Добірка наукової літератури з теми "Linear elasticty"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Linear elasticty".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Linear elasticty"

1

Bakushev, S. V. "LINEAR THEORY OF ELASTICITY WITH QUADRATIC SUMMAND." STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS 303, no. 4 (February 28, 2022): 29–36. http://dx.doi.org/10.37538/0039-2383.2022.1.29.36.

Повний текст джерела
Анотація:
We suggest a linear theory version based on Taylor decompositions for stresses and power-series for quadratic summand deformations. Thus, static equations of equilibrium in stresses are written in the form of the second-order partial derivatives differential equations. The resolving equations of equilibrium in displacements are represented in the form of the third order partial derivatives differential equations. The physical equations in this version of the linear theory of elasticity are written in the same way as in the classical linear theory of elasticity. Equilibrium equations, along with other parameters – physical constants of the medium – contain minor parameters dx, dy, dz, the value of which, as shown by numerical modelling, has little effect on the nature of the stress-strain state. It is suggested to use experimental data to determine them. Along with the formulating of the basic equations of the three-dimensional theory of elasticity, particular cases of the stress-strain state of elastic continuous medium are considered: uniaxial stressed state; uniaxial deformed state; flat deformation; generalized plane stress state. Determination of the stressed and deformed state of a thin elastic bar by integrating the resolving equations in stresses and displacements is considered as examples. The suggested version of the linear theory of elasticity, due to the quadratic summand in Taylor decompositions for stresses and in power-series for deformations, expands the classical linear theory of elasticity and, with an appropriate experimental justification, can lead to new qualitative effects in the calculation of elastic deformable bodies.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hassanpour, Soroosh, and Glenn R. Heppler. "Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations." Mathematics and Mechanics of Solids 22, no. 2 (August 5, 2016): 224–42. http://dx.doi.org/10.1177/1081286515581183.

Повний текст джерела
Анотація:
This paper is devoted to a review of the linear isotropic theory of micropolar elasticity and its development with a focus on the notation used to represent the micropolar elastic moduli and the experimental efforts taken to measure them. Notation, not only the selected symbols but also the approaches used for denoting the material elastic constants involved in the model, can play an important role in the micropolar elasticity theory especially in the context of investigating its relationship with the couple-stress and classical elasticity theories. Two categories of notation, one with coupled classical and micropolar elastic moduli and one with decoupled classical and micropolar elastic moduli, are examined and the consequences of each are addressed. The misleading nature of the former category is also discussed. Experimental investigations on the micropolar elasticity and material constants are also reviewed where one can note the questionable nature and limitations of the experimental results reported on the micropolar elasticity theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

KOENEMANN, FALK H. "LINEAR ELASTICITY AND POTENTIAL THEORY: A COMMENT ON GURTIN (1972)." International Journal of Modern Physics B 22, no. 28 (November 10, 2008): 5035–39. http://dx.doi.org/10.1142/s0217979208049224.

Повний текст джерела
Анотація:
In an exhaustive presentation of the linear theory of elasticity by Gurtin [The Linear Theory of Elasticity (Springer-Verlag, 1972)], the author included a chapter on the relation of the theory of elasticity to the theory of potentials. Potential theory distinguishes two fundamental physical categories: divergence-free and divergence-involving problems. From the criteria given in the source quoted by the author, it is evident that elastic deformation of solids falls into the latter category. It is documented in this short note that the author presented volume-constant elastic deformation as a divergence-free physical process, systematically ignoring all the information that was available to him that this is not so.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Böhmer, CG, and N. Tamanini. "Rotational elasticity and couplings to linear elasticity." Mathematics and Mechanics of Solids 20, no. 8 (November 29, 2013): 959–74. http://dx.doi.org/10.1177/1081286513511093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiao, B., and J. Feng. "Higher order elastic tensors of crystal structure under non-linear deformation." Journal of Micromechanics and Molecular Physics 04, no. 04 (December 2019): 1950007. http://dx.doi.org/10.1142/s2424913019500073.

Повний текст джерела
Анотація:
The higher-order elastic tensors can be used to characterize the linear and non-linear mechanical properties of crystals at ultra-high pressures. Besides the widely studied second-order elastic constants, the third- and fourth-order elastic constants are sixth and eighth tensors, respectively. The independent tensor components of them are completely determined by the symmetry of the crystal. Using the relations between elastic constants and sound velocity in solid, the independent elastic constants can be measured experimentally. The anisotropy in elasticity of crystal structures is directly determined by the independent elastic constants.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sadegh, A. M., and S. C. Cowin. "The Proportional Anisotropic Elastic Invariants." Journal of Applied Mechanics 58, no. 1 (March 1, 1991): 50–57. http://dx.doi.org/10.1115/1.2897178.

Повний текст джерела
Анотація:
There are two proportional invariants for a linear isotropic material, the hydrostatic invariant, and the deviatoric invariant. The former is proportional to the trace of the tensor and the latter is proportional to the trace of the square of the associated deviatoric tensor. The hydrostatic stress and strain and the von Mises stress and strain are directly related to the hydrostatic and deviatoric proportional invariants, respectively, for an isotropic, linear elastic material. For each anisotropic linear elastic material symmetry there are up to six proportional invariants. In this paper we illustrate the six proportional invariants of an orthotropic elastic material using the elastic constants for spruce as the numerical example. The proportional elastic invariants play a role in anisotropic linear elasticity similar to the roles played by the hydrostatic stress and strain and the von Mises stress and strain in isotropic elasticity. They are the unique parameters whose contours represent both the stress and the strain distributions. They also have potential for representing failure or fracture criteria.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

de C. Henderson, J. C. "Introduction to linear elasticity." Applied Mathematical Modelling 9, no. 3 (June 1985): 226–27. http://dx.doi.org/10.1016/0307-904x(85)90013-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cudworth, C. J. "Introduction to linear elasticity." Journal of Mechanical Working Technology 12, no. 3 (February 1986): 385. http://dx.doi.org/10.1016/0378-3804(86)90008-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, KwangJin, SangRyong Lee, and Hak Yi. "Design and Control of Cylindrical Linear Series Elastic Actuator." Journal of the Korean Society for Precision Engineering 36, no. 1 (January 1, 2019): 95–98. http://dx.doi.org/10.7736/kspe.2019.36.1.95.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cowin, S. C., and M. M. Mehrabadi. "Anisotropic Symmetries of Linear Elasticity." Applied Mechanics Reviews 48, no. 5 (May 1, 1995): 247–85. http://dx.doi.org/10.1115/1.3005102.

Повний текст джерела
Анотація:
The objective of this paper is to present a development of the anisotropic symmetries of linear elasticity theory based on the use of a single symmetry element, the plane of mirror symmetry. In this presentation the thirteen distinct planes of mirror symmetry are catalogued. Traditional presentations of the anisotropic elastic symmetries involve all the crystallographic symmetry elements which include the center of symmetry, the n-fold rotation axis and the n-fold inversion axis as well as the plane of mirror symmetry. It is shown that the crystal system symmetry groups, as opposed to the crystal class symmetry groups, of the elastic crystallographic symmetries can be generated by the appropriate combinations of the orthogonal transformations corresponding to each of the thirteen distinct planes of mirror symmetry. It is also shown that the restrictions on the elastic coefficients appearing in Hooke’s law follow in a simple and straightforward fashion from orthogonal transformations based on a small subset of the small catalogue of planes of mirror symmetry.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Linear elasticty"

1

Mou, Guangjin. "Design of exotic architectured materials in linear elasticity." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS519.pdf.

Повний текст джерела
Анотація:
Les classes de symétrie d'un comportement linéaire définissent les différents types d'anisotropie qui peuvent être modélisés par les tenseurs constitutifs associés. Cependant, les espaces des matériaux linéaires sont très riches et toute une gamme de possibilités intermédiaires peut exister au-delà des classes de symétrie. Les matériaux présentant des propriétés anisotropes non-standard associées à ces possibilités intermédiaires sont appelés matériaux exotiques. Par exemple, le matériau 2D R0-orthotrope est un cas bien connu de matériau exotique.L'objectif principal de cette recherche est de développer des outils géométriques pour caractériser les espaces linéaires des matériaux de manière très fine, ce qui permet de détecter ces possibilités intermédiaires. L'ensemble exotique obtenu est intrinsèquement caractérisé par une relation polynomiale entre les invariants du tenseur d'élasticité. En conséquence, nous prouvons que la R0-orthotropie est le seul type de matériau élastique exotique en 2D. Cependant, lorsque l'on généralise à l'élasticité linéaire 3D, ce nombre s'élève à 163.Le deuxième objectif de cette étude est d'obtenir une mésostructure présentant à grande échelle le comportement exotique décrit précédemment. Un algorithme d'optimisation basé sur la dérivée topologique est implémenté dans Python/FEniCS pour réaliser la design de mésostructure périodiques. Le matériau 2D R0-orthotrope et plusieurs cas de matériaux exotiques 3D sont étudiés. La fonction objective du problème d'optimisation est formulée en termes d'invariants du tenseur d'élasticité effectif cible
The symmetry classes of a linear constitutive law define the different types of anisotropy that can be modelled by the associated constitutive tensors. However, the spaces of linear materials are very rich and a whole range of intermediate possibilities can exist beyond symmetry classes. Materials with non-standard anisotropic properties associated with such intermediate possibilities are called exotic materials. For instance, 2D R0-orthotropic material is a well-known case of exotic material.The primary objective of this research is to develop geometrical tools to characterise the linear material spaces in a very fine way, which allow these intermediate possibilities to be detected. The exotic set obtained is intrinsically characterised by a polynomial relation between elasticity tensor invariants. As a result, we prove that R0-orthotropy is the only type of 2D exotic elastic material. However, when generalised to 3D linear elasticity, this number is up to 163.The second objective of this study is to obtain a mesostructure exhibiting at macroscale the exotic behaviour described previously. A topological derivative-based optimisation algorithm is implemented in Python/FEniCS to realise the design of periodic metamaterials. The 2D R0-orthotropic material and several cases of 3D exotic materials are studied. The objective function of the optimisation problem is formulated in terms of the invariants of the target effective elasticity tensor
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bosher, Simon Henry Bruce. "Non-linear elasticity theory." Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ang, W. T. "Some crack problems in linear elasticity /." Title page, table of contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09pha581.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Austin, D. M. "On two problems in linear elasticity." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Johnson, Fen Rui. "A study of finite and linear elasticity." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Domino, Lucie. "Contrôle et manipulation d'ondes hydroélastiques." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLET020.

Повний текст джерела
Анотація:
Cette thèse porte sur la physique des ondes, dans le but de contrôler leur propagation. Nous cherchons à mettre en évidence des phénomènes communs à toutes les ondes grâce à un système expérimental modèle utilisant les ondes à la surface d’un liquide. Plus précisément, nous choisissons de travailler avec des ondes hydroélastiques en couvrant la surface du liquide avec un film élastique. Les déformations élastiques de cette membrane sont couplées aux mouvements du fluide, de sorte qu’en modifiant les propriétés de la membrane nous pouvons agir sur la propagation des ondes. Ainsi, en changeant localement l’épaisseur du film élastique nous montrons qu’il est possible de dévier, réfléchir ou encore focaliser les ondes. Ensuite, en structurant périodiquement la membrane nous mettons en évidence des effets liés à la périodicité et/ou à la nature des objets formant le réseau régulier. Nous utilisons des perforations circulaires dont nous varions le diamètre, l’espacement et l’arrangement dans l’espace, ce qui nous permet de contrôler très finement le comportement des ondes dans le cristal artificiel ainsi formé. Nous mettons notamment en évidence l’existence de bandes interdites de propagation. Enfin, nous re-visitons l’instabilité de Faraday, connue en hydrodynamique, en vibrant verticalement un bain liquide recouvert d’une membrane élastique, et nous montrons que cette instabilité existe également pour les ondes hydroélastiques
This thesis deals with waves at the surface of a liquid, and aims at controlling their propagation. We want to show universal results, valid for all waves, using model experiments. We work with hydroelastic waves, obtained with an elastic membrane that covers the liquid surface. The elastic deformation of this membrane couples with the motion of the fluid, so that we can change the propagation of the waves by modifying the properties of the elastic cover. We show that if we locally change the thickness of the elastic cover, we can deviate, reflect or focus the waves. We then periodically structure the membrane and thus unveil effects due to he periodicity and/or the nature of the objects that form the regular array. We use an ensemble of circular perforations of which we vary the diameter, the spacing and the pattern, in order to accurately control the propagation of the waves in this artificial crystal. In particular, we show that there exist band gaps for the waves. Lastly, we re-visit the Faraday instability, known in hydrodynamics, by vertically vibrating a fluid layer covered with an elastic membrane, and we show that this instability also exist for hydroelastic waves
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Laing, Kara Louise. "Non-linear deformation of a helical spring." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chinviriyasit, Settapat. "Numerical methods for treating quasistatic linear viscoelastic problems." Thesis, Brunel University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Harursampath, Dineshkumar. "Non-classical non-linear effects in thin-walled composite beams." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/12501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

DeFigueiredo, Tania Glacy do Brasil. "A new boundary element formation and its application in engineering." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Linear elasticty"

1

Ranz, Thomas. Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72397-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ranz, Thomas. Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62852-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gould, Phillip L. Introduction to Linear Elasticity. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4833-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gould, Phillip L., and Yuan Feng. Introduction to Linear Elasticity. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73885-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gould, Phillip L. Introduction to Linear Elasticity. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4296-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Introduction to linear elasticity. 2nd ed. New York: Springer-Verlag, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gould, Phillip L. Introduction to Linear Elasticity. New York, NY: Springer New York, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gould, Phillip L. Introduction to Linear Elasticity. 3rd ed. New York, NY: Springer New York, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kostin, G. V. Integrodifferential relations in linear elasticity. Berlin: De Gruyter, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Coman, Ciprian D. Continuum Mechanics and Linear Elasticity. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-1771-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Linear elasticty"

1

Hardy, Humphrey. "Linear Elasticity." In Engineering Elasticity, 215–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09157-5_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Di Pietro, Daniele Antonio, and Jérôme Droniou. "Linear Elasticity." In The Hybrid High-Order Method for Polytopal Meshes, 325–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37203-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Leis, Rolf. "Linear elasticity." In Initial Boundary Value Problems in Mathematical Physics, 201–19. Wiesbaden: Vieweg+Teubner Verlag, 1986. http://dx.doi.org/10.1007/978-3-663-10649-4_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Macaulay, M. "Linear elasticity." In Introduction to Impact Engineering, 1–21. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3159-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ward, J. P. "Linear Elasticity." In Solid Mechanics and Its Applications, 117–40. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8026-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Talpaert, Yves R. "Linear Elasticity." In Tensor Analysis and Continuum Mechanics, 455–540. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9988-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruderman, Michael S. "Linear Elasticity." In Springer Undergraduate Mathematics Series, 99–129. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19297-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sab, Karam, and Arthur Lebée. "Linear Elasticity." In Homogenization of Heterogeneous Thin and Thick Plates, 1–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119005247.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Karasudhi, P. "Linear Elasticity." In Solid Mechanics and Its Applications, 86–110. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3814-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Romano, Antonio, and Addolorata Marasco. "Linear Elasticity." In Continuum Mechanics using Mathematica®, 323–72. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1604-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Linear elasticty"

1

Johnson, Paul A. "Elastic Linear and Nonlinear Behaviors in Slip Processes." In XVII International Conference on Nonlinear Elasticity in Materials. ASA, 2012. http://dx.doi.org/10.1121/1.4764478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cavaro, Matthieu, Cedric Payan, Serge Mensah, Joseph Moysan, and Jean-Philippe Jeannot. "Linear and nonlinear resonant acoustic spectroscopy of micro bubble clouds." In XVII International Conference on Nonlinear Elasticity in Materials. ASA, 2012. http://dx.doi.org/10.1121/1.4748260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Quiviger, Audrey, Jean-Philippe Zardan, Cedric Payan, Jean-Fraçois Chaix, Vincent Garnier, Joseph Moysan, and Jean Salin. "Macro crack characterization by linear and nonlinear ultrasound in concrete." In XV International Conference on Nonlinear Elasticity in Materials. ASA, 2010. http://dx.doi.org/10.1121/1.3506851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hassanpour, Soroosh, and G. R. Heppler. "Step-by-Step Simplification of the Micropolar Elasticity Theory to the Couple-Stress and Classical Elasticity Theories." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39216.

Повний текст джерела
Анотація:
The micropolar elasticity theory provides a useful material model for dealing with fibrous, coarse granular, and large molecule materials. Though being a well-known and well-developed elasticity model, the linear theory of micropolar elasticity is not without controversy. Specially simplification of the microppolar elasticity theory to the couple-stress and classical elasticity theories and the required conditions on the material elastic constants for this simplification have not been discussed consistently. In this paper the linear theory of micropolar elasticity is reviewed first. Then the correct approach for a consistent and step-by-step simplification of the micropolar elasticity model with six elastic constants to the couple-stress elasticity model with four elastic constants and the classical elasticity model with two elastic constants is presented. It is shown that the classical elasticity is a special case of the couple-stress theory which itself is a special case of the micropolar elasticity theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McConville, James B. "The Application of Non-Linear Boundary Conditions to a Linearly Elastic Model to Achieve Multi-State Structural Behavior in a Large-Displacement Mechanical System Simulation." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8202.

Повний текст джерела
Анотація:
Abstract Structural elasticity is increasingly perceived as vital to the fidelity of Mechanical System Simulation (MSS) analyses of complex systems under-going large motion. The use of modal elastic system components subject to non-linear loading has become commonplace. An additional use of nonlinear boundary conditions is that of altering the linear elastic behavior of the system structure(s) to achieve multi-state elastic behavior from a single, linear structure. The method is used in this paper to simulate with ADAMS® the effect of an aircraft experiencing a partial structural failure as a result of a hard landing.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koh, Wonhyuk, Sungwoo Kang, Myunghwan Cho, and Jung Yul Yoo. "Three-Dimensional Steady Flow in Non-Linear Elastic Collapsible Tubes." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78343.

Повний текст джерела
Анотація:
Three-dimensional fluid-structure interaction problem arising from steady flow in non-linear elastic tube is studied numerically by using a finite element software, ADINA. Strain-energy density function is used for non-linear elastic analysis of solid material. Navier-Stokes equation coupled with elastic wall condition is solved for the fluid flow. To simulate interactions between the fluid and the solid domains, arbitrary Lagrangian-Eulerian (ALE) formulation is utilized. For validation, thin-walled linear elastic collapsible tubes is computed and compared with previous numerical results. The tube collapses into the buckling mode N = 2 and the results are in excellent agreement with a previous study. Then, the results for linear elastic tube are compared with those for non-linear elastic tube to show the effects of non-linear elasticity of the wall. The wall material is considered to be non-linear hyperelastic and isotropic. The non-linear elastic wall shows the tendency to preserve its shape more than the linear material. The deformation patterns, pressure distributions of the tube with non-linear elastic material are significantly different from those with linear elastic material.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nosonovsky, Michael. "Friction-Induced Vibrations: From Linear Stability Criteria to Non-Linear Analysis of Limiting Cycles." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41158.

Повний текст джерела
Анотація:
The contact of two elastic bodies with a frictional interface can lead to friction-induced instabilities. The instabilities are either due to the velocity-dependence of friction, or due to the coupling of friction with the thermal expansion or wear, or due to the destabilization of the interface elastic waves. The instabilities lead to friction-induced vibrations. The linear elasticity usually provides a criterion for the onset of the instability and predicts that the amplitude of the unstable vibration grows exponentially with time. However, it does not provide any information about the amplitudes of vibrations. It is expected that the amplitudes of vibrations grow exponentially until they leave the range of applicability of the linear theory and reach a certain limiting cycle. We discuss how various non-linear methods of pattern-formation analysis can be applied to this problem, including the Turing systems, self-organized criticality, etc.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barat, Abhishek, Brian Vermeire, Mojtaba Kheiri, and Ashok Kaushal. "Linear and non-linear elasticity using the flux reconstruction approach." In Canadian Society for Mechanical Engineering International Congress 2023. Sherbrooke, Canada: Université de Sherbrooke. Faculté de génie, 2023. http://dx.doi.org/10.17118/11143/20926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kireev, I. V. "On the class of software system’s verification tests for solving stationary problems of linear elasticity." In NUMERICAL METHODS FOR SOLVING PROBLEMS IN THE THEORY OF ELASTICITY AND PLASTICITY (EPPS 2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0073321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shoucri, R. M. "Comparison between linear elasticity and large elastic deformation in the study of the contraction of the myocardium." In BIOMED 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/bio070011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Linear elasticty"

1

Wallin, M., and D. A. Tortorelli. Topology optimization beyond linear elasticity. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1581880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Day, David Minot, and Louis Anthony Romero. An analytically solvable eigenvalue problem for the linear elasticity equations. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/975249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Salveson, M. W. Painter Street Overcrossing: Linear-elastic finite element dynamic analysis. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5123335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mehrabadi, M. M., S. C. Cowin, and C. O. Horgan. Strain Energy Density Bounds for Linear Anisotropic Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada271050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chilton, Lawrence K. Looking-Free Mixed hp Finite Element Methods for Linear and Geometrically Nonlinear Elasticity. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada326255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Preston, Leiph. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1376284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CARNEGIE-MELLON UNIV PITTSBURGH PA. Non-Linear Dynamics and Chaotic Motions in Feedback Controlled Elastic System. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada208628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Denys, R. M. L51712 Fracture Behavior of Large-Diameter Girth Welds - Effect of Weld Metal Yield Strength Part II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 1994. http://dx.doi.org/10.55274/r0010121.

Повний текст джерела
Анотація:
Fitness for purpose girth defect assessments assume the presence of a single defect. This assumption is not always fulfilled. Welds may contain many small defects. These defects, when considered individually and without interaction, are generally innocuous. However, this may be a false conclusion as to the true strength or deformation capacity of the weld because neighbouring imperfections or defects may interact and may be more severe than each individual imperfection. When non-destructive examinations reveal multiple defects, a defect recategorisation procedure has to be applied to determine whether neighbouring defects will interact other under load. The interaction criteria of BS PD6493, ASME Boiler and Pressure Vessel Code Section XI and the Japanese fitness-of-purpose code WES 2805 are based on a combination of linear elastic fracture mechanics calculations and engineering judgement. The PD6493 and ASME XI rules are based on the principle that the increase in the stress intensity magnification caused by interaction of neigbouring defects should be limited to 20% (PD 6493) and 6% (ASME XI), whereas the WES criterion is based on the principle that the stress intensity magnification or CTOD value of the interacting neighbouring defects should be limited to 20% of the shortest defect. As the fracture behaviour of line pipe girth welds differs from linear elastic behaviour, it is expected that the existing rules are not necessarily applicable for elastic-plastic or plastic material behaviours. This consideration suggests that there exist a need for developing criteria which permit plasticity effects to be incorporated. The mathematical treatment of multiple defects under elastic-plastic and or plastic fracture conditions is a complex issue because it is not possible to predict yielding behaviour and make a distinction between local and ligament collapse. Because of this limitation, it is thus necessary to employ large scale tensile tests in which the interaction effects can be reproduced. In persuing this approach, it is further possible: (a) to verify and establish the conservatism built into the existing interaction criteria. (b) to formulate alternative interaction criteria for elastic-plastic or plastic behavior. The goal of this study was to obtain information on the failure behavior of girth welds containing two coplanar fatigue pre-cracked defects. The results were correlated with tests on welds containing a single crack to determine the engineering significance of existing defect interaction rules under elastic-plastic and plastic fracture conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roberts, Scott Alan, and Peter Randall Schunk. A non-linear elastic constitutive framework for replicating plastic deformation in solids. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1148928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hamilton, Shirley J. Linear Algebra Applied to Physics Determining Small Vibrations in Conservative Elastic Systems. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada259114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії