Добірка наукової літератури з теми "Liquides poreux"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Liquides poreux".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Liquides poreux"
Murray, P., and J. de la Noüe. "Evaluation à l'échelle pilote d'un aérateur à cheminement prolongé." Revue des sciences de l'eau 1, no. 3 (April 12, 2005): 179–201. http://dx.doi.org/10.7202/705008ar.
Повний текст джерелаRazakarisoa, O., P. Muntzer, P. Rimmenlin, and L. Zilliox. "Incidence de la source de pollution sur la dissolution et la rétention sélective d'hydrocarbures en milieu poreux saturé en eau." Revue des sciences de l'eau 5, no. 2 (April 12, 2005): 157–78. http://dx.doi.org/10.7202/705126ar.
Повний текст джерелаO'Reilly, Niamh, Nicola Giri, and Stuart L James. "Porous Liquids." Chemistry - A European Journal 13, no. 11 (April 5, 2007): 3020–25. http://dx.doi.org/10.1002/chem.200700090.
Повний текст джерелаZhang, Shiguo, Kaoru Dokko, and Masayoshi Watanabe. "Porous ionic liquids: synthesis and application." Chemical Science 6, no. 7 (2015): 3684–91. http://dx.doi.org/10.1039/c5sc01374g.
Повний текст джерелаDaghari, H., and L. DeBacker. "Transfert d'eau dans un milieu poreux non isotherme." Revue des sciences de l'eau 13, no. 1 (April 12, 2005): 75–84. http://dx.doi.org/10.7202/705382ar.
Повний текст джерелаDreyer, Christian, Jacques Lahaye, and Pierre Ehrburger. "Pénétration d'une phase liquide dans un réseau poreux." Journal de Chimie Physique 83 (1986): 481–86. http://dx.doi.org/10.1051/jcp/1986830481.
Повний текст джерелаLenormand, R. "Liquids in porous media." Journal of Physics: Condensed Matter 2, S (December 1, 1990): SA79—SA88. http://dx.doi.org/10.1088/0953-8984/2/s/008.
Повний текст джерелаShtyka, Olga, Łukasz Przybysz, and Jerzy Sęk. "Transport of emulsions in granular porous media driven by capillary force." Acta Innovations, no. 26 (January 1, 2018): 38–44. http://dx.doi.org/10.32933/actainnovations.26.4.
Повний текст джерелаCooper, Andrew I. "Porous Molecular Solids and Liquids." ACS Central Science 3, no. 6 (May 18, 2017): 544–53. http://dx.doi.org/10.1021/acscentsci.7b00146.
Повний текст джерелаFulvio, Pasquale Fernando, and Sheng Dai. "Porous Liquids: The Next Frontier." Chem 6, no. 12 (December 2020): 3263–87. http://dx.doi.org/10.1016/j.chempr.2020.11.005.
Повний текст джерелаДисертації з теми "Liquides poreux"
Mathiaud, Romain. "Synthèse et structuration de disulfure de germanium en présence de liquides ioniques et de tensioactifs." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20088/document.
Повний текст джерелаThe controlled elaboration of nanostructured chalcogenides with high specific area or functionalized surface is an interesting challenge. Breakthrough in various domains such as catalysis, gas separation, electrochemistry, photovoltaics or optics can be achieved by the production of chalcogenide materials with functionalized surface or high specific area coupled with high polarisability.The aim of the thesis was to develop new soft chemistry routes for the synthesis of germanium disulfide at room temperature and pressure. Two sulfur precursors, i.e. hydrogen sulfide (H2S) and thioacetamide, and a germanium precursor, the tetraethoxigermanium were used for the syntheses. The syntheses were carried out either in the presence or in the absence of a template, in most case an ionic liquid (IL).Syntheses without templating agent led to amorphous or nano-organized GeS2 nanoparticles of 20 to 35 nm in diameter and interesting specific areas (320 m2.g-1 with H2S, 270 m2.g-1 with thioacetamide). Hybrid materials comprising GeS2 and LI cation with a general formula 0.2GeS2-0.8 organic cation were obtained in the presence of IL. The obtained particles of nanometric sizes and with hardly any specific area have a morphology that depends on the nature of the organic cation present during the synthesis, i .e. spheres or gypsum rosette-like particles. XPS measurements indicate the presence of Ge-S- bonds in the hybrid material. The use of lithium de bis(trifluorométhanesulfonyl)imide led to the elaboration of a GeS2-Li material which conductivity of ~10-10 S.cm-1 is that of an ionic salt.A first iono-chalcogel which could lead after optimization to a porous chalcogenide has been elaborated when using the IL as both the solvent and the templating agent and in the absence of any other solvent. The use of hexadecilamine (HDA) above its critical micellar concentration, led to hybrid nanoparticles of 15 nm in size with interesting specific area (130 m2.g-1) but also intra-granular porosity.In conclusion, this exploratory work led to the elaboration of GeS2 either as naoparticles with high specific area or particles with intragranular porosity or finally hybrid materials with GeS2 interacting with an organic cation, the final product depending upon the chosen soft chemistry route.Keywords: chalcogenide, ionic liquid, organic-inorganic hybrid, morphology, soft chemistry
Bahloul, Mostefa. "Modélisation de l'évolution de phases liquides hétérogènes." Pau, 1990. http://www.theses.fr/1990PAUU3001.
Повний текст джерелаBen, Ghozi-Bouvrande Justine. "Les liquides poreux : un nouveau concept pour la séparation chimique." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2022. http://theses.enscm.fr/ENSCM_2022_BENGHOZI-BOUVRANDE.pdf.
Повний текст джерелаOrganic volatile compounds are an important environmental stake. As liquid-liquid extraction is using huge quantities of organic solvents, finding an alternative process is the focus of many scientific research. Silica based porous liquids are made up with ionic functions grafted on silica nanoparticles. Thanks to their substantial versatility and low volatility, this type of porous liquid is considered in this thesis as a promising candidate to substitute organic phases of liquid-liquid extraction. After a state of the art describing the different types of porous liquids, this thesis describes the synthesis of the selected type I porous liquid and its complete characterization. Effect of several synthesis parameters on structure and porosity was also studied. In order to evaluate the possibility to use such porous liquid to extract metals, their permeability to gas and liquids was studied with small angles neutrons scattering. Thanks to an original in situ experiment coupling neutron scattering and contrast matching gas sorption, it was shown that porosity is not fully accessible to gas when the solid nanospheres are grafted to become liquid. However, a contrast matching study showed that both solid nanospheres and porous liquids are permeable to aqueous solutions. Preliminary extraction tests showed that thanks to this permeability, these materials are able to extract cations such as lead, lanthanum or uranium with interesting proportions. Different extraction mechanisms as sorption, precipitation or chelation on functional groups were obtained. This work shows that extraction of metal species by porous liquid is possible and opens many perspectives for optimization
Saugey, Anthony Jézéquel Louis. "Etudes des systèmes matériaux nanoporeux Liquides non mouillants /." [S.l.] : [s.n.], 2004. http://bibli.ec-lyon.fr/exl-doc/asaugey.pdf.
Повний текст джерелаSaugey, Anthony. "Etudes des systèmes matériaux nanoporeux : Liquides non mouillants." Ecully, Ecole centrale de Lyon, 2004. http://bibli.ec-lyon.fr/exl-doc/asaugey.pdf.
Повний текст джерелаNanoporous materials-non wetting liquid assemblies offer new opportunities to develop damping devices for the mechanical industry. Experimental characterizations and theoretical modelisation of thermodynamic equilibrium and nucleation phenomena gives the intrusion and extrusion pressure laws depending on the thermodynamical parameters. Experiments at medium and high speed were performed to validate materials behaviors for the applications. They show typical phenomena of the dynamics of flow and nucleation in the pores. The use of such assemblies in the development of vibration and shock damping devices has been studied as part of two research projects for the space and automotive industries
Ferdeghini, Filippo. "Liquides ioniques sous confinement nanométrique unidimensionnel." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066440/document.
Повний текст джерелаThe idea behind this project is to exploit the 1D nanometric confinement in order to increase the electrolytes ionic conductivity and, thus, the power of the lithium accumulators. We have focus on a specific class of electrolytes, which, owing to their physical and electrochemical stabilities, have been identified as very promising: the Ionic Liquids (ILs). We have confined the ILs in porous systems having a common topology (cylindrical pores macroscopically oriented), but with complementary physico-chemical properties: i) the porous alumina (AAO, hydrophilic interface, pores diameter between 25 and 160 nm) and ii) Carbon NanoTubes based membranes (CNT, hydrophobic interface, pores diameter of 4 nm).We have developed an original microscopic multiscale model, taking into account the complex dynamics of ILs cations: combination of i) fast reorientation dynamics of side alkyl-chains, ii) molecule diffusion within nanometric aggregates spontaneously formed in the ILs and iii) diffusion between the aggregates. This model reproduces in a very robust way the quasi-elastic neutrons scattering data on an extent interval of wave vector (0.1 à 2.5 Å-1) and time (10-1 à 2.103 ps). At this local scale, we do not observe any influence due to the confinement on the dynamics of the ILs confined in the AAO and CNTs. We show however that at microscopic (PFG-NMR) and macroscopic (impedance spectroscopy) scale the ILs confinement within the NTCs allows to obtain a conductivity gain of factor 3. A patent is filed
Lefèvre, Benoît. "Etude physico-chimique des mécanismes de dissipation d'énergie dans des systèmes solides poreux / liquides non-mouillants." Lyon, INSA, 2002. http://www.theses.fr/2002ISAL0054.
Повний текст джерелаThis work presents a physicochemical analysis of the mechanisms of energy dissipation during the forced intrusion of water in hydrophobic porous solids (for applications in damping). A bread panel of supports has been scanned in order to identify the influence of (1) textural parameters (pore size distribution, connectivity) and (2) chemical parameters (hydrophobicity nature). Model materials (MCM-41) allowed to understand intrusion and extrusion mechanisms, without any network effect. This point had not been clearly demonstrated before (Hg porosimetry). Vapour nucleation is believed to govern extrusion in some particular cases. Therefore, "intrinsic" hysteresis was defined. In disordered materials (silica gels, polymeric resins. . . ) porous texture generates additional dissipation ("geometrical" hysteresis ). A model is proposed in order to estimate the weight of each contribution to the whole energy dissipation
Pizzoccaro, Marie-Alix. "Confinement et greffage de liquides ioniques dans des membranes céramiques mésoporeuses pour le transport sélectif du CO2." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS007/document.
Повний текст джерелаIn competition with amines, ionic liquids (ILs) are known to interact strongly and reversibly with acid gases, making supported IL-membrane (SILMs) versatile materials for use in CO2 membrane separation applications. It is possible to finely tune SILMs properties for CO2 adsorption/separation by tailoring the characteristics of both the support (e.g., porosity, surface area, composition, etc.) and the ionic liquid (cations and anions). Up to now, nanoporous polymer supports have been favored for preparing SILMs, in spite of their relative instability during continuous separation processes in the presence of acidic gases. Recently, porous ceramic supports have been considered due to their excellent thermal and mechanical resistance. Most of the SILMs are prepared by impregnation/infiltration of IL in the pores of ceramic support which leads to the formation of composite membrane materials with either a physisorbed or mechanically trapped IL in the support. Despite their promising performance, such SILMs exhibit inherent limitations such as facile IL disarrangement, heterogeneous distribution, and limited stability upon ageing.In this Ph.D work, carried out in collaboration between the Institut Européen des Membranes (IEM) and the Institut Charles Gerhardt de Montpellier (ICGM), a new generation of SILMs has been developed in which ILs are confined within the pores of a mesoporous ceramic support by chemical grafting. The membranes are prepared in three steps:i) Synthesis and characterization of new ILs bearing a coupling function which allow the grafting on the surface of ceramic oxide supports and determination of the CO2 absorption capacity of the new ILs developed;ii) Elaboration and/or optimization of relevant synthesis protocols for grafting ILs on/in γ-alumina powders and physico-chemical characterizations of the hybrid materials;iii) Transfer of the optimized grafting protocols on commercial porous ceramic support with γ-alumina top-layer to produce Grafted Ionic Liquid Membranes (GILMs) and evaluate their performance for CO2 separation.An original research strategy, based on new ionic liquids and innovative membrane concepts have been addressed in this work, illustrating the contribution of a multi-step approach towards the development of membranes for CO2 separation
Santos, Eduardo Pena dos. "Fibres et céramiques mésoporeuses de zircone préparées avec templates de cristaux liquides gonflés." Montpellier 2, 2005. http://www.theses.fr/2005MON20010.
Повний текст джерелаGuillemot, Ludivine. "Systèmes hétérogènes lyophobes : Influence de la température et de la vitesse sur les cycles d’intrusion/extrusion forcées de liquides non-mouillants dans des matériaux mésoporeux." Phd thesis, Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0126/these.pdf.
Повний текст джерелаA lyophobic heterogeneous system consists in a mesoporous material and a non-wetting liquid. The liquid can not enter the pores at atmospheric pressure, but by increasing the pressure, it becomes possible to force the liquid to penetrate, then by reducing the pressure, to go out of the pores of the material. Then, a pressure hysteresis is measured, significant of an energy dissipation that can be used for very specific damping applications for space industry. This study tries to understand the physical phenomena that regulate the process of intrusion and extrusion of the liquid in the pores of nanometer size, and to characterize the effects of velocity and temperature on the hysteresis loops. An original test device was designed to perform cycles of intrusion / extrusion at different temperatures (20 - 80 ° C) and speeds (0. 5 - 1000cm/min). Several liquids such as water, salt water and Galinstan (liquid metal alloy at room temperature) and materials of different mesoporous structure of were tested. Macroscopic thermodynamic theories (theory of capillarity and model of nucleation) have been used to explain the experimental measurements. The agreement experiment / theory is very good and has led to show the necessity of taking into account the line tension in the energy of nucleation. A value of this line tension has been determined experimentally. Thus, it is now possible to predict the behavior of these damping systems
Книги з теми "Liquides poreux"
A, Galwey, ed. Liquid and vapor flows in porous bodies: Surface phenomena. Amsterdam: Gordon & Breach, 1999.
Знайти повний текст джерелаChuraev, N. V. Liquid and vapor flows in porous bodies: Surface phenomena. Amsterdam, The Netherlands: Gordon & Breach Science Publishers, 2000.
Знайти повний текст джерелаDukhin, Andrei S., and Philip J. Goetz. Characterization of liquids, nano- and microparticulates, and porous bodies using ultrasound. 2nd ed. Amsterdam: Elsevier, 2010.
Знайти повний текст джерелаElgibaly, Ahmed Ahmed Mohamed. The simultaneous flow of two immiscible liquids through a porous medium. Salford: University ofSalford, 1987.
Знайти повний текст джерелаYoon, B. G. A study of the liquid absorption properties of porous construction materials. Manchester: UMIST, 1993.
Знайти повний текст джерелаBuchlin, J.-M. OPERA II: A test facility to study the thermohydraulics of liquid saturated self heated porous media. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1986.
Знайти повний текст джерелаBorman, V. D. Dynamics of infiltration of a nanoporous media with a nonwetting liquid. Hauppauge, N.Y: Nova Science Publishers, 2010.
Знайти повний текст джерелаOlagunju, M. O. A study of efficient recovery of liquid from fine air-liquid mists of the form generated in gas turbine bearing chambers using a rotating porous disc. London: University of East London, 1998.
Знайти повний текст джерелаThomas, Lee W. Three-phase dynamic displacement measurements of relative permeability in porous media using three immiscible liquids: A thesis in Petroleum and Natural Gas Engineering. Springfield, Va: Available from the National Technical Information Service, 1991.
Знайти повний текст джерелаInteractions Solide-Liquide dans les Milieux Poreux: Solid-Liquid Interactions in porous media; colloque-bilan nancy 6-10 fevrier 1984. Paris: Societe des Editions Technip, 1985.
Знайти повний текст джерелаЧастини книг з теми "Liquides poreux"
Dani, Alessandro, Valentina Crocellà, Giulio Latini, and Silvia Bordiga. "CHAPTER 2. Porous Ionic Liquid Materials." In Polymerized Ionic Liquids, 23–82. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010535-00023.
Повний текст джерелаRurali, Riccardo. "Gas and Liquid Doping Gas and liquid doping of Porous Silicon." In Handbook of Porous Silicon, 639–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05744-6_66.
Повний текст джерелаSchwieger, Wilhelm, Thangaraj Selvam, Michael Klumpp, and Martin Hartmann. "Porous Inorganic Materials as Potential Supports for Ionic Liquids." In Supported Ionic Liquids, 37–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654789.ch3.
Повний текст джерелаLowell, S., Joan E. Shields, Martin A. Thomas, and Matthias Thommes. "Mercury Porosimetry: Non-wetting Liquid Penetration." In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, 157–88. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2303-3_10.
Повний текст джерелаAybers, M. N. "Liquid Seeping Into Porous Ground." In Convective Heat and Mass Transfer in Porous Media, 1061–69. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3220-6_38.
Повний текст джерелаRurali, Riccardo. "Gas and Liquid Doping of Porous Silicon." In Handbook of Porous Silicon, 1–7. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04508-5_66-1.
Повний текст джерелаRurali, Riccardo. "Gas and Liquid Doping of Porous Silicon." In Handbook of Porous Silicon, 973–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71381-6_66.
Повний текст джерелаOlhero, Susana M. H., J. M. P. Q. Delgado, José Maria F. Ferreira, and C. Pinho. "Development of Porous Ceramics for Gas Burners." In Diffusion in Solids and Liquids III, 814–19. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-51-5.814.
Повний текст джерелаZhang, Haifei. "Porous Materials by Templating of Small Liquid Drops." In Hierarchically Structured Porous Materials, 209–39. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527639588.ch7.
Повний текст джерелаBarrulas, Raquel V., Marcileia Zanatta, and Marta C. Corvo. "Porous Ionic Liquid Derived Materials for CO2 Emissions Mitigation." In Advanced Functional Porous Materials, 613–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85397-6_20.
Повний текст джерелаТези доповідей конференцій з теми "Liquides poreux"
Razavi, Reza, and Stephen A. Sarles. "Modeling and Experiments on Liquid-Infused, Mechanically Activated Porous Materials." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9046.
Повний текст джерелаAnderson, Gary A., Anil Kommareddy, Zhengrong Gu, Joanne Puetz Anderson, and Stephen P. Gent. "Experimental Determination of Pressure Loss Through Porous Membranes." In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6460.
Повний текст джерелаAnanthanarayan, Venkatesh T., and Fyodor Shutov. "Morphology and Mechanical Properties of a Novel Family of Porous Polymer Based on UHMW Polyethylene for Biomedical Applications." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1946.
Повний текст джерелаShahraeeni, Mehdi, and Mina Hoorfar. "Effect of PTFE Loading on the Performance of the GDL in Water Removal." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33081.
Повний текст джерелаYang, Yuelei, Frank M. Gerner, and H. Thurman Henderson. "Mathematical and Experimental Investigation of Liquid-Gas Interfaces in Porous Wicks." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39180.
Повний текст джерелаMoeini Sedeh, Mahmoud, and J. M. Khodadadi. "Effect of Marangoni Convection on Solidification of Phase Change Materials Infiltrated in Porous Media in Presence of Voids." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17316.
Повний текст джерелаColin, Julien, Wangshu Chen, Joel Casalinho, Mohamed El Amine Ben Amara, Moncef Stambouli, and Patrick Perré. "Drying intensification by vibration: fundamental study of liquid water inside a pore." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7961.
Повний текст джерелаSchiaffino, Arturo, Ashesh Chattopadhyay, Shaikh Tanveer Hossain, Vinod Kumar, V. M. K. Kotteda, and Arturo Bronson. "Computational Study of High Temperature Liquid Metal Infusion." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69577.
Повний текст джерелаVarlakov, Andrey P., Alexandr V. Germanov, Sergey A. Dmitriev, Alexandr S. Barinov, and Artur E. Arustamov. "Cementation of Problem LRW Using Porous Concrete." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16139.
Повний текст джерелаZidansek, A., S. Kralj, G. Lahajnar, Slobodan Zumer, and Robert Blinc. "Deuteron NMR study of an 8CB liquid crystal confined to porous glass." In Liquid Crystals, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski, and Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299982.
Повний текст джерелаЗвіти організацій з теми "Liquides poreux"
Rimsza, Jessica, Tina Nenoff, Matthew Christian, and Matthew Hurlock. Carbon Capture in Novel Porous Liquids . Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1888616.
Повний текст джерелаYortsos, Yanic C., A. G. Yiotis, A. K. Stubos, and A. G. Boundovis. A 2-D Pore-Network Model of the Drying of Single-Component Liquids in Porous Media. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750286.
Повний текст джерелаTernan, M. The diffusion of liquids in pores. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/302633.
Повний текст джерелаStubos, A. K., C. Satik, and Y. C. Yortsos. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10159907.
Повний текст джерелаStubos, A. K., C. Satik, and Y. C. Yortsos. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/5121949.
Повний текст джерелаCooper, Gene R. Moments on a Coning Projectile by a Spinning Liquid in Porous Media. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada444065.
Повний текст джерелаFLACH, GREGORY. Porous Medium Analysis or Interstitial Liquid Removal from Tank 41 and Tank 3. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/822653.
Повний текст джерелаNitao, J. J., and T. A. Buscheck. On the movement of a liquid front in an unsaturated, fractured porous medium, Part 1. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/137640.
Повний текст джерелаCooper, Gene R. Moments on a Coning M864 by a Liquid Payload: The Candlestick Problem and Porous Media. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada453380.
Повний текст джерелаKaplan, Daniel, Kenneth Gibbs, Abdullah Mamun, and Brian Powell. Non-Destructive Imaging of a Liquid Moving Through Porous Media Using a Computer Tomography Scanner. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647017.
Повний текст джерела