Добірка наукової літератури з теми "Linearized theory of elasticity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Linearized theory of elasticity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Linearized theory of elasticity"

1

Slaughter, WS, and J. Petrolito. "Linearized Theory of Elasticity." Applied Mechanics Reviews 55, no. 5 (September 1, 2002): B90—B91. http://dx.doi.org/10.1115/1.1497478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Javili, Ali, Niels Saabye Ottosen, Matti Ristinmaa, and Jörn Mosler. "Aspects of interface elasticity theory." Mathematics and Mechanics of Solids 23, no. 7 (April 10, 2017): 1004–24. http://dx.doi.org/10.1177/1081286517699041.

Повний текст джерела
Анотація:
Interfaces significantly influence the overall material response especially when the area-to-volume ratio is large, for instance in nanocrystalline solids. A well-established and frequently applied framework suitable for modeling interfaces dates back to the pioneering work by Gurtin and Murdoch on surface elasticity theory and its generalization to interface elasticity theory. In this contribution, interface elasticity theory is revisited and different aspects of this theory are carefully examined. Two alternative formulations based on stress vectors and stress tensors are given to unify various existing approaches in this context. Focus is on the hyper-elastic mechanical behavior of such interfaces. Interface elasticity theory at finite deformation is critically reanalyzed and several subtle conclusions are highlighted. Finally, a consistent linearized interface elasticity theory is established. We propose an energetically consistent interface linear elasticity theory together with its appropriate stress measures.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Freddi, Francesco, and Gianni Royer-Carfagni. "From Non-Linear Elasticity to Linearized Theory: Examples Defying Intuition." Journal of Elasticity 96, no. 1 (February 20, 2009): 1–26. http://dx.doi.org/10.1007/s10659-009-9191-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sini, Mourad. "Absence of Positive Eigenvalues for the Linearized Elasticity System." Integral Equations and Operator Theory 49, no. 2 (June 1, 2004): 255–77. http://dx.doi.org/10.1007/s00020-002-1265-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ciarlet, Philippe G., and Cristinel Mardare. "The intrinsic theory of linearly elastic plates." Mathematics and Mechanics of Solids 24, no. 4 (May 28, 2018): 1182–203. http://dx.doi.org/10.1177/1081286518776047.

Повний текст джерела
Анотація:
In an intrinsic approach to a problem in elasticity, the only unknown is a tensor field representing an appropriate ‘measure of strain’, instead of the displacement vector field in the classical approach. The objective of this paper is to study the displacement traction problem in the special case where the elastic body is a linearly elastic plate of constant thickness, clamped over a portion of its lateral face. In this respect, we first explicitly compute the intrinsic three-dimensional boundary condition of place in terms of the Cartesian components of the linearized strain tensor field, thus avoiding the recourse to covariant components in curvilinear coordinates and providing an interesting example of actual computation of an intrinsic boundary condition of place in three-dimensional elasticity. Second, we perform a rigorous asymptotic analysis of the three-dimensional equations as the thickness of the plate, considered as a parameter, approaches zero. As a result, we identify the intrinsic two-dimensional equations of a linearly elastic plate modelled by the Kirchhoff–Love theory, with the linearized change of metric and change of curvature tensor fields of the middle surface of the plate as the new unknowns, instead of the displacement field of the middle surface in the classical approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

CIARLET, PHILIPPE G., GIUSEPPE GEYMONAT, and FRANÇOISE KRASUCKI. "A NEW DUALITY APPROACH TO ELASTICITY." Mathematical Models and Methods in Applied Sciences 22, no. 01 (January 2012): 1150003. http://dx.doi.org/10.1142/s0218202512005861.

Повний текст джерела
Анотація:
The displacement-traction problem of three-dimensional linearized elasticity can be posed as three different minimization problems, depending on whether the displacement vector field, or the stress tensor field, or the strain tensor field, is the unknown. The objective of this paper is to put these three different formulations of the same problem in a new perspective, by means of Legendre–Fenchel duality theory. More specifically, we show that both the displacement and strain formulations can be viewed as Legendre–Fenchel dual problems to the stress formulation. We also show that each corresponding Lagrangian has a saddle-point, thus fully justifying this new duality approach to elasticity.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CIARLET, PHILIPPE G., LILIANA GRATIE, CRISTINEL MARDARE, and MING SHEN. "SAINT VENANT COMPATIBILITY EQUATIONS ON A SURFACE APPLICATION TO INTRINSIC SHELL THEORY." Mathematical Models and Methods in Applied Sciences 18, no. 02 (February 2008): 165–94. http://dx.doi.org/10.1142/s0218202508002644.

Повний текст джерела
Анотація:
We first establish that the linearized change of metric and change of curvature tensors, with components in L2 and H-1 respectively, associated with a displacement field, with components in H1, of a surface S immersed in ℝ3 must satisfy in the distributional sense compatibility conditions that may be viewed as the linear version of the Gauss and Codazzi-Mainardi equations. These compatibility conditions, which are analogous to the familiar Saint Venant equations in three-dimensional elasticity, constitute the Saint Venant equations on the surface S. We next show that these compatibility conditions are also sufficient, i.e. that they in fact characterize the linearized change of metric and the linearized change of curvature tensors in the following sense: If two symmetric matrix fields of order two defined over a simply-connected surface S ⊂ ℝ3 satisfy the above compatibility conditions, then they are the linearized change of metric and linearized change of curvature tensors associated with a displacement field of the surface S, a field whose existence is thus established. The proof provides an explicit algorithm for recovering such a displacement field from the linearized change of metric and linearized change of curvature tensors. This algorithm may be viewed as the linear counterpart of the reconstruction of a surface from its first and second fundamental forms. Finally, we show how these results can be applied to the "intrinsic theory" of linearly elastic shells, where the linearized change of metric and change of curvature tensors are the new unknowns. These new unknowns solve a quadratic minimization problem over a space of tensor fields whose components, which are only in L2, satisfy the Saint Venant compatibility conditions on a surface in the sense of distributions.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jesenko, Martin, and Bernd Schmidt. "Geometric linearization of theories for incompressible elastic materials and applications." Mathematical Models and Methods in Applied Sciences 31, no. 04 (March 22, 2021): 829–60. http://dx.doi.org/10.1142/s0218202521500202.

Повний текст джерела
Анотація:
We derive geometrically linearized theories for incompressible materials from nonlinear elasticity theory in the small displacement regime. Our nonlinear stored energy densities may vary on the same (small) length scale as the typical displacements. This allows for applications to multiwell energies as, e.g. encountered in martensitic phases of shape memory alloys and models for nematic elastomers. Under natural assumptions on the asymptotic behavior of such densities we prove Gamma-convergence of the properly rescaled nonlinear energy functionals to the relaxation of an effective model. The resulting limiting theory is geometrically linearized in the sense that it acts on infinitesimal displacements rather than finite deformations, but will in general still have a limiting stored energy density that depends in a nonlinear way on the infinitesimal strains. Our results, in particular, establish a rigorous link of existing finite and infinitesimal theories for incompressible nematic elastomers.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Froiio, Francesco, and Antonis Zervos. "Second-grade elasticity revisited." Mathematics and Mechanics of Solids 24, no. 3 (April 24, 2018): 748–77. http://dx.doi.org/10.1177/1081286518754616.

Повний текст джерела
Анотація:
We present a compact, linearized theory for the quasi-static deformation of elastic materials whose stored energy depends on the first two gradients of the displacement (second-grade elastic materials). The theory targets two main issues: (1) the mechanical interpretation of the boundary conditions and (2) the analytical form and physical interpretation of the relevant stress fields in the sense of Cauchy. Since the pioneering works of Toupin and Mindlin et al. in the 1960’s, a major difficulty has been the lack of a convincing mechanical interpretation of the boundary conditions, causing second-grade theories to be viewed as ‘perturbations’ of constitutive laws for simple (first-grade) materials. The first main contribution of this work is the provision of such an interpretation based on the concept of ortho-fiber. This approach enables us to circumvent some difficulties of a well-known ‘reduction’ of second-grade materials to continua with microstructure (in the sense of Mindlin) with internal constraints. A second main contribution is the deduction of the form of the linear and angular-momentum balance laws, and related stress fields in the sense of Cauchy, as they should appear in a consistent Newtonian formulation. The viewpoint expressed in this work is substantially different from the one in a well known and influential paper by Mindlin and Eshel in 1968, while affinities can be found with recent studies by dell’Isola et al. The merits of the new formulation and the associated numerical approach are demonstrated by stating and solving three example boundary value problems in isotropic elasticity. A general finite element discretization of the governing equations is presented, using C1-continuous interpolation, while the numerical results show excellent convergence even for relatively coarse meshes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giovine, Pasquale. "A Multiscale Approximation Method to Describe Diatomic Crystalline Systems: Constitutive Equations." Journal of Multiscale Modelling 09, no. 03 (September 2018): 1840001. http://dx.doi.org/10.1142/s1756973718400012.

Повний текст джерела
Анотація:
We model the mechanical behavior of diatomic crystals in the light of mixture theory. Use is made of an approximation method similar to one proposed by Signorini within the theory of elasticity, by supposing that the relative motion between phases is infinitesimal. The constitutive equations for a mixture of elastic bodies in the absence of diffusion are adapted to the partially linearized case considered here, and the representation theorems for constitutive fields are applied to obtain the final expression of dynamical equations in the form which appears in theories of continua with vectorial microstructure. Comparisons are made with results of lattice theories.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Linearized theory of elasticity"

1

Bridgeman, Leila. "Stability and a posteriori error analysis of discontinious Galerkin methods for linearized elasticity." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95054.

Повний текст джерела
Анотація:
We consider discontinuous Galerkin finite element methods for the discretization of linearized elasticity problems in two space dimensions. Inf-sup stability results on the continuous and discrete level are provided. Furthermore, we derive lower and upper a posteriori error bounds that are robust with respect to nearly incompressible materials, and can easily be implemented within an automatic mesh refinement procedure. The theoretical results are illustrated with a series of numerical experiments.
Nous considérons les méthodes de Galerkin pour la discrétisation des relations déformations-déplacements linéaires en deux dimensions d'espace. Des résultats du stabilité inf-sup sur les niveaux continus et discrets sont fournis. En plus, nous dérivons des limites inférieurs et supérieures pour l'erreur a posteriori qui peuvent être utilisées dans des procédures de maillage automatisées sans difficulté et qui demeurent robustes dans le cas des matériaux qui ne sont presque pas compressibles. Les résultats théoriques sont illustrés par des expériences numériques.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bosher, Simon Henry Bruce. "Non-linear elasticity theory." Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Menéndez-Conde, Lara Federico. "Scattering theory for isotropic elasticity." Thesis, University of Sussex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khumalo, Melusi. "Dynamics of numerics of linearized collocation methods." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ47508.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Al-Naseri, Haidar. "Quantum kinetic relativistic theory of linearized waves in magnetized plasmas." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150292.

Повний текст джерела
Анотація:
In this work we have studied linear wave propagation in magnetized plasmas using a fully relativistic kinetic equation of spin-1/2 particles in the long scale approximation. The linearized kinetic equation is very long and complicated, hence we worked with restricted geometries in order to simplify the calculations. The dispersion relation of the relativistic model was calculated and compared with a dispersion relation from a previous work at the semi-relativistic limit. Moreover, a new mode was discovered that survives in the zero temperature limit. The origin of the mode in the kinetic equation was discussed and derived from a non-relativistic kinetic equation from a previous work.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Дядечко, Алла Миколаївна, Алла Николаевна Дядечко, Alla Mykolaivna Diadechko, and N. V. Bondar. "The application of the elasticity theory." Thesis, Видавництво СумДУ, 2010. http://essuir.sumdu.edu.ua/handle/123456789/17882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Campini, Marco. "The fluid dynamical limits of the linearized Boltzmann equation." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185664.

Повний текст джерела
Анотація:
The old question concerning the mathematical formulation of the fluid dynamic limits of kinetic theory is examined by studying the solution of the Cauchy problem for two differently scaled linearized Boltzmann equations on periodic domain as the mean free path of the particles becomes small. Under minimal assumptions on the initial data, by using an a priori estimate, it is possible, in a Hilbert space functional frame, to prove the weak convergence of solutions toward a function that has the form of an infinitesimal maxwellian in the velocity variable. The velocity moments of this function are then proved to satisfy either the linearized Euler or the Stokes system of equations (depending on the chosen scaling), by passing to the limit in the conservation relations derived from the Boltzmann equation. A theorem injecting continuously the intersection of certain weak spaces into a normed one is proved. Together with properties of the Euler semigroup, this allows to show strong convergence of the first three moments of the distribution function toward the macroscopic quantities density, bulk velocity and temperature, solutions of the linearized Euler system. The Stokes case is treated somewhat differently, through the introduction of a result, proved by using the adjoint formulation for linear kinetic equations, that extends the averaging theory of Golse-Lions-Perthame-Sentis. The desired convergence for the divergence-free component of the second moment toward the macroscopic velocity is then shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Choi, Jongdae. "Axisymmetric problems of toroids in the theory of elasticity." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/17922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sofer, Miguel Marcelo. "On equilibrium, stability and nonlocality in elasticity theory /." [S.l.] : [s.n.], 1991. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Jinyu. "An elasticity theory for relatively short DNA molecules." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Linearized theory of elasticity"

1

Linearized theory of elasticity. Boston: Birkhäuser, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Slaughter, William S. The Linearized Theory of Elasticity. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Timoshenko, Stephen. Theory of elasticity. 3rd ed. New York: McGraw-Hill, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

M, Lifshit͡s︡ E., Kosevich Arnolʹd Markovich, and Pitaevskiĭ L. P, eds. Theory of elasticity. 3rd ed. Oxford [Oxfordshire]: Pergamon Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maceri, Aldo. Theory of elasticity. Heidelberg: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alexander, Belyaev, ed. Theory of elasticity. Berlin: Springer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maceri, Aldo. Theory of Elasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11392-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lurie, A. I., and Alexander Belyaev. Theory of Elasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-26455-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sitharam, T. G., and L. Govindaraju. Theory of Elasticity. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4650-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saada, Adel S. Elasticity: Theory and applications. 2nd ed. Ft. Lauderdale, FL: J. Ross Pub., 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Linearized theory of elasticity"

1

Slaughter, William S. "Linearized Elasticity Problems." In The Linearized Theory of Elasticity, 221–54. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Slaughter, William S. "Review of Mechanics of Materials." In The Linearized Theory of Elasticity, 1–21. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Slaughter, William S. "Variational Methods." In The Linearized Theory of Elasticity, 387–429. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Slaughter, William S. "Complex Variable Methods." In The Linearized Theory of Elasticity, 431–512. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Slaughter, William S. "Mathematical Preliminaries." In The Linearized Theory of Elasticity, 23–95. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Slaughter, William S. "Kinematics." In The Linearized Theory of Elasticity, 97–155. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Slaughter, William S. "Forces and Stress." In The Linearized Theory of Elasticity, 157–92. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Slaughter, William S. "Constitutive Equations." In The Linearized Theory of Elasticity, 193–220. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Slaughter, William S. "Two-Dimensional Problems." In The Linearized Theory of Elasticity, 255–303. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Slaughter, William S. "Torsion of Noncircular Cylinders." In The Linearized Theory of Elasticity, 305–29. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0093-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Linearized theory of elasticity"

1

Kersken, Hans-Peter, Christian Frey, Christian Voigt, and Graham Ashcroft. "Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22940.

Повний текст джерела
Анотація:
A computational method for performing aeroelastic analysis using either a time-linearized or an unsteady time-accurate solver for the compressible Reynolds averaged Navier-Stokes (RANS) equations is described. The time-linearized solver employs the assumption of small time-harmonic perturbations and is implemented via finite differences of the nonlinear flux routines of the time-accurate solver. The resulting linear system is solved using a parallelized Generalized Minimal Residual (GMRES) method with block-local preconditioning. The time accurate solver uses a dual time stepping algorithm for the solution of the unsteady RANS equations on a periodically moving computational grid. For either solver, and both flutter and forced response problems, a mapping algorithm has been developed to map structural eigenmodes, obtained from finite element structural analysis, from the surface mesh of the finite element structural solver to the surface mesh of the finite volume flow solver. Using the surface displacement data an elliptic mesh deformation algorithm, based on linear elasticity theory, is then used to compute the grid deformation vector field. The developed methods are validated first using standard configuration ten. Finally, for an ultra high bypass ratio fan the results of the time-linearized and the unsteady module are compared. The gain in prediction time using the linearized methods is highlighted.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yahnioglu, Nazmiye, and Ulku Babuscu Yesil. "Concentration of Stress Around the Cylindrical Hole in an Initial Stressed Rectangular Orthotropic Thick Plate." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24698.

Повний текст джерела
Анотація:
An orthotropic pre-stressed thick plate with a cylindrical hole under additional static loading on the upper face-plane of the plate have been studied within the framework of the Three-Dimensional Linearized Theory of Elasticity (TDLTE) in Initially Stressed Bodies. The corresponding problem formulation is presented and, in order to find the solution to this problem, the 3D finite element method is employed. The numerical results on the concentration of the stress around the cylindrical hole and the influence of the initial forces, geometrical and mechanical parameters on these concentrations are presented in graphical form and discussed. According to these results, in particular it is established that the stress distributions around the cylindrical hole changed significantly with the initial stretching or compressing forces.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Akbarov, S. D., and C. Ipek. "On the Dispersion of the Axisymmetric Longitudinal Waves in the Pre-Strained Bi-Layered Hollow Cylinder Under Imperfect Contact Between the Layers." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62886.

Повний текст джерела
Анотація:
This paper studies the influence of the shear-spring type imperfectness of the interface conditions on the dispersion of the axisymmetric longitudinal waves in the pre-strained bi-layered hollow cylinder made from hyper-elastic compressible materials. The investigations are made within the framework of the piecewise homogeneous body model by utilizing the 3D linearized theory of elastic waves in initially stressed bodies. The elasticity relations of the layers’ materials are given through the harmonic potential. The shear spring type imperfectness of the interface conditions is considered and the degree of this imperfectness is estimated by the shear-spring parameter. Numerical results on the influence of the problem parameters, especially, of the shear-spring parameter on the behavior of the dispersion curves related to the fundamental mode are presented and discussed. In particular, it is established that as a result of the aforementioned imperfectness of the interface conditions, the dispersion curve related to the fundamental mode has two branches: the first disappears, but the second approaches the dispersion curve obtained for the perfect interface case by decreasing the shear-spring parameter.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

I˙lhan, Nihat, and Surkay Akbarov. "On the Dynamics of the Harmonic Oscillating and Moving Strip Load Acting on the System Consisting on the Pre-Stressed Covering Layer and Pre-Stressed Half-Plane." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11053.

Повний текст джерела
Анотація:
This paper investigates the dynamic response to a time-harmonic oscillating moving strip load of a system comprising an initially stressed covering layer and initially stressed half-plane, within the scope of the piecewise homogeneous body model utilizing three-dimensional linearized wave propagation theory in the initially stressed body. It is assumed that the materials of the layer and half-plane are anisotropic (orthotropic), and that the velocity of the line-located time-harmonic oscillating moving load is constant as it acts on the free face of the covering layer. Our investigations were carried out for a two dimensional problem (plane-strain state) under subsonic velocity for a moving load in complete and incomplete contact conditions. The corresponding numerical results were obtained for the stiffer layer and soft half-plane system in which the modulus of elasticity of the covering layer material (for the moving direction of the load) is greater than that of the half-plane material. Numerical results are presented and discussed for the critical velocity and stress distribution for various values of the problem parameters. In particular, it was established that the critical velocity of the moving load is controlled mainly with a Rayleigh wave speed of a half-plane material and the initial stretching of the covering layer causes these values to increase. Moreover, it was established that with the oscillating frequency of the moving load, the values of the critical velocity decrease.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haugaard, Asger M., and Ilmar F. Santos. "Modeling of Flexible Tilting Pad Journal Bearings With Radial Oil Injection." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71097.

Повний текст джерела
Анотація:
The static and dynamic properties of tilting-pad journal bearings with controllable radial oil injection are investigated. The tilting pads are modelled as flexible structures and their dynamics are described using a three dimensional finite element framework and linear elasticity. The oil film pressure and flow are considered to follow the modified Reynolds equation, which includes the contribution from controllable radial oil injection. The Reynolds equation is solved using a two dimensional finite element mesh. The rotor is considered to be rigid. The servo-valve flow is governed by a second order ordinary differential equation, where the right hand side is controlled by an electronic input signal. The constitutive flow pressure relationship of the injection nozzles is that of a fully developed laminar velocity profile and the servo-valve is introduced into the system of equations by a volume conservation consideration. The Reynolds equation is linearized with respect to displacements and velocities of the nodal degrees of freedom. When all nodal points satisfy the static equilibrium condition, the system of equations is dynamically perturbed and subsequently condensed to a 2 by 2 system, keeping only the lateral motion of the rotor. As expected, rotor stability is heavily influenced by the control parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kulvait, Vojtech. "Nonlinear elastic models within linearized elasticity and applications." In XVII International Conference on Nonlinear Elasticity in Materials. ASA, 2012. http://dx.doi.org/10.1121/1.4748242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Li-Ping. "Linearized Goppa Codes." In 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guohong Yun, Jiangang Li, and B. Narsu. "Elasticity theory of ultrathin nanofilms." In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Itou, Hiromichi, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "On Convergent Expansions of Solutions of the Linearized Elasticity Equation near Singular Points." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yu, Jiun-Hung, and Hans-Andrea Loeliger. "Decoding Gabidulin Codes via Partial Inverses of Linearized Polynomials." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Linearized theory of elasticity"

1

Silling, Stewart Andrew. Linearized theory of peridynamic states. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/959094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silling, S. A. Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aidun, J. B., and F. L. Addessio. A cell model for homogenization of fiber-reinforced composites: General theory and nonlinear elasticity effects. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/130626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tohamy, Soumaya M., and J. Wilson Mixon. The Use of Cobb-Douglas and Constant Elasticity of Substitution Utility Functions to Illustrate Consumer Theory. Bristol, UK: The Economics Network, June 2002. http://dx.doi.org/10.53593/n142a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії