Добірка наукової літератури з теми "Low Heat Rejection Engine"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Low Heat Rejection Engine".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Low Heat Rejection Engine"

1

Smith, James E., and Randy Churchill. "A Concept Review of Low-Heat-Rejection Engines." Applied Mechanics Reviews 42, no. 3 (March 1, 1989): 71–90. http://dx.doi.org/10.1115/1.3152422.

Повний текст джерела
Анотація:
Insulated engines have become popular ideas with the development of new materials and material processing techniques. Several research groups have been involved and are producing needed, quality information about low-heat-rejection engines. To date, a comprehensive review has not been presented, like the work included here, that identifies and discusses the various programs and results, or even the breadth of the different topics being undertaken. This paper presents a comprehensive literature review of low-heat-rejection engine concepts and brief discussions of some modeling techniques, both heat transfer models and engine models, being used to further the knowledge base in this field. The general, established concepts and history of low-heat-rejection engines are briefly covered before each individual area of interest is presented. These are temperatures of low-heat-rejection engines, new material requirements, new construction techniques to facilitate the new materials, tribology, emissions, noise concerns, new fuel capabilities, and exhaust heat utilization. The importance of a “whole system” approach is stressed. Inconsistencies in the literature are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cardoso, D. Silva, and P. Oliveira Fael. "8-stroke low heat rejection engine." Energy Reports 8 (June 2022): 462–67. http://dx.doi.org/10.1016/j.egyr.2022.01.103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sun, X., W. G. Wang, R. M. Bata, and X. Gao. "Performance Evaluation of Low Heat Rejection Engines." Journal of Engineering for Gas Turbines and Power 116, no. 4 (October 1, 1994): 758–64. http://dx.doi.org/10.1115/1.2906883.

Повний текст джерела
Анотація:
Improving the performance of the Chinese B135 six-cylinder direct injection turbocharged and turbocompounded Low Heat Rejection Engine (LHRE) was based on experimental and analytical studies. The studies were primarily applied on a B1135 single-cylinder LHR engine and a conventional water-cooled B1135 single cylinder engine. Performance of the B1135 LHRE was worse than that of the conventional B1135 due to a deterioration in the combustion process of the B1135 LHRE. The combustion process was improved and the fuel injection system was redesigned and applied to the B135 six-cylinder LHRE. The new design improved the performance of the LHRE and better fuel economy was realized by the thermal energy recovered from the exhaust gases by the turbocompounding system.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Yang, Yituan He, Cuijie Han, and Chenheng Yuan. "Combustion and energy distribution of hydrogen-enriched compressed natural gas engines with low heat rejection based on Atkinson cycle." Advances in Mechanical Engineering 11, no. 1 (January 2019): 168781401881958. http://dx.doi.org/10.1177/1687814018819580.

Повний текст джерела
Анотація:
In order to reduce the heat loss and improve the indicated thermal efficiency of hydrogen-enriched compressed natural gas engines, this article presents a combination of Atkinson cycle with high compression ratio and low heat rejection on the hydrogen-enriched compressed natural gas prototype engine with 55% hydrogen blend. The combustion characteristics and energy distribution of the prototype and modified engines were investigated by simulation, and the conclusions are as follows: the pressure and temperature of modified engines are higher than those of the prototype during the combustion process. Compared with the prototype, the modified engines present lower peak heat release rate, but faster combustion after ignition, and their CA50 are closer to top dead center. Although the high compression ratio engine with Atkinson cycle generates more heat loss, its indicated thermal efficiency still increases by 0.6% with the decrease in the exhaust energy. Furthermore, the high compression ratio engine with low heat rejection and Atkinson cycle combines the advantages of low heat loss and relatively longer expansion stroke, so its heat loss reduces obviously, and 61.6% of the saved energy from low heat rejection and Atkinson cycle can be converted into indicated work that indicates a 4.5% improvement in indicated thermal efficiency over the prototype, which makes it perform better in terms of power and fuel economy simultaneously.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Amann, C. A. "Promises and Challenges of the Low-Heat-Rejection Diesel." Journal of Engineering for Gas Turbines and Power 110, no. 3 (July 1, 1988): 475–81. http://dx.doi.org/10.1115/1.3240145.

Повний текст джерела
Анотація:
The low-heat-rejection (LHR) diesel promises decreased engine fuel consumption by eliminating the traditional liquid cooling system and converting energy normally lost to the coolant into useful shaft work instead. However, most of the cooling energy thus conserved is transferred into the exhaust stream rather than augmenting crankshaft output directly, so exhaust-energy recovery is necessary to realize the full potential of the LHR engine. The higher combustion temperature of the LHR diesel favors increased emission of NOx, with published results on hydrocarbon and particulate emissions showing mixed results. The cylinder insulation used to effect low heat rejection influences convective heat loss only, and in a manner still somewhat controversial. The cyclic aspect of convective heat loss, and radiation from incandescent soot particles, also deserve attention. The temperatures resulting from insulating the cylinder of the LHR diesel require advancements in lubrication. The engine designer must learn to deal with the probabilistic nature of failure in brittle ceramics needed for engine construction. Whether ceramic monoliths or coatings are more appropriate for cylinder insulation remains unsettled. These challenges confronting the LHR diesel are reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reddy, Ch Kesava, M. V. S. Murali Krishna, P. V. K. Murthy, and T. Ratna Reddy. "Performance Evaluation of a Low-Grade Low-Heat-Rejection Diesel Engine with Crude Pongamia oil." ISRN Renewable Energy 2012 (March 15, 2012): 1–10. http://dx.doi.org/10.5402/2012/489605.

Повний текст джерела
Анотація:
Investigations are carried out to evaluate the performance of a low heat rejection (LHR) diesel engine with ceramic coated cylinder head [ceramic coating of thickness 500 microns is done on inside portion of cylinder head] with different operating conditions [normal temperature and pre-heated temperature] of crude Pongamia oil (CPO) with varied injection pressure and injection timing. Performance parameters and pollution levels are determined at various magnitudes of brake mean effective pressure. Combustion characteristics at peak load operation of the engine are measured with special pressure-crank angle software package. Conventional engine (CE) showed deteriorated performance, while LHR engine showed improved performance with CPO operation at recommended injection timing and pressure and the performance of both version of the engine is improved with advanced injection timing and at higher injection pressure when compared with CE with pure diesel operation. The optimum injection timing is 31°bTDC for conventional engine while it is 29°bTDC with LHR engine with vegetable oil operation. Peak brake thermal efficiency increased by 5%, smoke levels decreased by 2% and NOx levels increased by 40% with CPO operation on LHR engine at its optimum injection timing, when compared with pure diesel operation on CE at manufacturer’s recommended injection timing.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yasar, H. "First and second law analysis of low heat rejection diesel engine." Journal of the Energy Institute 81, no. 1 (March 1, 2008): 48–53. http://dx.doi.org/10.1179/174602208x269544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jafarmadar, S. "Three dimensional modeling of combustion process and emission formation in a low heat rejection indirect injection diesel engine." Thermal Science 18, no. 1 (2014): 53–65. http://dx.doi.org/10.2298/tsci130203126j.

Повний текст джерела
Анотація:
Higher heat losses and brake specific fuel consumption (BSFC) are major problems in an indirect injection (IDI) diesel engine, which can be overcome by means of low heat rejection (LHR) concept. This concept is based on the approach of insulating of piston and liner of main chamber in IDI engine. At the present work, the combustion process and emission formation in baseline and LHR engines are studied by a Computational Fluid Dynamics (CFD) code at four different loads (25%, 50%, 75% and 100%) in maximum torque engine speed 730rpm. The numerical results for the pressure in cylinder and emissions for baseline engine at full load operation are compared to the corresponding experimental data and show good agreement. The comparison of the results for two cases show that when the load increases from 25% to 100% in 25% steps, heat loss in LHR engine decrease 40.3%, 44.7%,44.6% and 45.2%, respectively. At full load operation in LHR engine, NOx and Soot emissions decrease 13.5% and 54.4%, respectively and engine efficiency increases 6.3% in comparison to baseline engine.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Janardhan, N., M. V. S. Murali Krishna, P. Ushasri, and P. V. K. Murthy. "Performance Evaluation of a Low Heat Rejection Diesel Engine with Jatropha Oil." International Journal of Engineering Research in Africa 11 (October 2013): 27–44. http://dx.doi.org/10.4028/www.scientific.net/jera.11.27.

Повний текст джерела
Анотація:
Investigations were carried out to evaluate the performance of a low heat rejection (LHR) diesel engine consisting of air gap insulated piston with 3-mm air gap, with superni (an alloy of nickel) crown, air gap insulated liner with superni insert and ceramic coated cylinder head with different operating conditions of crude jatropha oil (CJO) with varied injection timing and injector opening pressure . Performance parameters [brake thermal efficiency, exhaust gas temperature, coolant load and volumetric efficienc and exhaust emissions [smoke and oxides of nitroge were determined at various values of brake mean effective pressure (BMEP). Combustion characteristics [ peak pressure, time of occurrence of peak pressure and maximum rate of pressure ris of the engine were at peak load operation of the engine. Conventional engine (CE) showed deteriorated performance, while LHR engine showed improved performance with vegetable operation at recommended injection timing and pressure. The performance of both versions of the engine improved with advanced injection timing and higher injector opening pressure when compared with CE with pure diesel operation. Relatively, peak brake thermal efficiency increased by 14%, smoke levels decreased by 27% and NOx levels increased by 49% with vegetable oil operation on LHR engine at its optimum injection timing, when compared with pure diesel operation on CE at manufacturers recommended injection timing.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arunkumar, G., A. Santhoshkumar, M. Vivek, L. Anantha Raman, G. Sankaranarayanan, and C. Dhanesh. "Performance and Emission Characteristics of Low Heat Rejection Diesel Engine Fuelled with Rice Bran Oil Biodiesel." Advanced Materials Research 768 (September 2013): 245–49. http://dx.doi.org/10.4028/www.scientific.net/amr.768.245.

Повний текст джерела
Анотація:
In this study, the performance and exhaust emissions of a biodiesel fuelled low heat rejection (LHR) direct injection Diesel engine have been investigated experimentally and compared with the results of standard diesel engine without any coatings. Piston, cylinder head, exhaust and inlet valve of test engine were coated with 0.5 mm thickness of zirconia through plasma spray method. Biodiesel used in the testing was prepared from rice bran oil through transesterification process.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Low Heat Rejection Engine"

1

Barr, William Gerald. "Low heat rejection diesel engines." Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Assanis, Dennis N. "A computer simulation of the turbocharged turocompounded diesel engine system for studies of low heat rejection engine performance." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15089.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1986.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 135-140.
by Dionissios Nikolaou Assanis.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andruskiewicz, Peter Paul. "ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF TEMPERATURE-SWING INSULATION ON ENGINE PERFORMANCE." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90467.

Повний текст джерела
Анотація:
In-cylinder thermal barrier materials have been thoroughly investigated for their potential improvements in thermal efficiency in reciprocating internal combustion engines. These materials show improvements both directly in indicated work and indirectly through reduced demand on the cooling system. Many experimental and analytical sources have shown reductions in heat losses to the combustion chamber walls, but converting the additional thermal energy to indicated work has proven more difficult. Gains in indicated work over the expansion stroke could be made, but these were negated by increased compression work and reduced volumetric efficiency due to charge heating. Typically, the only improvements in brake work would come from the pumping loop in turbocharged engines, or from additional exhaust energy extraction through turbine-compounding devices. The concept of inter-cycle wall-temperature-swing holds promise to reap the benefits of insulation during combustion and expansion, while not suffering the penalties incurred with hotter walls during intake and compression. The combination of low volumetric heat capacity and low thermal conductivity would allow the combustion chamber surface temperature to quickly respond to the gas temperature throughout combustion. Surface temperatures are capable of rising in response to the spike in heat flux, thereby minimizing the temperature difference between the gas and wall early in the expansion stroke when the greatest conversion of thermal energy to mechanical work is possible. The combination of low heat capacity and thermal conductivity is essential in allowing this temperature increase during combustion, and in enabling the surface to cool during expansion and exhaust to avoid harmfully affecting engine volumetric efficiency during the intake stroke and minimizing compression work performed on the next stroke. In this thesis, thermal and thermodynamic models are constructed in an attempt to predict the effects of material properties in the walls, and to characterize the effects of heat transfer at different portions of the cycle on indicated work, volumetric efficiency, exhaust energy and gas temperatures of a reciprocating internal combustion engine. The expected impact on combustion knock in spark-ignited engines was also considered, as this combustion mode was the basis for the experimental engine testing performed. Conventional insulating materials were evaluated to benchmark the current state-of-the-art, and to gain experience in the analysis of materials with temperature-swing capability. Unfortunately, the effects of permeable porosity within the conventional coating on heat losses, fuel absorption and compression ratio tended to mask the effects of temperature swing. The individual impact of each of these loss mechanisms on engine performance was analyzed, and the experience helped to further refine the necessary traits of a successful temperature-swing material Finally, from the learnings of this analysis phase, a novel material was created and applied to the piston surface, intake valve faces, and exhaust valve faces. Engine data was taken with these coated components and compared to an un-coated baseline. While some of the test pieces physically survived the testing, analysis of the data suggests that they were not fully sealed and suffered from the same permeability losses that affected the conventional insulation. Further development is necessary to arrive at a robust, effective solution for minimizing heat transfer through wall temperature swing in reciprocating internal combustion engines. The success of temperature-swing thermal barrier materials requires very low thermal conductivity, heat capacity, and appropriate insulation thickness, as well as resilient sealing of any porous volume within the coating to avoid additional heat and fuel energy losses throughout the cycle.
Los materiales aislantes han sido investigados a fondo por sus posibles mejoras en la eficiencia térmica de los motores de combustión interna alternativos. Estas mejoras se ven reflejadas tanto directamente en el trabajo indicado como indirectamente a través de la reducción del sistema de refrigeración del propio motor. Diferentes estudios, tanto experimentales como analíticos, han mostrado la reducción en la transferencia de calor a través de las paredes de la cámara de combustión mediante la utilización de estos materiales. Sin embargo, demostrar la conversión de la energía térmica adicional en trabajo indicado ha resultado más difícil. En ciertos estudios se pudieron obtener mejoras en el trabajo indicado durante la carrera de expansión, pero éstas fueron reducidas debido a un menor rendimiento volumétrico debido al calentamiento de la carga durante el proceso de admisión y un mayor trabajo en la carrera de compresión. Típicamente, las únicas mejoras en el trabajo al freno provendrían de la reducción de pérdidas por bombeo en los motores turboalimentados, o de la extracción de la energía adicional de los gases de escape a través de turbinas. El concepto de los materiales con oscilación de la temperatura durante el ciclo motor intenta aprovechar los beneficios del aislamiento durante los procesos de combustión y expansión, mitigando las perdidas por el incremento de la temperatura de las paredes durante la admisión y la compresión. La combinación de baja capacidad calorífica y baja conductividad térmica permitiría que la temperatura de la superficie de la cámara de combustión respondiera rápidamente a la temperatura del gas durante el proceso de combustión. Las temperaturas de la superficie son capaces de aumentar en respuesta al pico de flujo de calor, minimizando así la diferencia de temperatura entre el gas y la pared en la carrera de expansión cuando es posible la mayor conversión de energía térmica en trabajo mecánico. La combinación de baja capacidad calorífica y conductividad térmica es también esencial para permitir este aumento de temperatura durante la combustión y para permitir que la superficie se enfríe durante la expansión y el escape para no perjudicar así el rendimiento volumétrico del motor durante la carrera de admisión y minimizar el trabajo de compresión realizado en el siguiente ciclo. En esta tesis se han desarrollado modelos térmicos y termodinámicos para predecir los efectos de las propiedades de los materiales en las paredes y caracterizar los efectos de la transferencia de calor en diferentes partes del ciclo sobre el trabajo indicado, el rendimiento volumétrico, la energía en los gases de escape y las temperaturas del gas para un motor de combustión interna alternativo. También se ha evaluado el impacto del uso de estos materiales en el knock en motores de combustión de encendido provocado, ya que los estudios experimentales de esta tesis se realizaron en un motor de estas características. Durante la investigación se evaluaron materiales aislantes convencionales para comprender el estado actual de esta técnica y para adquirir también experiencia en el análisis de materiales aislantes con oscilación de temperatura. Desafortunadamente, los efectos de la permeabilidad a través de la porosidad del material en los recubrimientos convencionales, la absorción de combustible y la relación de compresión tendieron a ocultar los efectos de la oscilación de la temperatura y la reducción de la transferencia de calor a través de las paredes. Así pues, se analizó el impacto individual de cada uno de estos mecanismos y su influencia en el rendimiento del motor para así definir un nuevo material con las características necesarias que mejorasen el aislante con de oscilación de temperatura. Finalmente, a partir de los estudios de esta fase de análisis, se creó un nuevo material y se aplicó a la superficie del pistón y a la supe
Els materials aïllants han estat investigats a fons per les seves possibles millores en l'eficiència tèrmica en el motors de combustió interna alternatius. Aquestes millores es veuen reflectides tant directament en el treball indicat com indirectament a través de la reducció del sistema de refrigeració del propi motor. Diferents estudis, tant experimentals com analítics, han mostrat la reducció en la transferència de calor a través de les parets de la cambra de combustió mitjançant la utilització d'aquests materials. No obstant això, demostrar la conversió de l'energia tèrmica addicional en treball indicat ha resultat més difícil. En certs estudis es van poder obtenir millores en el treball indicat durant la carrera d'expansió, però aquestes van ser reduïdes a causa d'un menor rendiment volumètric causat de l'escalfament de la càrrega durant el procés d'admissió i un major treball en la carrera de compressió. Típicament, les úniques millores en el treball al fre provindrien de la reducció de pèrdues per bombeig en els motors turbo alimentats, o de l'extracció addicional de l'energia dels gasos d'escapament a través de turbines. El concepte dels materials amb oscil·lació de la temperatura durant el cicle motor intenta aprofitar els beneficis de l'aïllament durant els processos de combustió i expansió, mitigant les perdudes per l'increment de la temperatura de les parets durant l'admissió i la compressió. La combinació de baixa capacitat calorífica i baixa conductivitat tèrmica permetria que la temperatura de la superfície de la cambra de combustió respongués ràpidament a la temperatura del gas durant el procés de combustió. Les temperatures de la superfície són capaços d'augmentar en resposta al flux de calor, minimitzant així la diferència de temperatura entre el gas i la paret en la carrera d'expansió quan és possible la major conversió d'energia tèrmica en treball mecànic. La combinació de baixa capacitat calorífica i conductivitat tèrmica és també essencial per permetre aquest augment de temperatura durant la combustió i el refredament de la superfície durant l'expansió i l'escapament per no perjudicar així el rendiment volumètric del motor durant la carrera d'admissió i minimitzar el treball de compressió realitzat en el següent cicle. En aquesta tesi s'han desenvolupat models tèrmics i termodinàmics per predir els efectes de les propietats dels materials en les parets i caracteritzar els efectes de la transferència de calor en diferents parts del cicle sobre el treball indicat, el rendiment volumètric, l'energia en els gasos d'escapament i les temperatures del gas per un motor de combustió interna alternatiu. També s'ha avaluat l'impacte d'aquests materials en el knock en motors de combustió d'encesa provocada, ja que les proves experimentals d'aquesta tesi es van realitzar en un motor d'aquestes característiques. Durant la investigació es van avaluar materials aïllants convencionals per comprendre l'estat actual d'aquesta tècnica i per adquirir també experiència en l'anàlisi de materials aïllants amb oscil·lació de temperatura. Desafortunadament, els efectes de la permeabilitat a través de la porositat del material en el recobriment convencional, l'absorció de combustible i la relació de compressió van tendir a ocultar els efectes de l'oscil·lació de la temperatura i la reducció de la transferència de calor a través de les parets. Així doncs, es va analitzar l'impacte individual de cada un d'aquests mecanismes i la seva influència en el rendiment del motor per així definir un nou material amb les característiques necessàries que milloressin el aïllant d'oscil·lació de temperatura. Finalment, a partir dels estudis d'aquesta fase d'anàlisi, es va crear un nou material i es va aplicar a la superfície del pistó i a la superfície interna de les vàlvules d'admissió i d'escapament. Les dades de motor es van prendre a
Andruskiewicz, PP. (2017). ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF TEMPERATURE-SWING INSULATION ON ENGINE PERFORMANCE [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90467
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brown, Morgan J. (Brian James) Carleton University Dissertation Engineering Mechanical. "Low temperature boiling enhancement for the SLOWPOKE decay heat rejection system." Ottawa, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mendis, Karl Joseph Sean. "Investigation of a high efficiency low emissions gas engine." Thesis, Brunel University, 1994. http://bura.brunel.ac.uk/handle/2438/5468.

Повний текст джерела
Анотація:
The purpose of this project was to optimise a diesel engine converted to operate on natural gas, to suit the requirements for: low emissions, a high efficiency and sufficient power delivery within the constraints of cogeneration (combined heat and power) systems. Cogeneration Installations seek to improve the efficiency of power generation by utilising waste heat from the prime mover, as well as the production of electricity. Many small scale systems are based on open chamber gas engines, and, to reduce the payback time for the installation, the overall engine efficiency is of prime importance. Stationary engines can be subject to strict standards for emissions, the greatest challenge being presented by the control of NO emissions. The main difficulty is that the highest efficiency operating point of a spark ignition engine is also the point of maximum NO emissions. The extent of this problem was analysed by conducting tests across the entire operating map of the baseline engine at the required speed of 1500 rpm. The solution, in the form of a new high compression ratio combustion system was based on the following: An extensive literature review, the previous Brunel experience with gas engines, an evaluation of the baseline combustion and emissions performance, and the predictions of the Integrated Spark Ignition engine Simulation (ISIS) thermodynamic model. Tests were conducted on the new Fast Bum High Compression Ratio combustion system at compression ratios of 15:1 and 13:1, which demonstrated an extended lean burn capability such that an operating point was identified, that satisfied the conflicting requirements of: low emissions (less than 1g NOx/kWh or 360mg/m3), and a high brake efficiency (above 30%), as well as particular cogeneration criteria. The bmep was mostly above 6 bar. After further tuning and calibration with experimental data, the ISIS model was used to predict the engine power output, efficiency and emissions (NOx and CO) for the compression ratio of 15:1, across the entire operating map for both naturally aspirated and turbocharged configurations. The naturally aspirated results showed good agreement with the results of the experimental 15:1 FBHCR combustion system. The turbocharged engine was simulated with a bmep of 10 bar. The results identified much larger operating areas and all emissions limits were met above a brake efficiency of 36%. The conclusions are, that an open chamber fast bum high compression ratio combustion system can achieve very low emissions, particularly of NOx, and a high efficiency by having the capability of operating with lean enough mixtures. Further improvement in the efficiency is likely if other engine parameters (such as the valve timing) were to be optimised for 1500 rpm. The results from the turbocharged simulation show that turbocharging, whilst restoring the output can also achieve low emissions, and a higher efficiency than a naturally aspirated engine.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Corbett, Michael William. "Effects of Large-Scale Transient Loading and Waste Heat Rejection on a Three Stream Variable Cycle Engine." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1323885093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lloyd, Caleb Charles. "A Low Temperature Differential Stirling Engine for Power Generation." Thesis, University of Canterbury. Department of Electrical and Computer Engineering, 2009. http://hdl.handle.net/10092/2916.

Повний текст джерела
Анотація:
There are many sources of free energy available in the form of heat that is often simply wasted for want of an effective way to convert it into useful energy such as electricity. The aim of this research project is to design and build a low temperature differential Stirling engine capable of generating electric power from heat sources such as waste hot water or geothermal springs. The engine that has been developed is a research prototype model of a new type of design featuring a rotating displacer which is actuated by a pair of stepper motors. The rotating displacer design enables the use of readily available and comparatively cheap and robust steam pipe as the housing for the engine, and it also avoids problems associated with sealing and heat exchange that would be present in a large engine of a more traditional configuration. Owing to the fact that this engine is a research prototype, it has the ability to have some of its critical operating parameters such as phase angle and stroke length adjusted to investigate the effects on performance. When the next phase of development takes place most of these parameters will be fixed at the optimum values which will make manufacture cheaper and easier. Unfortunately, construction of the prototype engine has not been completed at the time of writing so no power producing results have been achieved; however thorough results are presented on the operation of the control system for the stepper motors which actuate the displacer. Additionally, after a thorough history and background of Stirling engines was researched, the understanding gained of how these engines work has enabled a design process to take place which has hopefully led to a successful design. Analysis of various aspects of the engine have been carried out and results look promising for the engine to produce around 500 Watts of electrical power output whilst running on hot water up to around 90°C.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bryson, Matthew John, and mbryson@bigpond net au. "The conversion of low grade heat into electricity using the Thermosyphon Rankine Engine and Trilateral Flash Cycle." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080130.162927.

Повний текст джерела
Анотація:
Low grade heat (LGH) sources, here defined as below 80ºC, are one group of abundant energy sources that are under-utilised in the production of electricity. Industrial waste heat provides a convenient source of concentrated LGH, while solar ponds and geothermal resources are examples of sustainable sources of this energy. For a number of years RMIT has had two ongoing, parallel heat engine research projects aimed at the conversion of LGH into electricity. The Thermosyphon Rankine Engine (TSR) is a heat engine that uses water under considerable vacuum. The other research stream uses a hydrocarbon based working fluid in a heat engine employing the Trilateral Flash Cycle (TFC). The TSR Mk V was designed and built as a low cost heat engine for the conversion of LGH into electricity. Its main design advantages are its cost and the employment of only one moving part. Using the data gained from the experimental rig, deviations from the expected results (those derived theoretically) were explored to gain insight for further development. The results from the TSR rig were well below those expected from the design specifications. Although the experimental apparatus was able to process the required heat energy, the efficiency of conversion fell well below the expected 3% and was approximately 0.2%. The inefficiency was explained by a number of contributing factors, the major being form drag upon the rotor that contributed around 2/3 of the losses. Although this was the major cause of the power loss, other factors such as the interference with the rotor by the condensate on its return path contributed to the overall poor performance of the TSR Mk V. The RMIT TFC project came about from exploration of the available academic literature on the subject of LGH conversion. Early work by researchers into applying Carnot's theory to finite heat sources led them to explore the merits of sensible heat transfer combined with a cycle that passes a liquid (instead of a gas) though an expander. The results showed that it was theoretically possible to extract and convert more energy from a heat source of this type using this method than using any other alternative. This previous research was targeted at heat sources above 80ºC and so exploration of the theoretical and empirical results for sources below this temperature was needed. Computer models and an experimental rig using isopentane (with a 28ºC boiling point at atmospheric pressure) were produced to assess the outcomes of employing low temperature heat sources using a TFC. The experimental results from the TFC research proved promising with the efficiency of conversion ranging from 0.8% to 2.4%. Although s uch figures seem poor in isolation, it should be noted that the 2.4% efficiency represents an achievement of 47% of the theoretical ideal conversion efficiency in a rig that uses mainly off-the-shelf components. It also confirms that the TFC shows promise when applied to heat sources less than 80ºC.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kalua, Tisaye Bertram. "Analysis of factors affecting performance of a low-temperature Organic Rankine Cycle heat engine." Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/17844.

Повний текст джерела
Анотація:
Organic Rankine Cycle (ORC) heat engines convert low-grade heat to other forms of energy such as electrical and mechanical energy. They achieve this by vaporizing and expanding the organic fluid at high pressure, turning the turbine which can be employed to run an alternator or any other mechanism as desired. Conventional Rankine Cycles operate with steam at temperatures above 400 ℃. The broad aspect of the research focussed on the generation of electricity to cater for household needs. Solar energy would be used to heat air which would in turn heat rocks in an insulated vessel. This would act as an energy storage in form of heat from which a heat transfer fluid would collect heat to supply the ORC heat engine for the generation of electricity. The objective of the research was to optimize power output of the ORC heat engine operating at temperatures between 25℃ at the condenser and 90 to 150℃ at the heat source. This was achieved by analysis of thermal energy, mechanical power, electrical power and physical parameters in connection with flow rate of working fluid and heat transfer fluids.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hoegel, Benedikt. "Thermodynamics-based design of stirling engines for low-temperature heat sources." Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9344.

Повний текст джерела
Анотація:
Large amounts of energy from heat sources such as waste-eat and geothermal energy are available worldwide but their potential for useful power-generation is largely untapped. This is because they are relatively low temperature difference (LTD) sources, in the range from 100 to 200 °C, and it is thermodynamically diffcult, for theoretical and practical reasons, to extract useful work at these temperatures. This work explores the suitability of a Stirling engine (SE) to exploit these heat sources. Elsewhere much work has been done to optimise Stirling engines for high temperature heat sources, but little is known about suitable engine layouts, and their optimal design and operational aspects at lower temperature differences. With the reduced temperature difference, changes from conventional engine designs become necessary and robust solutions for this novel application have to be identified. This has been achieved in four major steps: identification of a suitable engine type; thermodynamic optimisation of operating and engine parameters; optimisation of mechanical efficiency; and the development of conceptual designs for the engine and its components informed by the preceding analysis. For the optimisation of engine and operating parameters a model was set up in the commercial Stirling software package, Sage, which also has been validated in this thesis; suitable parameter combinations have been identified. This work makes key contributions in several areas. This first is the identification of methods for better simulating the thermodynamic behaviour of these engines. At low temperature differences the performance of Stirling engines is very sensitive to losses by fluid friction (and thus frequency), adiabatic temperature rise during compression, and the heat transfer from and to the surroundings. Consequently the usual isothermal analytical approaches produce results that can be misleading. It is necessary to use a non-isothermal approach, and the work shows how this may be achieved. A second contribution is the identification of the important design variables and their causal effects on system performance. The primary design variable is engine layout. For an engine having inherently low efficiency due to the low temperature difference it is important to choose the engine layout that provides the highest power density possible in order to minimise engine size and to save costs. From this analysis the double-acting alpha-type configuration has been identified as being the most suitable, as opposed to the beta or gamma configurations. An-other key design variable is working fluid, and the results identify helium and hydrogen as suitable, and air and nitrogen as unsuitable. Frequency and phase angle are other design variables, and the work identifies favourable values. A sensitivity analysis identifies the phase angle, regenerator porosity, and temperature levels as the most sensitive parameters for power and efficiency. It has also been shown that the compression work in low-temperature difference Stirling engines is of similar magnitude as the expansion work. By compounding suitable working spaces on one piston the net forces on the piston rod can be reduced significantly. In double-acting alpha-engines this can be achieved by choosing the Siemens as opposed to the Franchot arrangement. As a result friction and piston seal leakage which are two important loss mechanisms are reduced significantly and longevity and mechanical efficiency is enhanced. Design implications are identified for various components, including pistons, seals, heat exchangers, regenerator, power extraction, and crankcase. The peculiarities of the heat source are also taken into account in these design recommendations. A third key contribution is the extraction of novel insights from the modelling process. For the heat exchangers it has been shown that the hot and cold heat exchangers can be identical in their design without any negative impact on performance for the low-temperature difference situation. In comparison the high temperature applications invariably require different materials and designs for the two heat exchangers. Also, frequency and phase angle are found to be quite different (lower frequency and higher phase angle) from the optimum parameters found in high temperature engines. Contrary to common belief the role of dead volume has been found to play a crucial and not necessary detrimental role at low temperature differentials. Taken together, the work is positioned at the intersection of thermodynamic analysis and engineering design, for the challenging area of Stirling engines at low temperature differences. The work extracts thermodynamic insights and extends these into design implications. Together these help create a robust theoretical and design foundation for further research and development in the important area of energy recovery.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Low Heat Rejection Engine"

1

Beaty, Kevin. Sliding seal materials for low heat rejection engines. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

J, Larson H., and United States. National Aeronautics and Space Administration., eds. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines: Phase 1, final report. [Washington, D.C.?: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

M, Yonushonis Thomas, and United States. National Aeronautics and Space Administration., eds. Development of advanced in-cylinder components and tribological systems for low heat rejection diesel engines: Phases 2, 3, and 4 final report. [Washington, DC: National Aeronautics and Space Administration, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

M, Yonushonis Thomas, and United States. National Aeronautics and Space Administration., eds. Development of advanced in-cylinder components and tribological systems for low heat rejection diesel engines: Phases 2, 3, and 4 final report. [Washington, DC: National Aeronautics and Space Administration, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Matthias, Gottmann, and United States. National Aeronautics and Space Administration., eds. Thermal control systems for low-temperature heat rejection on a lunar base: Semiannual status report for grant NAG5-1572. Tucson, AZ: Dept. of Aerospace and Mechanical Engineering, University of Arizona, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matthias, Gottmann, Nanjundan Ashok, and Goddard Space Flight Center, eds. Thermal control systems for low-temperature heat rejection on a lunar base: Annual progress report for grant NAG5-1572 (MOD). [Tucson, Ariz.?]: Aerospace and Mechanical Engineering, University of Arizona, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Matthias, Gottmann, Nanjundan Ashok, and Goddard Space Flight Center, eds. Thermal control systems for low-temperature heat rejection on a lunar base: Annual progress report for grant NAG5-1572 (MOD). [Tucson, Ariz.?]: Aerospace and Mechanical Engineering, University of Arizona, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Johnson, Richard P. A preliminary design and analysis of an advanced heat-rejection system for an extreme altitude advanced variable cycle diesel engine installed in high-altitude advanced research plaftorm. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Facility, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

David, Nathenson, Prakash Vikas, and NASA Glenn Research Center, eds. Modeling of high-strain-rate deformation, fracture, and impact behavior of advanced gas turbine engine materials at low and elevated temperatures. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

David, Nathenson, Prakash Vikas, and NASA Glenn Research Center, eds. Modeling of high-strain-rate deformation, fracture, and impact behavior of advanced gas turbine engine materials at low and elevated temperatures. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Low Heat Rejection Engine"

1

Thring, R. H. "Low Heat Rejection Diesel Engines." In Automotive Engine Alternatives, 167–82. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9348-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brinkman, C. R., K. C. Liu, R. L. Graves, B. H. West, and G. M. Begun. "Low Heat Rejection Diesel Ceramic Coupon Tests." In 4th International Symposium on Ceramic Materials and Components for Engines, 1121–30. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2882-7_126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jagtap, Sharad P., Anand N. Pawar, Subhash Lahane, and D. B. Lata. "Combustion Characteristics of Conventional Diesel Engine and Low Heat Rejection Diesel Engine with Biodiesel Blends." In Lecture Notes in Mechanical Engineering, 99–111. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5996-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vadivel, A., S. Periyasamy, V. V. Mithun Kumar, and M. Praveen. "Experimental Investigation on Performance and Emission Characteristics of Low Heat Rejection Engine Operating on Biodiesel." In Lecture Notes in Mechanical Engineering, 955–68. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2794-1_84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rijpkema, Jelmer, Karin Munch, and Sven B. Andersson. "Combining Low- and High-Temperature Heat Sources in a Heavy Duty Diesel Engine for Maximum Waste Heat Recovery Using Rankine and Flash Cycles." In Energy and Thermal Management, Air-Conditioning, and Waste Heat Utilization, 154–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00819-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bai, Minli, Tiezhu Zhu, and Zhiqian Zhang. "A STUDY OF TRANSIENT TEMPERATURE FIELD OF LINER IN A LOW–HEAT–REJECTION DIESEL ENGINE." In Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993, 485–88. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81619-1.50054-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krishna, M. V. S. Murali, V. V. R. Seshagiri Rao, R. P. Chowdary, N. Janardhan, N. Venkateswara Rao, and T. Ratna Reddy. "Investigations on Exhaust Emissions of a Low Heat Rejection Diesel Engine with Alternative Fuels." In Challenging Issues on Environment and Earth Science Vol. 6, 126–39. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/ciees/v6/11298d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xin, Qianfan. "Diesel engine heat rejection and cooling." In Diesel Engine System Design, 825–59. Elsevier, 2013. http://dx.doi.org/10.1533/9780857090836.4.825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Goričanec, Darko, and Danijela Urbancl. "Exploitation of Excess Low-Temperature Heat Sources from Cogeneration Gas Engines." In Energy Efficiency [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98369.

Повний текст джерела
Анотація:
The chapter presents an innovative technical solution for the use of low-temperature excess heat from the combined heat and power (CHP) of gas engines using gas or liquid fuel for district heating, building heating or industry. The primary fuel efficiency of CHP gas engines for heat production can be significantly increased by using the low-temperature excess heat of the exhaust gasses and the cooling system of the CHP gas engine, which are released into the environment thereby also reducing CO2 emissions. District heating hot water systems generally work with higher temperatures of the heating water, which is transported to the heat consumer via the supply line, and the cooled heating water is returned to the CHP gas engine via the return line. In order to make use of the excess low-temperature heat of the exhaust gasses and the cooling system of the CHP gas engine, a condenser must be installed in the exhaust pipe in which the water vapor contained in the exhaust gasses condenses and a mixture of water and glycol is heated, which later leads to the evaporator of the high-temperature heat pump (HTHP). The cooled heating water is returned from the heat consumer via the district heating return pipe to a condenser of one or more HTHPs connected in series, where it is reheated and then sent to a CHP gas engine, where it is reheated to the final temperature. The Aspen plus software package is used to run a computer simulation of one or more HTHPs connected in series and parallel to the district heating system and to demonstrate the economics of using the excess heat from the exhaust gasses and the cooling system of the CHP gas engine.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krishna, B. Rama, M. V. S. Murali Krishna, and P. Usha Sri. "Analysis of Exhaust Emissions with Low Heat Loss Diesel Engine with Alternate Fuels." In Techniques and Innovation in Engineering Research Vol. 7, 44–57. B P International (a part of SCIENCEDOMAIN International), 2023. http://dx.doi.org/10.9734/bpi/taier/v7/17661d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Low Heat Rejection Engine"

1

Kawamura, Hideo, and Hiroshi Matsuoka. "Low Heat Rejection Engine with Thermos Structure." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thring, R. H. "Low Heat Rejection Engines." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/860314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Assanis, Dennis N., and Edward Badillo. "Transient Heat Conduction in Low-Heat-Rejection Engine Combustion Chambers." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Srivathsan, P. R., P. T. Babu, V. N. Banugopan, S. Prabhakar, and K. Annamalai. "Experimental investigation on a low heat rejection engine." In International Conference on Frontiers in Automobile and Mechanical Engineering (FAME 2010). IEEE, 2010. http://dx.doi.org/10.1109/fame.2010.5714815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Das, Sudhakar, and Charles E. Roberts. "Factors Affecting Heat Transfer in a Diesel Engine: Low Heat Rejection Engine Revisited." In SAE 2013 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-01-0875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

F.Shabir, Mohd, S. Authars, S. Ganesan, R. Karthik, and S. Kumar Madhan. "Low Heat Rejection Engines - Review." In International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-1510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Elshindidy, Mohamed, W. S. Sampath, F. W. Smith, and Dwaine Klarstrom. "A Superalloy Low Heat Rejection Engine with Conventional Lubrication." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tamilporai, P., S. Chandrasekaran, N. Baluswamy, and J. Jancirani. "Simulation and Analysis of Combustion and Heat Transfer in Low Heat Rejection Diesel Engine Using Two Zone Combustion Model and Different Heat Transfer Models." In ASME 2002 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/icef2002-495.

Повний текст джерела
Анотація:
The quest for increasing the efficiency of an internal combustion engine has been going on ever since the invention of this reliable work equipment. In recent times much attention has been focused on achieving higher thermal efficiency by reducing the heat loss to the surroundings by the application of “low heat rejection” concept using ceramic coating for engine components or ceramic components itself. In this direction, the present analysis focused on the formulation and development of a two zone combustion model for the prediction of combustion, heat release and performance of the conventionally Water cooled and low heat rejection engines. The low heat rejection concept is introduced in this model by developing and formulating a wall heat transfer model to consider the effect of instantaneous inside surface temperature on combustion and heat release of an LHR engine. The gas wall heat transfer by means of convection and radiation is calculated using various gas wall heat transfer models. The predictions by the computer model and experimental findings are demonstrated. The capability of this model and the comparison of the predicted results with experimental findings are highly satisfactory.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jaichandar, S., and P. Tamilporai. "Low Heat Rejection Engines – An Overview." In SAE 2003 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-0405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schwarz, Ernest, Michael Reid, Walter Bryzik, and Eugene Danielson. "Combustion and Performance Characteristics of a Low Heat Rejection Engine." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/930988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Low Heat Rejection Engine"

1

Beaty, K., J. Lankford, and S. Vinyard. Sliding seal materials for low heat rejection engines. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5424214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wiczynski, T. A., and T. A. Marolewski. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/140583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yonushonis, T. M., P. D. Wiczynski, M. R. Myers, D. D. Anderson, A. C. McDonald, H. G. Weber, D. E. Richardson, R. J. Stafford, and M. G. Naylor. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines. Phases 2, 3, and 4 Final report. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/761659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії