Добірка наукової літератури з теми "Logic Constraints"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Logic Constraints".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Logic Constraints"

1

FAGES, FRANÇOIS, and EMMANUEL COQUERY. "Typing constraint logic programs." Theory and Practice of Logic Programming 1, no. 6 (November 2001): 751–77. http://dx.doi.org/10.1017/s1471068401001120.

Повний текст джерела
Анотація:
We present a prescriptive type system with parametric polymorphism and subtyping for constraint logic programs. The aim of this type system is to detect programming errors statically. It introduces a type discipline for constraint logic programs and modules, while maintaining the capabilities of performing the usual coercions between constraint domains, and of typing meta-programming predicates, thanks to the exibility of subtyping. The property of subject reduction expresses the consistency of a prescriptive type system w.r.t. the execution model: if a program is ‘well-typed’, then all derivations starting from a ‘well-typed’ goal are again ‘well-typed’. That property is proved w.r.t. the abstract execution model of constraint programming which proceeds by accumulation of constraints only, and w.r.t. an enriched execution model with type constraints for substitutions. We describe our implementation of the system for type checking and type inference. We report our experimental results on type checking ISO-Prolog, the (constraint) libraries of Sicstus Prolog and other Prolog programs.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

DUNDUA, BESIK, MÁRIO FLORIDO, TEMUR KUTSIA, and MIRCEA MARIN. "CLP(H):Constraint logic programming for hedges." Theory and Practice of Logic Programming 16, no. 2 (April 16, 2015): 141–62. http://dx.doi.org/10.1017/s1471068415000071.

Повний текст джерела
Анотація:
AbstractCLP(H) is an instantiation of the general constraint logic programming scheme with the constraint domain of hedges. Hedges are finite sequences of unranked terms, built over variadic function symbols and three kinds of variables: for terms, for hedges, and for function symbols. Constraints involve equations between unranked terms and atoms for regular hedge language membership. We study algebraic semantics of CLP(H) programs, define a sound, terminating, and incomplete constraint solver, investigate two fragments of constraints for which the solver returns a complete set of solutions, and describe classes of programs that generate such constraints.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

APT, KRZYSZTOF R., and ERIC MONFROY. "Constraint programming viewed as rule-based programming." Theory and Practice of Logic Programming 1, no. 6 (November 2001): 713–50. http://dx.doi.org/10.1017/s1471068401000072.

Повний текст джерела
Анотація:
We study here a natural situation when constraint programming can be entirely reduced to rule-based programming. To this end we explain first how one can compute on constraint satisfaction problems using rules represented by simple first-order formulas. Then we consider constraint satisfaction problems that are based on predefined, explicitly given constraints. To solve them we first derive rules from these explicitly given constraints and limit the computation process to a repeated application of these rules, combined with labeling. We consider two types of rule here. The first type, that we call equality rules, leads to a new notion of local consistency, called rule consistency that turns out to be weaker than arc consistency for constraints of arbitrary arity (called hyper-arc consistency in Marriott & Stuckey (1998)). For Boolean constraints rule consistency coincides with the closure under the well-known propagation rules for Boolean constraints. The second type of rules, that we call membership rules, yields a rule-based characterization of arc consistency. To show feasibility of this rule-based approach to constraint programming, we show how both types of rules can be automatically generated, as CHR rules of Frühwirth (1995). This yields an implementation of this approach to programming by means of constraint logic programming. We illustrate the usefulness of this approach to constraint programming by discussing various examples, including Boolean constraints, two typical examples of many valued logics, constraints dealing with Waltz's language for describing polyhedral scenes, and Allen's qualitative approach to temporal logic.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ZHENG, LEI, CHUNNIAN LIU, DONG JIA, and NING ZHONG. "GENERATING NUMERICAL CONSTRAINTS IN CILP." International Journal of Pattern Recognition and Artificial Intelligence 19, no. 01 (February 2005): 91–108. http://dx.doi.org/10.1142/s0218001405003946.

Повний текст джерела
Анотація:
A continuing problem with inductive logic programming (ILP) has been the poor handling of numbers. Constraint inductive logic programming (CILP) aims to solve this problem with ILP. We propose a new approach to generating numerical constraints in CILP, and describe an implementation of the CILP system (namely, BPU-CILP). In our approach, methods from pattern recognition and multivariate data analysis, such as Fisher's linear discriminant, dynamic clustering and principal component analysis, are introduced into CILP. The BPU-CILP can generate various forms of polynomial constraints of multiple dimensions, without additional background knowledge. As a result, the constraint logic program covering all positive examples and consistent with all negative examples can be derived automatically.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MANCARELLA, PAOLO, GIACOMO TERRENI, FARIBA SADRI, FRANCESCA TONI, and ULLE ENDRISS. "The CIFF proof procedure for abductive logic programming with constraints: Theory, implementation and experiments." Theory and Practice of Logic Programming 9, no. 6 (August 14, 2009): 691–750. http://dx.doi.org/10.1017/s1471068409990093.

Повний текст джерела
Анотація:
AbstractWe present the CIFF proof procedure for abductive logic programming with constraints, and we prove its correctness. CIFF is an extension of the IFF proof procedure for abductive logic programming, relaxing the original restrictions over variable quantification (allowedness conditions) and incorporating a constraint solver to deal with numerical constraints as in constraint logic programming. Finally, we describe the CIFF system, comparing it with state-of-the-art abductive systems and answer set solvers and showing how to use it to program some applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fox, A., C. T. Spracklen, and C. P. Jolly. "Logic synthesis with constraints." Microprocessing and Microprogramming 24, no. 1-5 (August 1988): 339–46. http://dx.doi.org/10.1016/0165-6074(88)90076-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Monfroglio, Angelo. "Logic decisions under constraints." Decision Support Systems 11, no. 3 (March 1994): 259–81. http://dx.doi.org/10.1016/0167-9236(94)90076-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bergenti, Federico, Stefania Monica, and Gianfranco Rossi. "Constraint Logic Programming with Polynomial Constraints over Finite Domains." Fundamenta Informaticae 161, no. 1-2 (July 2, 2018): 9–27. http://dx.doi.org/10.3233/fi-2018-1693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sitek, Pawel, and Jaroslaw Wikarek. "A Hybrid Method for the Modelling and Optimisation of Constrained Search Problems." Foundations of Management 5, no. 3 (August 21, 2014): 7–22. http://dx.doi.org/10.2478/fman-2014-0016.

Повний текст джерела
Анотація:
AbstractThe paper presents a concept and the outline of the implementation of a hybrid approach to modelling and solving constrained problems. Two environments of mathematical programming (in particular, integer programming) and declarative programming (in particular, constraint logic programming) were integrated. The strengths of integer programming and constraint logic programming, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The hybrid method is not worse than either of its components used independently. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints. To validate the proposed approach, two illustrative examples are presented and solved. The first example is the authors’ original model of cost optimisation in the supply chain with multimodal transportation. The second one is the two-echelon variant of the well-known capacitated vehicle routing problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kozen, Dexter. "Set Constraints and Logic Programming." Information and Computation 142, no. 1 (April 1998): 2–25. http://dx.doi.org/10.1006/inco.1997.2694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Logic Constraints"

1

Rönchen, Philipp. "Constraints of Binary Simple Homogeneous Structures." Thesis, Uppsala universitet, Algebra och geometri, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-361217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Das, Subrata Kumar. "Integrity constraints in deductive databases." Thesis, Heriot-Watt University, 1990. http://hdl.handle.net/10399/875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Senkul, Karagoz Pinar. "Specification And Scheduling Of Workflows Under Resource Allocation Constraints." Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/739193/index.pdf.

Повний текст джерела
Анотація:
Workflow is a collection of tasks organized to accomplish some business process. It also defines the order of task invocation or conditions under which task must be invoked, task synchronization, and information flow. Before the execution of the workflow, a correct execution schema, in other words, the schedule of the workflow, must be determined. Workflow scheduling is finding an execution sequence of tasks that obeys the business logic of workflow. Research on specification and scheduling of workflows has concentrated on temporal and causality constraints, which specify existence and order dependencies among tasks. However, another set of constraints that specify resource allocation is also equally important. The resources in a workflow environment are agents such as person, machine, software, etc. that execute the task. Execution of a task has a cost and this may vary depending on the resources allocated in order to execute that task. Resource allocation constraints define restrictions on how to allocate resources, and scheduling under resource allocation constraints provide proper resource allocation to tasks. In this thesis, we present two approaches to specify and schedule workflows under resource allocation constraints as well as temporal and causality constraints. In the first approach, we present an architecture whose core and novel parts are a specifi- cation language with the ability to express resources and resource allocation constraints and a scheduler module that contains a constraint solver in order to find correct resource assignments. In the second approach, we developed a new logical formalism, called Concurrent Constraint Transaction Logic (CCTR) which integrates constraint logic programming (CLP) and Concurrent Transaction Logic, and a logic-based work- flow scheduler that is based on this new formalism. CCTR has the constructs to specify resource allocation constraints as well as workflows and it provides semantics for these specifications so that validity of a schedule can be checked.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taboada, Sophie. "Multi-Agent Motion Planning with Signal Temporal Logic Constraints." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292870.

Повний текст джерела
Анотація:
Motion planning algorithms allow us to define a sequence of configurations to guide robots from a starting point to an ending goal while considering the environment’s and the robot’s constraints. As all robots and circumstances are different, motion planning can be adapted to fit into the system’s specifications and the user’s preferences. Temporal Logic (TL) has been used to enable the implementation of more complex missions. In this work, we are interested in using TL to establish the affiliation between robots in a multi-robot system, as well as their affiliation with features in the workspace. More specifically, Signal Temporal Logic (STL) is used to guide motion planning into respecting certain preferences linked to the robot’s motion behavior. In fact, user’s preferences are translated into STL formulas, that need to be respected by the motion planning. To achieve this, RRT* sampling-based algorithm is used to study the free space and to identify the best trajectory with the help of a cost analysis of all possible trajectories found. Here, RRT* is adapted to fit into multi-robot systems and to allow the simultaneous planning of trajectories for multiple robots. The robustness metric of STL quantifies the respect trajectories have for STL formulas and influences the cost function of the RRT*. The impact the robustness has on the cost function is responsible for the selection of trajectories with more respect for the STL formulas. The proposed multi-agent motion planning is tested in simulations with environments containing multiple obstacles and robots. To demonstrate the impact STL has on motion planning, a comparison is made between the trajectories extracted with and without the use of STL. These simulations include specific scenarios and different numbers of robots to test the developed algorithm. They deliver asymptotically optimal solutions. Finally, we conduct some hardware experiments up until four robots to present how the developed motion planning can be implemented in real life.
Rörelseplaneringsalgoritmer låter oss definiera en sekvens av konfigurationer för att guida robotar från en startposition till en slutposition medan vi tar hänsyn till robotens och miljöns begränsningar. Eftersom alla robotar och omständigheter är olika kan rörelseplanering anpassas för att passa systemets specifikationer och användarens preferenser. Temporal Logik (TL) har använts för att möjliggöra implementationer av mer komplexa uppdrag. I detta arbete är vi intresserade av att använda TL för att fastställa anslutningen mellan robotar i ett multirobotsystem, samt mellan dessa robotar och egenskaper i deras arbetsmiljö. Mer specifikt används signaltemporär logik (eng: Signal Temporal Logic) (STL) för att anpassa rörelseplanering till att respektera vissa preferenser länkade till robotens rörelsebeteende. Faktum är att användarpreferenser översätts till STL-formler som behöver respekteras av rörelseplaneringen. För att uppnå detta används den samplingsbaserade algoritmen RRT* för att studera den fria ytan och för att identifiera den bästa rörelsebanan med hjälp av en kostanalys av alla funna möjliga rörelsebanor. Här anpassas RRT* för multirobotsystem och för att tillåta planering av rörelsebanor för flera robotar samtidigt. Robushetsmåttet för STL kvantifierar respekten som banorna har för STL-formler och påverkar RRT*: s kostnadsfunktion. Påverkan som robustheten har på kostfunktionen är ansvarig för valet av rörelsebanor som till högre grad respekterar STL-formlerna. Den föreslagna röresleplaneringen för flera agenter (eng: multi-agent) testas i simuleringar av miljöer med flera hinder och robotar. För att demonstrera vilken inverkan STL har på rörelseplanering görs en jämförelse mellan rörelsebanor som ges med och utan användning av STL. Dessa simuleringar inkluderar specifika scenarion och olika antal robotar för att testa den utvecklade algoritmen. De levererar asymptotiskt optimala lösningar. Slutligen genomför vi hårdvaruexperiment upp till och med fyra robotar för att presentera hur den framtagna rörelseplaneringsalgoritmen kan implementeras i verkligheten.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhavnagarwala, Azeez Jenúddin. "Voltage scaling constraints for static CMOS logic and memory cirucits." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/15401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Luria, David M. "Logic Encryption for Resource Constrained Designs." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613742372174729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Egri, László. "The complexity of constraint satisfaction problems and symmetric Datalog /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101843.

Повний текст джерела
Анотація:
Constraint satisfaction problems (CSPs) provide a unified framework for studying a wide variety of computational problems naturally arising in combinatorics, artificial intelligence and database theory. To any finite domain D and any constraint language Γ (a finite set of relations over D), we associate the constraint satisfaction problem CSP(Γ): an instance of CSP(Γ) consists of a list of variables x1, x2,..., x n and a list of constraints of the form "(x 7, x2,..., x5) ∈ R" for some relation R in Γ. The goal is to determine whether the variables can be assigned values in D such that all constraints are simultaneously satisfied. The computational complexity of CSP(Γ) is entirely determined by the structure of the constraint language Γ and, thus, one wishes to identify classes of Γ such that CSP(Γ) belongs to a particular complexity class.
In recent years, logical and algebraic perspectives have been particularly successful in classifying CSPs. A major weapon in the arsenal of the logical perspective is the database-theory-inspired logic programming language called Datalog. A Datalog program can be used to solve a restricted class of CSPs by either accepting or rejecting a (suitably encoded) set of input constraints. Inspired by Dalmau's work on linear Datalog and Reingold's breakthrough that undirected graph connectivity is in logarithmic space, we use a new restriction of Datalog called symmetric Datalog to identify a class of CSPs solvable in logarithmic space. We establish that expressibility in symmetric Datalog is equivalent to expressibility in a specific restriction of second order logic called Symmetric Restricted Krom Monotone SNP that has already received attention for its close relationship with logarithmic space.
We also give a combinatorial description of a large class of CSPs lying in L by showing that they are definable in symmetric Datalog. The main result of this thesis is that directed st-connectivity and a closely related CSP cannot be defined in symmetric Datalog. Because undirected st-connectivity can be defined in symmetric Datalog, this result also sheds new light on the computational differences between the undirected and directed st-connectivity problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fang, Ming. "Maintaining Integrity Constraints in Semantic Web." Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/cs_diss/73.

Повний текст джерела
Анотація:
As an expressive knowledge representation language for Semantic Web, Web Ontology Language (OWL) plays an important role in areas like science and commerce. The problem of maintaining integrity constraints arises because OWL employs the Open World Assumption (OWA) as well as the Non-Unique Name Assumption (NUNA). These assumptions are typically suitable for representing knowledge distributed across the Web, where the complete knowledge about a domain cannot be assumed, but make it challenging to use OWL itself for closed world integrity constraint validation. Integrity constraints (ICs) on ontologies have to be enforced; otherwise conflicting results would be derivable from the same knowledge base (KB). The current trends of incorporating ICs into OWL are based on its query language SPARQL, alternative semantics, or logic programming. These methods usually suffer from limited types of constraints they can handle, and/or inherited computational expensiveness. This dissertation presents a comprehensive and efficient approach to maintaining integrity constraints. The design enforces data consistency throughout the OWL life cycle, including the processes of OWL generation, maintenance, and interactions with other ontologies. For OWL generation, the Paraconsistent model is used to maintain integrity constraints during the relational database to OWL translation process. Then a new rule-based language with set extension is introduced as a platform to allow users to specify constraints, along with a demonstration of 18 commonly used constraints written in this language. In addition, a new constraint maintenance system, called Jena2Drools, is proposed and implemented, to show its effectiveness and efficiency. To further handle inconsistencies among multiple distributed ontologies, this work constructs a framework to break down global constraints into several sub-constraints for efficient parallel validation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Walton, Matthew. "First-order lax logic : a framework for abstraction, constraints and refinement." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mendler, M. "A modal logic for handling behavioural constraints in formal hardware verification." Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/15374.

Повний текст джерела
Анотація:
The application of formal methods to the design of correct computer hardware depends crucially on the use of abstraction mechanisms to partition the synthesis and verification task into tractable pieces. Unfortunately however, behavioural abstractions are genuine mathematical abstractions only up to behavioural constraints, i.e. under certain restrictions imposed on the device's environment. Timing constraints on input signals form an important class of such restrictions. Hardware components that behave properly only under such constraints satisfy their abstract specifications only approximately. This is an impediment to the naive approach to formal verification since the question of how to apply a theorem prover when one only knows approximately what formula to prove has not as yet been dealt with. In this thesis we propose, as a solution, to interpret the notion of 'correctness up to constraint' as a modality of intuitionistic predicate logic so as to remove constraints from the specification and to make them part of its proof. This provides for an 'approximate' verification of abstract specifications and yet does not compromise the rigour of the argument since a realizability semantics can be used to extract the constraints. Also, the abstract verification is separated from constraint analysis which in turn may be delayed arbitrarily. In the proposed framework constraint analysis comes down to proof analysis and a computational semantics on proofs may be used to manipulate and simplify constraints.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Logic Constraints"

1

Vlahavas, Ioannis. Parallel and Constraint Logic Programming: An Introduction to Logic, Parallelism and Constraints. Boston, MA: Springer US, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vlahavas, Ioannis. Parallel and constraint logic programming: An introduction to logic, parallelism and constraints. Boston: Kluwer Academic Publishers, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reiter, Raymond. On integrity constraints. Toronto: University of Toronto, Dept. of Computer Science, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stuckey, Peter J. Programming with constraints: An introduction. Cambridge, Mass: MIT Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Christensen, David Phiroze. Putting logic in its place: Formal constraints on rational belief. Oxford: Clarendon Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fuzzy logic in data modeling: Semantics, constraints, and database design. Boston: Kluwer Academic, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Guoqing. Fuzzy logic in data modeling: Semantics, constraints, and database design. Boston, MA: Springer, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Michael, Jampel, Freuder Eugene C, Maher Michael 1959-, and CP '95 (1995 : Cassis, France), eds. Over-constrained systems. Berlin: Springer, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

B, O'Sullivan, ed. Recent advances in constraints: Joint ERCIM/CologNet International Workshop on Constraint Solving and Constraint Logic Programming, Cork, Ireland, June 19-21, 2002 : selected papers. Berlin: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Larrosa, Javier. Recent Advances in Constraints: 14th Annual ERCIM International Workshop on Constraint Solving and Constraint Logic Programming, CSCLP 2009, Barcelona, Spain, June 15-17, 2009, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Logic Constraints"

1

Walsh, Toby. "Exploiting Constraints." In Inductive Logic Programming, 7–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31951-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Duck, Gregory J., María García de la Banda, and Peter J. Stuckey. "Compiling Ask Constraints." In Logic Programming, 105–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27775-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Valencia, Frank D. "Concurrency, Time, and Constraints." In Logic Programming, 72–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24599-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maher, Michael J. "Abduction of Linear Arithmetic Constraints." In Logic Programming, 174–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11562931_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maher, Michael J. "Propagation Completeness of Reactive Constraints." In Logic Programming, 148–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45619-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Yuanlin, Roland H. C. Yap, Chendong Li, and Satyanarayana Marisetti. "Efficient Algorithms for Functional Constraints." In Logic Programming, 606–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89982-2_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jaffar, Joxan, and Jean-Louis Lassez. "From unification to constraints." In Logic Programming '87, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-19426-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Benedikt, Michael, and H. Jerome Keisler. "Definability over Linear Constraints." In Computer Science Logic, 217–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44622-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Codish, Michael, Vitaly Lagoon, and Peter J. Stuckey. "Testing for Termination with Monotonicity Constraints." In Logic Programming, 326–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11562931_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Caroprese, Luciano, and Mirosław Truszczyński. "Declarative Semantics for Active Integrity Constraints." In Logic Programming, 269–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89982-2_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Logic Constraints"

1

Belohlavek, Radim, and Vilem Vychodil. "Fuzzy attribute logic with model constraints." In 7th conference of the European Society for Fuzzy Logic and Technology. Paris, France: Atlantis Press, 2011. http://dx.doi.org/10.2991/eusflat.2011.140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dörre, Jochen. "Feature logic with weak subsumption constraints." In the 29th annual meeting. Morristown, NJ, USA: Association for Computational Linguistics, 1991. http://dx.doi.org/10.3115/981344.981377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bodirsky, Manuel, and Hubie Chen. "Quantified Equality Constraints." In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE, 2007. http://dx.doi.org/10.1109/lics.2007.38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lu, Xu, Cong Tian, and Zhenhua Duan. "Temporalising Separation Logic for Planning with Search Control Knowledge." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/162.

Повний текст джерела
Анотація:
Temporal logics are widely adopted in Artificial Intelligence (AI) planning for specifying Search Control Knowledge (SCK). However, traditional temporal logics are limited in expressive power since they are unable to express spatial constraints which are as important as temporal ones in many planning domains. To this end, we propose a two-dimensional (spatial and temporal) logic namely PPTL^SL by temporalising separation logic with Propositional Projection Temporal Logic (PPTL). The new logic is well-suited for specifying SCK containing both spatial and temporal constraints which are useful in AI planning. We show that PPTL^SL is decidable and present a decision procedure. With this basis, a planner namely S-TSolver for computing plans based on the spatio-temporal SCK expressed in PPTL^SL formulas is developed. Evaluation on some selected benchmark domains shows the effectiveness of S-TSolver.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wu, J. K., J. H. Wang, C. X. Feng, and T. H. Liu. "A Logic-Based Mechanical System Constraint Model." In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/edm1993-0115.

Повний текст джерела
Анотація:
Abstract This paper presents some initial developments in modeling design constraints of mechanical systems using predicate logic. This design constraint modeling method is to manage design changes in a concurrent engineering environment that has CAE and CAM applications. The design constraints are classified according to an object hierarchy of a mechanical system information model which has five levels object including: a mechanical system level, assembly level, and part level. The constraint relationships are defined and formally expressed using predicate logic. Feature fitting and against relationships between parts in the assembly level and relationships between features of a part in the part level have been illustrated in the paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cussens, James, and Stephen Pulman. "Incorporating linguistics constraints into inductive logic programming." In the 2nd workshop on Learning language in logic and the 4th conference. Morristown, NJ, USA: Association for Computational Linguistics, 2000. http://dx.doi.org/10.3115/1117601.1117647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Serlin, Zachary, Kevin Leahy, Roberto Tron, and Calin Belta. "Distributed Sensing Subject to Temporal Logic Constraints." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8593574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Niu, Luyao, and Andrew Clark. "Secure Control Under Linear Temporal Logic Constraints." In 2018 Annual American Control Conference (ACC). IEEE, 2018. http://dx.doi.org/10.23919/acc.2018.8431595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Xi, Harry Hsieh, Felice Balarin, and Yosinori Watanabe. "Automatic trace analysis for logic of constraints." In the 40th conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/775832.775952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smith, S. L., J. Tumova, C. Belta, and D. Rus. "Optimal path planning under temporal logic constraints." In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010). IEEE, 2010. http://dx.doi.org/10.1109/iros.2010.5650896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Logic Constraints"

1

Baader, Franz. Concept Descriptions with Set Constraints and Cardinality Constraints. Technische Universität Dresden, 2017. http://dx.doi.org/10.25368/2022.232.

Повний текст джерела
Анотація:
We introduce a new description logic that extends the well-known logic ALCQ by allowing the statement of constraints on role successors that are more general than the qualified number restrictions of ALCQ. To formulate these constraints, we use the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA), in which one can express Boolean combinations of set constraints and numerical constraints on the cardinalities of sets. Though our new logic is considerably more expressive than ALCQ, we are able to show that the complexity of reasoning in it is the same as in ALCQ, both without and with TBoxes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Day, William B. Constraints Logic Programming in Knowledge-Based Planning Domains. Fort Belvoir, VA: Defense Technical Information Center, December 1992. http://dx.doi.org/10.21236/ada262958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lutz, Carsten, and Maja Miličić. Description Logics with Concrete Domains and Functional Dependencies. Technische Universität Dresden, 2004. http://dx.doi.org/10.25368/2022.143.

Повний текст джерела
Анотація:
Description Logics (DLs) with concrete domains are a useful tool in many applications. To further enhance the expressive power of such DLs, it has been proposed to add database-style key constraints. Up to now, however, only uniqueness constraints have been considered in this context, thus neglecting the second fundamental family of key constraints: functional dependencies. In this paper, we consider the basic DL with concrete domains ALC(D), extend it with functional dependencies, and analyze the impact of this extension on the decidability and complexity of reasoning. Though intuitively the expressivity of functional dependencies seems weaker than that of uniqueness constraints, we are able to show that the former have a similarly severe impact on the computational properties: reasoning is undecidable in the general case, and NExpTime-complete in some slightly restricted variants of our logic.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baader, Franz, Stefan Borgwardt, and Barbara Morawska. Dismatching and Local Disunification in EL. Technische Universität Dresden, 2014. http://dx.doi.org/10.25368/2022.210.

Повний текст джерела
Анотація:
Unification in Description Logics has been introduced as a means to detect redundancies in ontologies. We try to extend the known decidability results for unification in the Description Logic EL to disunification since negative constraints on unifiers can be used to avoid unwanted unifiers. While decidability of the solvability of general EL-disunification problems remains an open problem, we obtain NP-completeness results for two interesting special cases: dismatching problems, where one side of each negative constraint must be ground, and local solvability of disunification problems, where we restrict the attention to solutions that are built from so-called atoms occurring in the input problem. More precisely, we first show that dismatching can be reduced to local disunification, and then provide two complementary NP-algorithms for finding local solutions of (general) disunification problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baader, Franz, and Alexander Okhotin. Solving Language Equations and Disequations Using Looping Tree Automata with Colors. Technische Universität Dresden, 2012. http://dx.doi.org/10.25368/2022.185.

Повний текст джерела
Анотація:
We extend previous results on the complexity of solving language equations with one-sided concatenation and all Boolean operations to the case where also disequations (i.e., negated equations) may occur. To show that solvability of systems of equations and disequations is still in ExpTime, we introduce a new type of automata working on infinite trees, which we call looping automata with colors. As applications of these results, we show new complexity results for disunification in the description logic FL₀ and for monadic set constraints with negation. We believe that looping automata with colors may also turn out to be useful in other applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lutz, Carsten, and Frank Wolter. Modal Logics of Topological Relations. Technische Universität Dresden, 2004. http://dx.doi.org/10.25368/2022.142.

Повний текст джерела
Анотація:
The eight topological RCC8(or Egenhofer-Franzosa)- relations between spatial regions play a fundamental role in spatial reasoning, spatial and constraint databases, and geographical information systems. In analogy with Halpern and Shoham’s modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the RCC8-relations. The semantics is based on region spaces induced by standard topological spaces, in particular the real plane. We investigate the expressive power and computational complexity of the logics obtained in this way. It turns our that, similar to Halpern and Shoham’s logic, the expressive power is rather natural, but the computational behavior is problematic: topological modal logics are usually undecidable and often not even recursively enumerable. This even holds if we restrict ourselves to classes of finite region spaces or to substructures of region spaces induced by topological spaces. We also analyze modal logics based on the set of RCC5relations, with similar results.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baader, Franz, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki, and Veronika Thost. Metric Temporal Description Logics with Interval-Rigid Names (Extended Version). Technische Universität Dresden, 2017. http://dx.doi.org/10.25368/2022.233.

Повний текст джерела
Анотація:
In contrast to qualitative linear temporal logics, which can be used to state that some property will eventually be satisfied, metric temporal logics allow to formulate constraints on how long it may take until the property is satisfied. While most of the work on combining Description Logics (DLs) with temporal logics has concentrated on qualitative temporal logics, there has recently been a growing interest in extending this work to the quantitative case. In this paper, we complement existing results on the combination of DLs with metric temporal logics over the natural numbers by introducing interval-rigid names. This allows to state that elements in the extension of certain names stay in this extension for at least some specified amount of time.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lutz, Carsten, Carlos Areces, Ian Horrocks, and Ulrike Sattler. Keys, Nominals, and Concrete Domains. Technische Universität Dresden, 2002. http://dx.doi.org/10.25368/2022.122.

Повний текст джерела
Анотація:
Many description logics (DLs) combine knowledge representation on an abstract, logical level with an interface to 'concrete' domains such as numbers and strings with built-in predicates such as <, +, and prefix-of. These hybrid DLs have turned out to be quite useful for reasoning about conceptual models of information systems, and as the basis for expressive ontology languages. We propose to further extend such DLs with key constraints that allow the expression of statements like 'US citizens are uniquely identified by their social security number'. Based on this idea, we introduce a number of natural description logics and perform a detailed analysis of their decidability and computational complexity. It turns out that naive extensions with key constraints easily lead to undecidability, whereas more careful extensions yield NEXPTIME-complete DLs for a variety of useful concrete domains.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baader, Franz, Stefan Borgwardt, and Marcel Lippmann. On the Complexity of Temporal Query Answering. Technische Universität Dresden, 2013. http://dx.doi.org/10.25368/2022.191.

Повний текст джерела
Анотація:
Ontology-based data access (OBDA) generalizes query answering in databases towards deduction since (i) the fact base is not assumed to contain complete knowledge (i.e., there is no closed world assumption), and (ii) the interpretation of the predicates occurring in the queries is constrained by axioms of an ontology. OBDA has been investigated in detail for the case where the ontology is expressed by an appropriate Description Logic (DL) and the queries are conjunctive queries. Motivated by situation awareness applications, we investigate an extension of OBDA to the temporal case. As query language we consider an extension of the well-known propositional temporal logic LTL where conjunctive queries can occur in place of propositional variables, and as ontology language we use the prototypical expressive DL ALC. For the resulting instance of temporalized OBDA, we investigate both data complexity and combined complexity of the query entailment problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії