency Quality in Low-Inertia Power Systems." In 2023 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2023. http://dx.doi.org/10.1109/pesgm52003.2023.10253411.
Повний текст джерелаAluko, Anuoluwapo O., David G. Dorrell, and Evans E. Ojo. "Inertia Emulation in Low Inertia Power Systems Considering Frequency Measurement Effects." In 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2021. http://dx.doi.org/10.1109/icecet52533.2021.9698697.
Повний текст джерелаDag, Oben, and Behrooz Mirafzal. "On stability of islanded low-inertia microgrids." In 2016 Clemson University Power Systems Conference (PSC). IEEE, 2016. http://dx.doi.org/10.1109/psc.2016.7462854.
Повний текст джерелаToma, Lucian, Mihai Sanduleac, Stefan Andrei Baltac, Francesco Arrigo, Andrea Mazza, Ettore Bompard, Aysar Musa, and Antonello Monti. "On the virtual inertia provision by BESS in low inertia power systems." In 2018 IEEE International Energy Conference (ENERGYCON). IEEE, 2018. http://dx.doi.org/10.1109/energycon.2018.8398755.
Повний текст джерелаЗвіти організацій з теми "Low inertia power systems"
Qiu, Qinru. Low Power Computing in Distributed Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada450272.
Повний текст джерелаPolito, M. D., and B. Albert. Low power, constant-flow air pump systems. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10129016.
Повний текст джерелаAshwood, A., and D. Bharathan. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1009690.
Повний текст джерелаSmith, Brian. Autonomous Distributed Systems - Application of Ultra Low Power Technology. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada410355.
Повний текст джерелаS.D. Vora. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/891045.
Повний текст джерелаS.D. Vora. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/876469.
Повний текст джерелаS. D. Vora. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/938956.
Повний текст джерелаMcConnell, R., V. Garboushian, R. Gordon, D. Dutra, G. Kinsey, S. Geer, H. Gomez, and C. Cameron. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1040623.
Повний текст джерелаRanjram, Mike. Planar Transformer Systems for Modular Power Electronics in Long-Haul, Low-Cost PV Systems. Office of Scientific and Technical Information (OSTI), July 2024. http://dx.doi.org/10.2172/2452814.
Повний текст джерелаCrosbie, R. E., J. J. Zenor, R. Bednar, D. Word, and N. G. Hingorani. Low-Cost High-Speed Techniques for Real-Time Simulation of Power Electronic Systems. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada485330.
Повний текст джерела