Добірка наукової літератури з теми "Long range interacting system"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Long range interacting system".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Long range interacting system"
Tamarit, Francisco A., and Celia Anteneodo. "Relaxation and aging in a long-range interacting system." Europhysics News 36, no. 6 (November 2005): 194–97. http://dx.doi.org/10.1051/epn:2005605.
Повний текст джерелаYang, Zhen-Yu, and Ji-Xuan Hou. "Thermodynamic analysis of a long-range interacting spin system." Modern Physics Letters B 33, no. 07 (March 10, 2019): 1950072. http://dx.doi.org/10.1142/s0217984919500726.
Повний текст джерелаJoshi, M. K., F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap, and C. F. Roos. "Observing emergent hydrodynamics in a long-range quantum magnet." Science 376, no. 6594 (May 13, 2022): 720–24. http://dx.doi.org/10.1126/science.abk2400.
Повний текст джерелаYuan, Chen. "Dynamics of Non-interacting System with Long-Range Correlated Quenched Impurities." Communications in Theoretical Physics 39, no. 6 (June 15, 2003): 741–44. http://dx.doi.org/10.1088/0253-6102/39/6/741.
Повний текст джерелаGupta, Shamik, and David Mukamel. "Relaxation dynamics of stochastic long-range interacting systems." Journal of Statistical Mechanics: Theory and Experiment 2010, no. 08 (August 26, 2010): P08026. http://dx.doi.org/10.1088/1742-5468/2010/08/p08026.
Повний текст джерелаSasaki, Munetaka, and Fumitaka Matsubara. "Stochastic Cutoff Method for Long-Range Interacting Systems." Journal of the Physical Society of Japan 77, no. 2 (February 15, 2008): 024004. http://dx.doi.org/10.1143/jpsj.77.024004.
Повний текст джерелаBernard, D., M. Gaudin, F. D. M. Haldane, and V. Pasquier. "Yang-Baxter equation in long-range interacting systems." Journal of Physics A: Mathematical and General 26, no. 20 (October 21, 1993): 5219–36. http://dx.doi.org/10.1088/0305-4470/26/20/010.
Повний текст джерелаDefenu, Nicolò. "Metastability and discrete spectrum of long-range systems." Proceedings of the National Academy of Sciences 118, no. 30 (July 23, 2021): e2101785118. http://dx.doi.org/10.1073/pnas.2101785118.
Повний текст джерелаCANNAS, SERGIO A., CINTIA M. LAPILLI, and DANIEL A. STARIOLO. "TESTING BOUNDARY CONDITIONS EFFICIENCY IN SIMULATIONS OF LONG-RANGE INTERACTING MAGNETIC MODELS." International Journal of Modern Physics C 15, no. 01 (January 2004): 115–27. http://dx.doi.org/10.1142/s0129183104005553.
Повний текст джерелаGupta, Shamik, and Stefano Ruffo. "The world of long-range interactions: A bird’s eye view." International Journal of Modern Physics A 32, no. 09 (March 23, 2017): 1741018. http://dx.doi.org/10.1142/s0217751x17410184.
Повний текст джерелаДисертації з теми "Long range interacting system"
Morand, Jules. "Dynamics of long range interacting systems beyond the Vlasov limit." Doctoral thesis, Paris 6, 2014. http://hdl.handle.net/10362/50537.
Повний текст джерелаLaboratoire de Physique Nucléaire et Hautes Énergies dans le cadre de l’École Doctorale ED 389
Tese arquivada ao abrigo da Portaria nº 227/2017 de 25 de julho.
Long range interactions concern numerous natural systems. A notable example is the one of the gravitation which is relevant in the case of the study of a stars system or galaxy clusters. In particular, these systems does not respect the additivity of thermodynamical potential and present a dynamics dominated by collective effects. One of the most remarkable feature is that, after a very rapid evolution, these systems remains trapped into quasi-stationary states up to a very long time (diverging with the system size). It is only on longer time scales, that simulations have shown that the system relaxes to thermal equilibrium. Quasi-stationary states are theoretically interpreted as solutions of the Vlasov equation. This mean filed equation represents a very good approximation of the dynamics of long range systems in the limit of a large number of particles. Firstly we give a limit on the validity of the Vlasov equation depending of the range of the pair force and on its short scales regularisation. In a second part, using theoretical an numerical approach, we study the modification of the dynamics of long range systems when subjected to different kinds of non-Hamiltonian perturbations. In particular, the robustness of quasi-stationary states, in presence of this different perturbations is analysed in details.
Les interactions à longue portée concernent de nombreux systèmes naturels. Un exemple notable est celui de la gravitation newtonienne qui est pertinent dans le cas de l’étude de systèmes d’étoiles ou d’amas de galaxies. Ces systèmes ont notamment la particularité de ne pas respecter l’additivité des potentiels thermodynamiques et présentent une dynamique dominée par les effets collectifs. Une caractéristique remarquable est qu’après une évolution très rapide, ces systèmes restent piégés dans des états quasi-stationnaires pendant un temps qui peut être extrêmement grand (divergeant avec la taille du système). C’est seulement sur des échelles de temps plus longues que les simulations montrent que ces systèmes relaxent à l’équilibre thermodynamique. Les états quasi-stationnaire sont interprétés théoriquement comme les solutions stationnaires de l’équation de Vlasov. Cette équation de champs moyen représente une très bonne approximation de la dynamique macroscopique des systèmes en interaction à longue portée dans la limite où le nombre de particules tend vers l’infini. Dans un premier temps, nous nous attachons à comprendre, en fonction de la portée de la force de paire et de sa régularisation à court distance, quel est le champs de validité de cette équation, et en particulier, dans quelle cas le phénomène d’état quasi-stationnaire est attendu. Dans une seconde partie, combinant les approches théoriques et numériques, nous étudions la modification de la dynamique des systèmes à longue portée soumis à différentes sortes de perturbations non-Hamiltoniennes. La robustesse des états quasi-stationnaires en présence des différentes perturbations est analysée en détails.
Morand, Jules. "Dynamics of long range interacting systems beyond the Vlasov limit." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066624/document.
Повний текст джерелаLong range interactions concern numerous natural systems. A notable example is the one of the gravitation which is relevant in the case of the study of a stars system or galaxy clusters. In particular, these systems does not respect the additivity of thermodynamical potential and present a dynamics dominated by collective effects. One of the most remarkable feature is that, after a very rapid evolution, these systems remains trapped into quasi-stationary states up to a very long time (diverging with the system size). It is only on longer time scales, that simulations have shown that the system relaxes to thermal equilibrium.Quasi-stationary states are theoretically interpreted as solutions of the Vlasov equation. This mean filed equation represents a very good approximation of the dynamics of long range systems in the limit of a large number of particles. Firstly we give a limit on the validity of the Vlasov equation depending of the range of the pair force and on its short scales regularisation. In a second part, using theoretical an numerical approach, we study the modification of the dynamics of long range systems when subjected to different kinds of non-Hamiltonian perturbations. In particular, the robustness of quasi-stationary states, in presence of this different perturbations is analysed in details
Myers, Owen Dale. "Spatiotemporally Periodic Driven System with Long-Range Interactions." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/524.
Повний текст джерелаLatella, Ivan. "Statistical thermodynamics of long-range interacting systems and near-field thermal radiation." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400405.
Повний текст джерелаEn esta tesis se estudia la termodinámica y mecánica estadística de sistemas clásicos con interacciones de largo alcance y de la radiación térmica de campo cercano. En la primera parte, introducimos un formalismo termodinámico apropiado para sistemas con interacciones de largo alcance, en el cual se tiene en cuenta la no aditividad intrínseca en estos sistemas. Para estos sistemas, mostramos que la temperatura, presión y potencial químico pueden ser variables independientes. A su vez, dependiendo del sistema, lo anterior da lugar a poder tomar estas variables como parámetros de control para definir las configuraciones de equilibrio. Para estudiar este hecho, hemos introducido un modelo que cumple estas condiciones. En la segunda parte de la tesis, hemos desarrollado un esquema termodinámico para describir procesos de conversión de energía en trabajo útil en sistemas con interacción térmica radiativa en el campo cercano. Se ha mostrado explícitamente que de la radiación térmica de campo cercano puede extraerse un trabajo útil mayor que el obtenido de la radiación térmica de cuerpo negro. Hemos mostrado, además, que la potencia obtenida en sistemas con tres cuerpos en interacción puede ser considerablemente superior que en el caso de dos cuerpos.
Mihaylov, Petar. "Investigation of long-range interactions in the human visual system." Thesis, Glasgow Caledonian University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547413.
Повний текст джерелаNardini, Cesare. "Energy landscapes, equilibrium and out of equilibrium physics of long and short range interacting systems." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00820555.
Повний текст джерелаQin, Liang. "Application of irreversible Monte Carlo in realistic long-range systems." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE009.
Повний текст джерелаThis thesis studies the behavior of event-chain Monte Carlo (ECMC) in long-range particle systems. In the first two chapters, we introduce established methods for molecular simulation, highlighting their difficulties in dealing with Coulomb interaction, and gives the basic of ECMC. The third chapter presents our framework of Coulomb system sampling using ECMC. Under the tin-foil convention, the formulation consisting of pairwise terms for electrostatics can be directly applied to the cell-veto method. Together with dipole factorization, we obtain an O(NlogN)-per-sweep algorithm for dipole systems. Chapters four and five describe our development of a scientific application called JeLLyFysh for molecular simulation through ECMC. Its mediator design and stream processing of all operations can best accommodate future extensions. Using JeLLyFysh, we profile the performance of ECMC for large water systems in chapter six. The resulting dynamics imply that a more sophisticated scheme is needed to equilibrate the polarization. Finally, in chapter seven, we test the sampling strategy with sequential direction change. The dipole evolution exhibits distinct dynamics, and the set of direction choices and the order to select prove both crucial in mixing the dipole's orientation
Preto, Jordane. "Long-range interactions in biological systems." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4053.
Повний текст джерелаSelf-organization of living organisms is of an astonishing complexity and efficiency. More specifically, biological systems are the site of a huge number of very specific reactions thatrequire the right biomolecule to be at the right place, in the right order and in a reasonably short time to sustain cellular function and ultimately cellular life. From the dynamic point of view, this raises the fundamental question of how biomolecules effectively find their target(s); in other words, what kinds of forces bring all these specific cognate partners together in an environment as dense and ionized as cellular micro-environments. In the present thesis, we explore the possibility that biomolecules interact through long-range electromagnetic interactions as they are predicted from the first principles of physics; "long-range" meaning that the mentioned interactions are effective over distances much larger than the typical dimensions of the molecules involved (i.e., larger than about 50 angströms in biological systems).After laying the theoretical foundations about interactions that are potentially active over long distances in a biological context, we investigate the possibility of detecting their contribution from experimental devices which are nowadays available. On the latter point, encouraging preliminary results both at the theoretical and experimental levels are exposed
Johnson, S. R. "Theoretical studies of systems with long-ranged interactions." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605655.
Повний текст джерелаBuyskikh, Anton S. "Dynamics of quantum many-body systems with long-range interactions." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=28798.
Повний текст джерелаКниги з теми "Long range interacting system"
1967-, Dauxois T. (Thierry), Ruffo Stefano 1954-, and Cugliandolo, L. F. (Leticia F.), eds. Long-range interacting systems: École d'été des Houches, session XC, 4-29 August 2008, École thématique du CNRS. Oxford: Oxford University Press, 2010.
Знайти повний текст джерелаLong-range interactions, stochasticity and fractional dynamics. Beijing: Higher Education Press, 2010.
Знайти повний текст джерелаDauxois, Thierry, Stefano Ruffo, Ennio Arimondo, and Martin Wilkens, eds. Dynamics and Thermodynamics of Systems with Long-Range Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45835-2.
Повний текст джерелаDauxois, Thierry. Dynamics and Thermodynamics of Systems with Long-Range Interactions. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2002.
Знайти повний текст джерела1967-, Dauxois T., ed. Dynamics and thermodynamics of systems with long-range interactions. Berlin: Springer, 2002.
Знайти повний текст джерелаPedra, W. de Siqueira (Walter de Siqueira), 1975-, ed. Non-cooperative equilibria of Fermi systems with long range interactions. Providence, Rhode Island: American Mathematical Society, 2013.
Знайти повний текст джерелаHan, Shaowei. Carrier phase-based long-range GPS kinematic positioning. Sydney, NSW, Australia: University of New South Wales, 1997.
Знайти повний текст джерелаUniversity of North Carolina (System). Board of Governors. Supplement to Long-range planning, 1994-99. [Chapel Hill, N.C.?]: The Board, 1996.
Знайти повний текст джерелаDavidson, L. W. Long-range ice forecasting system (LRIFS) applied for the Beaufort Sea. [Ottawa: Environmental Studies Research Funds], 1993.
Знайти повний текст джерелаIndiana Correction Advisory Committee. A long-range plan for Indiana's criminal justice system: Final report. [Indianapolis, Ind: Indiana Criminal Justice Institute, 1990.
Знайти повний текст джерелаЧастини книг з теми "Long range interacting system"
Léonard, Christian. "Some epidemic systems are long range interacting particle systems." In Stochastic Processes in Epidemic Theory, 170–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10067-7_16.
Повний текст джерелаGerisch, Thomas. "Equilibrium States of Long Range Interacting Quantum Lattice Systems." In Large-Scale Molecular Systems, 351–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5940-1_22.
Повний текст джерелаBoers, Dave, and Martin Holthaus. "Canonical Statistics of Occupation Numbers for Ideal and Weakly Interacting Bose-Einstein Condensates." In Dynamics and Thermodynamics of Systems with Long-Range Interactions, 332–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45835-2_11.
Повний текст джерелаSheintuch, Moshe, and Olga Nekhamkina. "Pattern Selection In A Diffusion-Reaction System With Global Or Long-Range Interaction." In Pattern Formation in Continuous and Coupled Systems, 265–82. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1558-5_20.
Повний текст джерелаWang, Chi-Yuen, and Michael Manga. "Response to Tides, Barometric Pressure and Seismic Waves." In Lecture Notes in Earth System Sciences, 83–153. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64308-9_5.
Повний текст джерелаDe Masi, Anna. "Spin Systems with Long Range Interactions." In From Classical to Modern Probability, 25–81. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8053-4_2.
Повний текст джерелаTsukerman, Igor. "Long-Range Interactions in Heterogeneous Systems." In Nanostructure Science and Technology, 285–355. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43893-7_6.
Повний текст джерелаLaskin, Nick. "Exciton–Phonon Dynamics with Long-Range Interaction." In Dynamical Systems and Methods, 311–22. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0454-5_18.
Повний текст джерелаTokihiro, T. "Quasiperiodic Systems with Long-Range Hierarchical Interactions." In Springer Series in Solid-State Sciences, 179–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84253-5_19.
Повний текст джерелаZegarlinski, Bogusław. "Random Spin Systems with Long-Range Interactions." In Mathematical Aspects of Spin Glasses and Neural Networks, 289–320. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4102-7_8.
Повний текст джерелаТези доповідей конференцій з теми "Long range interacting system"
Baldovin, Fulvio, Enzo Orlandini, and Pierre-Henri Chavanis. "Long-range interacting systems and dynamical phase transitions." In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569523.
Повний текст джерелаCampa, Alessandro, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "The study of the equilibrium and of the dynamical properties of long-range interacting systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839132.
Повний текст джерелаStrzalka, Dominik, and Franciszek Grabowski. "Long-range dependencies in algorithmic computing." In 2008 Conference on Human System Interactions (HSI). IEEE, 2008. http://dx.doi.org/10.1109/hsi.2008.4581502.
Повний текст джерелаFinlayson, N., and K. W. DeLong. "Nonlinear dynamics of optical waveguide arrays." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tubb7.
Повний текст джерелаMukamel, David, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Statistical Mechanics of systems with long range interactions." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839123.
Повний текст джерелаGiansanti, Andrea, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Thermodynamics of Small Systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839115.
Повний текст джерелаDrewsen, Michael, Anders Mortensen, Esben Nielsen, Thierry Matthey, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Strongly Correlated Ion Coulomb Systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839127.
Повний текст джерелаMorigi, Giovanna, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Long-range interactions in cold atomic systems: A foreword." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839126.
Повний текст джерелаSaslaw, William C., Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Statistical Mechanics of Infinite Gravitating Systems." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839122.
Повний текст джерелаLabeyrie, G., G. L. Gattobigio, T. Pohl, R. Kaiser, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Long Range Interactions in Magneto-Optical Traps." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839128.
Повний текст джерелаЗвіти організацій з теми "Long range interacting system"
Zhang, Duan Zhong. Stress from long-range interactions in particulate system. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1617335.
Повний текст джерелаGrumet, Rebecca, and Benjamin Raccah. Identification of Potyviral Domains Controlling Systemic Infection, Host Range and Aphid Transmission. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7695842.bard.
Повний текст джерелаVuono, Carl E. Army Programs: Army Long-Range Planning System. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada401979.
Повний текст джерелаHagen Schempf and Daphne D'Zurko. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/892746.
Повний текст джерелаSalem, L. B., and Z. Zlotnick. Acoustic Sounding System for Long Range Propagation in Middle East Surroundings. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada294738.
Повний текст джерелаBelak, James F., E. L. Pollock, J. Carpenter, S. Lustig, and T. Stouch. Massively Parallel Simulation of Large Molecular Systems with Long-Range Interactions Final Report CRADA No. TC-0297-92-B. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1430916.
Повний текст джерелаGeorge C. Vradis and Hagen Schempf. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASOLINE INSPECTION ROBOT SYSTEM. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/835526.
Повний текст джерелаVradis, George C., and Hagen Schempf. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/801215.
Повний текст джерелаGeorge C. Vradis, Hagen Schempf. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/825236.
Повний текст джерелаDr. George C. Vradis and Dr. Hagen Schempf. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/815463.
Повний текст джерела