Добірка наукової літератури з теми "LHCI"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "LHCI".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "LHCI"

1

Rathod, Mithun Kumar, Sreedhar Nellaepalli, Shin-Ichiro Ozawa, Hiroshi Kuroda, Natsumi Kodama, Sandrine Bujaldon, Francis-André Wollman, and Yuichiro Takahashi. "Assembly Apparatus of Light-Harvesting Complexes: Identification of Alb3.1–cpSRP–LHCP Complexes in the Green Alga Chlamydomonas reinhardtii." Plant and Cell Physiology 63, no. 1 (October 1, 2021): 70–81. http://dx.doi.org/10.1093/pcp/pcab146.

Повний текст джерела
Анотація:
Abstract The unicellular green alga, Chlamydomonas reinhardtii, contains many light-harvesting complexes (LHCs) associating chlorophylls a/b and carotenoids; the major LHCIIs (types I, II, III and IV) and minor light-harvesting complexes, CP26 and CP29, for photosystem II, as well as nine LHCIs (LHCA1–9), for photosystem I. A pale green mutant BF4 exhibited impaired accumulation of LHCs due to deficiency in the Alb3.1 gene, which encodes the insertase involved in insertion, folding and assembly of LHC proteins in the thylakoid membranes. To elucidate the molecular mechanism by which ALB3.1 assists LHC assembly, we complemented BF4 to express ALB3.1 fused with no, single or triple Human influenza hemagglutinin (HA) tag at its C-terminus (cAlb3.1, cAlb3.1-HA or cAlb3.1–3HA). The resulting complemented strains accumulated most LHC proteins comparable to wild-type (WT) levels. The affinity purification of Alb3.1-HA and Alb3.1–3HA preparations showed that ALB3.1 interacts with cpSRP43 and cpSRP54 proteins of the chloroplast signal recognition particle (cpSRP) and several LHC proteins; two major LHCII proteins (types I and III), two minor LHCII proteins (CP26 and CP29) and eight LHCI proteins (LHCA1, 2, 3, 4, 5, 6, 8 and 9). Pulse-chase labeling experiments revealed that the newly synthesized major LHCII proteins were transiently bound to the Alb3.1 complex. We propose that Alb3.1 interacts with cpSRP43 and cpSRP54 to form an assembly apparatus for most LHCs in the thylakoid membranes. Interestingly, photosystem I (PSI) proteins were also detected in the Alb3.1 preparations, suggesting that the integration of LHCIs to a PSI core complex to form a PSI–LHCI subcomplex occurs before assembled LHCIs dissociate from the Alb3.1–cpSRP complex.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pi, Xiong, Lirong Tian, Huai-En Dai, Xiaochun Qin, Lingpeng Cheng, Tingyun Kuang, Sen-Fang Sui, and Jian-Ren Shen. "Unique organization of photosystem I–light-harvesting supercomplex revealed by cryo-EM from a red alga." Proceedings of the National Academy of Sciences 115, no. 17 (April 9, 2018): 4423–28. http://dx.doi.org/10.1073/pnas.1722482115.

Повний текст джерела
Анотація:
Photosystem I (PSI) is one of the two photosystems present in oxygenic photosynthetic organisms and functions to harvest and convert light energy into chemical energy in photosynthesis. In eukaryotic algae and higher plants, PSI consists of a core surrounded by variable species and numbers of light-harvesting complex (LHC)I proteins, forming a PSI-LHCI supercomplex. Here, we report cryo-EM structures of PSI-LHCR from the red alga Cyanidioschyzon merolae in two forms, one with three Lhcr subunits attached to the side, similar to that of higher plants, and the other with two additional Lhcr subunits attached to the opposite side, indicating an ancient form of PSI-LHCI. Furthermore, the red algal PSI core showed features of both cyanobacterial and higher plant PSI, suggesting an intermediate type during evolution from prokaryotes to eukaryotes. The structure of PsaO, existing in eukaryotic organisms, was identified in the PSI core and binds three chlorophylls a and may be important in harvesting energy and in mediating energy transfer from LHCII to the PSI core under state-2 conditions. Individual attaching sites of LHCRs with the core subunits were identified, and each Lhcr was found to contain 11 to 13 chlorophylls a and 5 zeaxanthins, which are apparently different from those of LHCs in plant PSI-LHCI. Together, our results reveal unique energy transfer pathways different from those of higher plant PSI-LHCI, its adaptation to the changing environment, and the possible changes of PSI-LHCI during evolution from prokaryotes to eukaryotes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Guangxi, Lin Ma, Cai Yuan, Jiahao Dai, Lai Luo, Roshan Sharma Poudyal, Richard T. Sayre, and Choon-Hwan Lee. "Formation of light-harvesting complex II aggregates from LHCII–PSI–LHCI complexes in rice plants under high light." Journal of Experimental Botany 72, no. 13 (May 3, 2021): 4938–48. http://dx.doi.org/10.1093/jxb/erab188.

Повний текст джерела
Анотація:
Abstract During low light- (LL) induced state transitions in dark-adapted rice (Oryza sativa) leaves, light-harvesting complex (LHC) II become phosphorylated and associate with PSI complexes to form LHCII–PSI–LHCI supercomplexes. When the leaves are subsequently transferred to high light (HL) conditions, phosphorylated LHCII complexes are no longer phosphorylated. Under the HL-induced transition in LHC phosphorylation status, we observed a new green band in the stacking gel of native green–PAGE, which was determined to be LHCII aggregates by immunoblotting and 77K chlorophyll fluorescence analysis. Knockout mutants of protein phosphatase 1 (PPH1) which dephosphorylates LHCII failed to form these LHCII aggregates. In addition, the ability to develop non-photochemical quenching in the PPH1 mutant under HL was less than for wild-type plants. As determined by immunoblotting analysis, LHCII proteins present in LHCII–PSI–LHCI supercomplexes included the Lhcb1 and Lhcb2 proteins. In this study, we provide evidence suggesting that LHCII in the LHCII–PSI–LHCI supercomplexes are dephosphorylated and subsequently form aggregates to dissipate excess light energy under HL conditions. We propose that this LHCII aggregation, involving LHCII L-trimers, is a newly observed photoprotective light-quenching process operating in the early stage of acclimation to HL in rice plants.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schiphorst, Christo, Luuk Achterberg, Rodrigo Gómez, Rob Koehorst, Roberto Bassi, Herbert van Amerongen, Luca Dall’Osto, and Emilie Wientjes. "The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis." Plant Physiology 188, no. 4 (December 6, 2021): 2241–52. http://dx.doi.org/10.1093/plphys/kiab579.

Повний текст джерела
Анотація:
Abstract Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pan, Xiaowei, Jun Ma, Xiaodong Su, Peng Cao, Wenrui Chang, Zhenfeng Liu, Xinzheng Zhang, and Mei Li. "Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II." Science 360, no. 6393 (June 7, 2018): 1109–13. http://dx.doi.org/10.1126/science.aat1156.

Повний текст джерела
Анотація:
Plants regulate photosynthetic light harvesting to maintain balanced energy flux into photosystems I and II (PSI and PSII). Under light conditions favoring PSII excitation, the PSII antenna, light-harvesting complex II (LHCII), is phosphorylated and forms a supercomplex with PSI core and the PSI antenna, light-harvesting complex I (LHCI). Both LHCI and LHCII then transfer excitation energy to the PSI core. We report the structure of maize PSI-LHCI-LHCII solved by cryo–electron microscopy, revealing the recognition site between LHCII and PSI. The PSI subunits PsaN and PsaO are observed at the PSI-LHCI interface and the PSI-LHCII interface, respectively. Each subunit relays excitation to PSI core through a pair of chlorophyll molecules, thus revealing previously unseen paths for energy transfer between the antennas and the PSI core.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Santabarbara, Stefano, Tania Tibiletti, William Remelli, and Stefano Caffarri. "Kinetics and heterogeneity of energy transfer from light harvesting complex II to photosystem I in the supercomplex isolated from Arabidopsis." Physical Chemistry Chemical Physics 19, no. 13 (2017): 9210–22. http://dx.doi.org/10.1039/c7cp00554g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Steinbeck, Janina, Ian L. Ross, Rosalba Rothnagel, Philipp Gäbelein, Stefan Schulze, Nichole Giles, Rubbiya Ali, et al. "Structure of a PSI–LHCI–cyt b6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions." Proceedings of the National Academy of Sciences 115, no. 41 (September 25, 2018): 10517–22. http://dx.doi.org/10.1073/pnas.1809973115.

Повний текст джерела
Анотація:
Photosynthetic linear electron flow (LEF) produces ATP and NADPH, while cyclic electron flow (CEF) exclusively drives photophosphorylation to supply extra ATP. The fine-tuning of linear and cyclic electron transport levels allows photosynthetic organisms to balance light energy absorption with cellular energy requirements under constantly changing light conditions. As LEF and CEF share many electron transfer components, a key question is how the same individual structural units contribute to these two different functional modes. Here, we report the structural identification of a photosystem I (PSI)–light harvesting complex I (LHCI)–cytochrome (cyt) b6f supercomplex isolated from the unicellular alga Chlamydomonas reinhardtii under anaerobic conditions, which induces CEF. This provides strong evidence for the model that enhanced CEF is induced by the formation of CEF supercomplexes, when stromal electron carriers are reduced, to generate additional ATP. The additional identification of PSI–LHCI–LHCII complexes is consistent with recent findings that both CEF enhancement and state transitions are triggered by similar conditions, but can occur independently from each other. Single molecule fluorescence correlation spectroscopy indicates a physical association between cyt b6f and fluorescent chlorophyll containing PSI–LHCI supercomplexes. Single particle analysis identified top-view projections of the corresponding PSI–LHCI–cyt b6f supercomplex. Based on molecular modeling and mass spectrometry analyses, we propose a model in which dissociation of LHCA2 and LHCA9 from PSI supports the formation of this CEF supercomplex. This is supported by the finding that a Δlhca2 knockout mutant has constitutively enhanced CEF.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Mei, Xiaowei Pan, Jun Ma, Xiaodong Su, Wenrui Chang, Zhenfeng Liu, and Xinzheng Zhang. "Cryo-EM structure of maize PSI-LHCI-LHCII supercomplex." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1859 (September 2018): e34. http://dx.doi.org/10.1016/j.bbabio.2018.09.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Joaquín-Ovalle, Freisa, Grace Guihurt, Vanessa Barcelo-Bovea, Andraous Hani-Saba, Nicole Fontanet-Gómez, Josell Ramirez-Paz, Yasuhiro Kashino, et al. "Oxidative Stress- and Autophagy-Inducing Effects of PSI-LHCI from Botryococcus braunii in Breast Cancer Cells." BioTech 11, no. 2 (March 30, 2022): 9. http://dx.doi.org/10.3390/biotech11020009.

Повний текст джерела
Анотація:
Botryococcus braunii (B. braunii) is a green microalga primarily found in freshwater, reservoirs, and ponds. Photosynthetic pigments from algae have shown many bioactive molecules with therapeutic potential. Herein, we report the purification, characterization, and anticancer properties of photosystem I light-harvesting complex I (PSI-LHCI) from the green microalga B. braunii UTEX2441. The pigment–protein complex was purified by sucrose density gradient and characterized by its distinctive peaks using absorption, low-temperature (77 K) fluorescence, and circular dichroism (CD) spectroscopic analyses. Protein complexes were resolved by blue native-PAGE and two-dimensional SDS-PAGE. Triple-negative breast cancer MDA-MB-231 cells were incubated with PSI-LHCI for all of our experiments. Cell viability was assessed, revealing a significant reduction in a time- and concentration-dependent manner. We confirmed the internalization of PSI-LHCI within the cytoplasm and nucleus after 12 h of incubation. Cell death mechanism by oxidative stress was confirmed by the production of reactive oxygen species (ROS) and specifically superoxide. Furthermore, we monitored autophagic flux, apoptotic and necrotic features after treatment with PSI-LHCI. Treated MDA-MB-231 cells showed positive autophagy signals in the cytoplasm and nucleus, and necrotic morphology by the permeabilization of the cell membrane. Our findings demonstrated for the first time the cytotoxic properties of B. braunii PSI-LHCI by the induction of ROS and autophagy in breast cancer cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Qin, Xiaochun, Wenda Wang, Kebing Wang, Yueyong Xin, and Tingyun Kuang. "Isolation and Characteristics of the PSI-LHCI-LHCII Supercomplex Under High Light." Photochemistry and Photobiology 87, no. 1 (November 15, 2010): 143–50. http://dx.doi.org/10.1111/j.1751-1097.2010.00830.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "LHCI"

1

Klimmek, Frank. "Der Lichtsammelkomplex LHCI-730 des Photosystems I höherer Pflanzen Untersuchungen zur molekularen Assemblierung der Lichtsammelproteine Lhca1 und Lhca4 aus Gerste (Hordeum vulgare, L.) und Tomate (Lycopersicon esculentum) /." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=964328089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McCarthy, James. "Search for rare baryonic b decays with the LHCb experiment at the LHC." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6247/.

Повний текст джерела
Анотація:
A search was performed for the Λ\(_b\)\(^0\)→Λ\(^0\)η’ and Λ\(_b\)\(^0\)→Λ\(^0\)η decays with the LHCb experiment. The full dataset recorded by LHCb in 2011 and 2012 is used, corresponding to 1.0fb\(^-\)\(^1\) of proton-proton collision data collected at a centre of mass energy of 7 TeV, and 2.0fb\(^-\)\(^1\) of data collected at a centre of mass energy of 8 TeV, respectively. The B\(^0\)→K\(_S\)\(^0\)η’ decay is used as a normalisation channel, and a selection is designed and optimised using this decay. By measuring the ratio of the branching fractions for the signal decay to the normalisation decay, many systematic uncertainties cancel out. No significant signal is observed for the Λ\(_b\)\(^0\)→Λ\(^0\)η’ decay, and some evidence is observed for the Λ\(_b\)\(^0\)→Λ\(^0\)η decay with a significance of 3σ. The Feldman-Cousins method is used to make the first measurement of the limit on the branching fractions. The limits are BF(Λ\(_b\)\(^0\)→Λ\(^0\)η’) < 3.1*10\(^-\)\(^6\) at 90% CL. BF(Λ\(_b\)\(^0\)→Λ\(^0\)η) ε[2.5,22.8]*10\(^-\)\(^6\) at 90% CL.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manuzzi, Daniele. "Measure of the branching ratio of the B0→D∗−τ+ντ decay at LHCb: a preliminary study for RD∗(q2) in 3-prong τ decays". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15841/.

Повний текст джерела
Анотація:
Ad oggi non sono state ancora osservate differenze significative tra i risultati sperimentali e le previsioni teoriche del Modello Standard. Tuttavia esistono delle differenze che potrebbero indicare l'esistenza di Nuova Fisica. Tre queste una delle principali riguarda: $\CMcal{R}_{D^{*}}= \CMcal{B}(B^0\to D^{*-}\tau^+\nu_\tau)/\CMcal{B}(B^0\to D^{*-}\mu^+\nu_\mu)$ e $\CMcal{R}_D \CMcal{B}(B^0\to D^{-}\tau^+\nu_\tau)/\CMcal{B}(B^0\to D^{-}\mu^+\nu_\mu)$. Questi rapporti sono stati misurati dagli esperimenti \textit{BaBar}~\cite{BaBar2013} e \textit{Belle}~\cite{Belle2015} ed anche dall'esperimento LHCb~\cite{LHCb-mu}. Al momento la combinazione di tutti questi risultati~\cite{HFAG2016} si discosta di $3.9~\sigma$ dalle previsioni teoriche basate sul Modello Standard~\cite{Fajfer2012}. Se questa deviazione fosse confermata da future misure più precise, rappresenterebbe una evidenza indiretta dell'esistenza di una nuova dinamica. Recentemente LHCb ha realizzato la misura di $\CMcal{R}_{D^*}$ utilizzando un ulteriore canale di decadimento del tauone: $\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\bar\nu_\tau$. Infatti la precedente misura era stata realizzata utilizzando il decadimento semi-leptonico del tau. Il lavoro di tesi presentato in questo documento riguarda lo studio preliminare di fattibilità della misura di $\CMcal{R}_{D^*}$ in regioni di $q^2 = (p_{B^0}-p_{D^{*-}})^2$, mediante il decadimento $B^0\to D^{*-}\tau^+(\to 3\pi\pi^0\bar\nu_\tau)\nu_\tau$. Il campione di dati utilizzato corrisponde a quelli raccolti da LHCb durante il RUN-1 e quindi pari a $3~\mathrm{fb^{-1}}$ di luminosità integrata. Questo lavoro ha permesso di concludere che questo tipo di analisi è fattibile, nonostante il piccolo numero di eventi di segnale osservati. Tuttavia per rendere l'analisi pronta per la pubblicazione, diversi studi, inclusi quelli degli effetti sistematici, sono ancora necessari.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MELONI, SIMONE. "Test of lepton flavour universality with the simultaneous measurement of R(D+) and R (D*+) with τ→ μνν decays at the LHCb experiment". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364128.

Повний текст джерела
Анотація:
Nel Modello Standard delle interazioni fondamentali l’accoppiamento dei bosoni di gauge ai leptoni è indipendente dal flavour leptonico. Questa proprietà, conosciuta come Universalit di Flavour leptonico, è una simmetria accidentale del modello che pu essere testata in decadimenti semileptonici di mesoni contententi quark di tipo b. Le variabili usate per testare l’Universalità di Flavour leptonico sono rapporti di ratei di decadimento tra transizioni con un leptone τ e transizioni con un leptone μ nello stato finale: R(H c ) = B(B → Hc τ ν) / B(B → Hc μν), con Hc che rappresenta un mesone contenente un quark c prodotto nel decadimento. L’osservazione di qualsiasi segno di deviazione in queste variabili rispetto alle previsioni del Modello Standard potrebbe essere un chiaro segno dell’effetto di effetti di nuova fisica. Combinando le misure dei parameteri R(D) e R(D*) effettuate dalle collaborazioni Belle, BaBar e LHCb, è stata osservata una tensione rispetto alle previsioni del Modello Standard a livello di circa 3σ. Ad oggi nessuna misura del parametro R(D) è mai stata effettuata a collider adronici. Questa tesi riporta una misura simultanea dei parametetri R(D+) e R(D *+) effettuata tramite l’analisi di decadimenti B → D(*)l ν . Questa misura utilizza il decadimento leptonico del τ , τ → μνν, sfruttando un campione di 2.0 /fb di dati raccolto in collisioni protone-protone, ad un’energia nel centro di massa di 13 TeV dall’esperimento LHCb durante la presa dati degli anni 2015 e 2016. Tutti i passi dell’analisi sono stati effettuati e le principali incertezze sistematiche sono state valutate. Il valore dei parametri è ancora blinded e l’analisi è in revisione interna presso la collaborazione LHCb. L’incertezza attesa associata ai parametri di interesse è: R(D + ) = xxx ± 0.033(stat.) ± 0.037(syst.), R(D *+ ) = xxx ± 0.040(stat.) ± 0.070(syst.).
In the Standard Model of particle physics, the coupling of the electroweak gauge bosons to the leptons is independent of the lepton flavour. This property, known as Lepton Flavour Universality, is an accidental symmetry of the Standard Model, which can be tested in semileptonic b-meson decays. The variables used to test the Lepton Flavour Universality hypothesis are ratios of branching fractions between decays with the τ lepton and the ones with the μ lepton in the final state: R(Hc) = B(B → Hc τ ν) / B(B → Hc μν) with Hc a charmed meson produced in the decay. Any sign of deviation with respect to the Standard Model predictions in these variables could be a clear sign of New Physics effects. A tension at the level of 3σ with respect to the Standard Model predictions has been observed in the combination of the measurements of R(D) and R(D*) performed by the Belle, BaBar and LHCb collaborations. At the time of writing of this thesis, no measurement of the R(D) parameter has been performed by any hadron collider experiment. This thesis reports a simultaneous measurement of the R(D+) and R(D*+) parameters performed using B → D(*)lν decays. This measurement exploits leptonic decays of the τ lepton, τ → μνν , using a data sample corresponding to an integrated luminosity of 2.0 /fb collected in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHCb experiment during the 2015 and 2016 data taking years. All the steps of the analysis have been performed and all the main systematic uncertainties have been studied. The value of the measured parameters is still blinded and the analysis is in internal review within the LHCb collaboration. The expected uncertainty on the parameters of interest is given by R(D+) = xxx ± 0.033(stat.) ± 0.037(syst.), R(D*+)= xxx ± 0.040(stat.) ± 0.070(syst.).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roselló, Canal Maria del Mar. "Control de l'escintil·lador SPD del calorímetre d'LHCb." Doctoral thesis, Universitat Ramon Llull, 2009. http://hdl.handle.net/10803/9152.

Повний текст джерела
Анотація:
En aquesta tesi es descriu l'electrònica i la gestió de la placa de control de l'SPD. SPD són les sigles corresponents a Scintillator Pad Detector, part del calorímetre d'LHCb de l'accelerador LHC.

L'LHC és un accelerador orientat a estudiar els constituents de la matèria on LHCb n'és un dels detectors. El calorímetre és aquella part del detector destinada a mesurar l'energia de les partícules que el travessen. En el nostre cas l'SPD discrimina entre partícules carregades i no carregades contribuint així en les decisions del calorímetre.

En l'electrònica de l'SPD trobareu diferenciades dues parts: l'electrònica en contacte directe amb el subdetector (Very Front End, VFE) i l'electrònica de gestió de l'SPD (la Control Board, CB). L'objectiu d'aquesta tesi és la descripció d'aquesta darrera així com la integració de l'SPD en el sistema de control del calorímetre.

El VFE realitza un primer processat de les dades del detector determinant un nivell digital el qual indica si s'ha rebut una partícula carregada o no. La CB és l'encarregada en canvi de la monitorització i el control del sistema SPD: és capaç d'enviar dades de configuració als VFE i a la vegada en monitoritza el correcte funcionament.

Veureu que el document es troba organitzat en 5 parts. A la primera part trobareu descrites les característiques principals del calorímetre, les seves funcions i la seva estructura. La part segona, tercera i quarta són dedicades integrament a la CB: a la part 2 tenim descrit el hardware, a la part 3 el sistema de control i a la quarta part hi trobarem comentats els diferents testos i proves realitzades tan sobre el hardware com amb el sistema de control. Finalment a la cinquena part hi trobarem resumits els objectius aconseguits amb el nostre disseny i les aportacions d'aquest en la globalitat de l'experiment.
En esta tesis se describe la electrónica y la gestión de la placa de control del SPD. SPD son las siglas correspondientes a Scintillator Pad Detector, parte del calorímetro de LHCb del acelerador LHC.

LHC es un acelerador orientado al estudio de los constituyentes de la materia donde LHCb es uno de los detectores. El calorímetro es aquella parte del detector destinada a medir la energía de las partículas que lo traviesan. En nuestro caso el SPD discrimina entre partículas cargadas y neutras contribuyendo así a las decisiones del calorímetro.

En la electrónica del SPD encontraréis diferenciadas dos partes: la electrónica en contacto directo con el detector (Very Front End, VFE) y la electrónica de gestión del SPD (la Control Board, CB). El objetivo de esta tesis es precisamente la descripción de esta última parte así como la integración del SPD en el sistema de control del calorímetro.

El VFE realiza un primer procesado de los datos del detector determinando un nivel digital el cual indica si la partícula detectada está cargada o no. La CB es en cambio la encargada de la monitorización y el control del sistema SPD: es capaz de enviar datos de configuración a los VFE y a la vez monitorizar su correcto funcionamiento.

Veréis que el documento se encuentra organizado en 5 partes. En la primera parte encontraréis descritas las características principales del calorímetro, sus funciones y su estructura. La segunda parte, la tercera y la cuarta están plenamente dedicadas a la CB: en la parte 2 tenemos descrito el hardware, en la parte 3 el sistema de control y en la cuarta encontraremos los diferentes tests y pruebas realizadas sobre el hardware y el sistema de control. Finalmente en la quinta parte tenemos resumidos los objetivos conseguidos con nuestro diseño y las aportaciones de este en la globalidad del experimento.
In this thesis you will have described the electronics and management of the SPD. SPD stands for Scintillator Pad Detector which is part of the LHCb calorimeter of the LHC accelerator.

LHC is an accelerator oriented to study the matter constitution and LHCb is one of the detectors designed for this challenge. The LHCb part oriented to measure the particles energy is the calorimeter. The SPD is designed to discriminate between charged and neutral particles contributing in the calorimeter decisions.

In the SPD electronics description we can distinguish between to parts: the electronics in contact with the subdetector (Very Front End, VFE) and the electronics in charge of the SPD management (the Control Board, CB). The goal of this thesis is the description of the last and also the integration of the SPD with the calorimeter control system.

The VFE captures the data from the detector and makes a first digital decision depending on if the particle detected is charged or not. The CB is in charge of the monitoring and control of the SPD system: is able to send configuration data to the VFE and also monitors parameters to assure a proper behaviour.

You will see that the document is divided in 5 parts. In the first, you will find described the calorimeter, its functionalities and its structure. Part 2, part 3 and part 4 are fully dedicated to the CB: in part 2 we will find the CB hardware, in part 3 the control system and finally in part 4 the different tests performed with the hardware and the control system. The document ends with part 5 where the main objectives of this work are summarized and also the contribution of the SPD design in the LHCb project.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hopchev, Plamen. "Mesures de la luminosité absolue à l'expérience LHCb." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00684982.

Повний текст джерела
Анотація:
Les mesures de la luminosité intégrée pour les expériences auprés de collisionneur ont un intérêt majeur. Ces mesures participent à la détermination des sections efficaces de production des processus étudiés, elles quantifient également les performances de l'accélérateur et des expériences. Deux méthodes ont été utilisées par l'expérience LHCb pour déterminer la mesure de la luminosité absolue enregistrée durant la campagne 2010 de prise de données des collisions proton-proton à une énergie de 7 TeV dans le centre de masse: outre la méthode classique applelée "Van der Meer scan" une nouvelle technique est développée permettant une détermination directe des paramètres de chaque faisceau en localisant les interactions faisceau-faisceau et les interactions faisceau-gaz résiduel. Cette méthode n'est possible que grace à la résolution du détecteur de vertex de LHCb et sa proximité avec la zone des faisceaux de protons et les paramètres tels la position, les angles et les largeurs des faisceaux peuvent être mesurés. Les deux methodes sont décrites et leurs résultats discutés. De plus les techniques utilisées pour étendre les mesures de luminosité absolue à l'ensemble de la prise de données 2010 sont décrites.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Alessio, Federico. "Beam, Background and Luminosity Monitoring in LHCb and Upgrade of the LHCb Fast Readout Control." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22044/document.

Повний текст джерела
Анотація:
Le travail présenté dans cette thèse a été effectué au sein de la collaboration internationale LHCb qui a conçue et qui exploite un détecteur pour la physique des particules auprès de l’accélérateur proton-proton, le LHC, au CERN à Genève. Ces travaux concerne l’opération de l’expérience dans son ensemble. Ils ont montré toutes leurs forces pendant la première année de prise de données qui a débutée fin 2009. Ils couvrent plusieurs systèmes qui sont très dépendant les uns des autres. Deux systèmes sont plus particulièrement étudiés. Le premier est en charge de la surveillance des faisceaux, du niveau des bruits de fond et de la luminosité. Le second permet la visualisation, l’analyse et l’optimisation des conditions expérimentales. Ces deux systèmes sont fortement interconnectés. En effet, l’amélioration de la qualité des faisceaux de la machine et la diminution du bruit de fond augmentent le nombre de collisions utiles pour la physique. En même temps, comprendre les paramètres clefs qui gouvernent l’opération de l’expérience permet de les optimiser et d’améliorer la qualité des données collectées
There are two main central topics in the thesis: the LHCb beam, background and luminosity monitoring systems and the LHCb optimization systems of experimental conditions. These systems are heavily connected to each other, as improving the machine beam, background and luminosity conditions will automatically improve global operation by maximizing the ratio of luminosity recorded over signal background. At the same time, improving the operation of the experiment will help improve luminosity, by studying more accurately the beam and background conditions and therefore improving the LHC machine settings. In this thesis, the systems to accomplish the requirements of these two main topics are described in detail
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laubser, J. "Conception et réalisation de l'unité de décision du système de déclenchement de premier niveau du détecteur LHCb au LHC." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2007. http://tel.archives-ouvertes.fr/tel-00283775.

Повний текст джерела
Анотація:
Le détecteur LHCb est l'une des quatre expériences de physique des particules installées sur la nouvelle chaîne d'accélération LHC (Large Hadron Collider) du CERN à Genève. Afin de réduire la quantité de données destinées au stockage pour les analyses hors ligne, un dispositif de sélection en ligne des collisions intéressantes selon la physique à étudier est mis en place en parallèle de la chaîne d'acquisition des données. Ce dispositif est composé d'un premier niveau (niveau 0) réalisé par un système électronique complexe et d'un second niveau de sélection réalisé par informatique HLT (High Level Trigger). L'unité de décision de niveau 0 (L0DU) est le système central du niveau 0 de déclenchement. L0DU prend la décision d'accepter ou de rejeter la collision pour ce premier niveau à partir d'une fraction d'informations issues des sous-détecteurs les plus rapides (432 bits à 80 MHz). L'unité de décision est un circuit imprimé 16 couches intégrant des composants de haute technologie de type FPGA (Field Programmable Gate Array) en boîtier BGA (Bill Grid Array). Chaque sous-détecteur transmet ses informations via des liaisons optiques haute vitesse fonctionnant à 1,6 Gbit/s. Le traitement est implémenté en utilisant une architecture pipeline synchrone à 40 MHz. L'unité de décision applique un algorithme de physique simple pour calculer sa décision et réduire le flot de données de 40 MHz à 1 MHz pour le niveau de sélection suivant. L'architecture interne se compose principalement d'un traitement partiel des données destiné à l'ajustement des phases d'horloge, à l'alignement en temps et à la préparation des données pour la partie définition des déclenchements (TDU). L'architecture développée permet de configurer et de paramétrer l'algorithme de prise de décision via le système de contrôle général de l'expérience ECS (Experiment Control System) sans avoir à effectuer une reprogrammation des FPGA.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Laubser, Julien. "Conception et réalisation de l'unité de décision du système de déclenchement de premier niveau du détecteur LHCb au LHC." Phd thesis, Clermont-Ferrand 2, 2007. https://tel.archives-ouvertes.fr/tel-00283775.

Повний текст джерела
Анотація:
Le détecteur LHCb est l'une des quatre expériences de physique des particules de la nouvelle chaîne d'accélération LHC du CERN. Afin de réduire la quantité de données destinée au stockage, un dispositif de sélection en ligne est mis en place. L'unité de décision au niveau 0 (L0DU) est le système central du premier niveau de déclenchement. LODU est un circuit imprimé 16 couches intégrant des composants de haute technologie de type FGPA et des liaisons optiques à 1,6 Gbit/s. Le traitement est implémenté en utilisant une architecture pipeline synchrone à 40 MHz. L0DU applique un algorithme de physique simple pour calculer sa décision et réduire le flot de données de 40 MHz à 1 MHz pour le prochain niveau de sélection. Le traitement interne se compose d'un traitement partiel des données (PDP) et d'une partie dédiée à la définition de l'algorithme de sélection (TDU). Le TDU est flexible et permet de reconfigurer entièrement les conditions de déclenchement sans re-programmation des FGPA
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fitzpatrick, Conor Thomas. "Measurement of the CP-violating phase φs in the decay Bo/s →J/ψ/φ". Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7723.

Повний текст джерела
Анотація:
The LHCb experiment is dedicated to making precision measurements involving beauty and charm hadrons at the CERN Large Hadron Collider. The LHCb RICH detectors provide charged particle identification required to distinguish final states in many decays important to the LHCb physics programme. Time alignment of the RICH photon detectors is necessary in order to ensure a high photon collection efficiency. Using both a pulsed laser and proton-proton collision data the photon detectors are aligned to within 1 ns. The LHCb detector is uniquely positioned to measure production cross-sections at energies and rapidities inaccessible to other experiments. With 1.81 nb−1 of proton-proton collisions collected by the LHCb experiment in 2010 at center-of-mass energy √s = 7 TeV the production crosssection of D±s and D± mesons decaying to the φ{K+K−}π ± final state have been determined in bins of transverse momentum and rapidity. These measurements use a data-driven recursive optimisation technique to improve signal significance. The cross-section ratio is measured to be σ(D± ) σ(D± s ) = 2.32±0.27(stat)±0.26(syst), consistent with the ratio of charm-quark hadronisation fractions to D± and D±s mesons. Time-dependent interference between mixing of B0s -B0s mesons and decay to the final state J/ψφ gives rise to a CP violating phase φs. This phase is constrained to be small within the Standard Model, a significant deviation from which would be a signal of new physics. φs has been measured with 0.37 fb−1 of protonproton collision data recorded during 2011 by the LHCb experiment. Isolation of the signal distribution is achieved using the S-plot technique, and the analysis accounts for inclusive B0s →J/ψK+K− s-wave contributions. The measured value of φs = 0.16±0.18(stat)±0.06(syst) rad is the most precise measurement to date, and is consistent with Standard Model predictions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "LHCI"

1

Gardi, Einan, Nigel Glover, and Aidan Robson, eds. LHC Phenomenology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05362-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LHC physics. Boca Raton, FL: Taylor & Francis, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Giudice, Gian Francesco. Odyssee im Zeptoraum: Eine Reise in die Physik des LHC. Berlin: Springer Berlin, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brüning, O. LHC design report. Edited by European Organization for Nuclear Research. Geneva: European Organization for Nuclear Research, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Plehn, Tilman. Lectures on LHC physics. Heidelberg: Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Plehn, Tilman. Lectures on LHC Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24040-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Plehn, Tilman. Lectures on LHC Physics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05942-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

L, Kane G., and Pierce Aaron, eds. Perspectives on LHC physics. Hackensack, NJ: World Scientific, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yue, Jason Tsz Shing. Higgs Properties at the LHC. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63402-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hauschild, Michael. Neustart des LHC: die Detektoren. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-23106-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "LHCI"

1

Yadavalli, Venkateswarlu, Chandramouli Malleda, and Rajagopal Subramanyam. "3D Model of PSI-LHCI Supercomplexes from Chlamydomonas Reinhardtii." In Advanced Topics in Science and Technology in China, 17–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32034-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Greene, B., D. R. Allred, D. Morishige, and L. A. Staehelin. "A Light-Sensitive Photoregulatory Mutant in Maize Deficient in LHCI and the ‘Mobile’ Chlorophyll a/b LHCII." In Progress in Photosynthesis Research, 697–700. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3535-8_163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sumimoto, Mariko, Takahito Onishi, Jian-Ren Shen, and Yuichiro Takahashi. "Purification and Biochemical Characterization of PSI-LHCI Supercomplex in Chlamydomonas reinhardtii." In Photosynthesis. Energy from the Sun, 215–18. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nyitrai, P., É. Sárvári, M. Láday, and F. Láng. "Accumulation of LHCI in Picea and Maize Seedlings Greened Under Different Conditions." In Photosynthesis: Mechanisms and Effects, 429–32. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yokono, Makio, Masakazu Iwai, Seiji Akimoto, and Jun Minagawa. "Simulation of Excitation Energy Transfer within the PSI-LHCI/II Supercomplex from Chlamydomonas reinhardtii." In Photosynthesis. Energy from the Sun, 1027–30. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Quagliani, Renato. "The LHCb Detector at the LHC." In Springer Theses, 29–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01839-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gandini, Paolo. "The LHCb Experiment at the LHC." In Observation of CP Violation in B± → DK± Decays, 25–53. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01029-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Klimmek, Frank, L. Horst Grimme, and Jürgen Knoetzel. "In Vitro Reconstitution of Barley LHCA1 and LHCA4, the Proteins of Photosystem I Antenna Subcomplex LHCI-730." In Photosynthesis: Mechanisms and Effects, 413–16. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_98.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tokutsu, Ryutaro, Masakazu Iwai, and Jun Minagawa. "Suppression of CP29 Causes Instability of the PSI-LHCI/II Supercomplex in Chlamydomonas reinhardtii Under State 2 Conditions." In Photosynthesis. Energy from the Sun, 1047–50. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Damm, I., J. Knoetzel, and L. H. Grimme. "On the Protective Role of Carotenoids in the Ps I Reaction Centre and LHCI Complexes of The Thylakoid Membrane." In Progress in Photosynthesis Research, 351–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3535-8_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "LHCI"

1

Russo, Mattia, Anna Paola Casazza, Giulio Cerullo, Stefano Santabarbara, and Margherita Maiuri. "Energy Transfer pathways in PSI-LHCI probed by Two-Dimensional Electronic Spectroscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/up.2020.m4b.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

HAEN, Christophe. "LHCb experience during the LHC 2015 run." In International Symposium on Grids and Clouds (ISGC) 2016. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.270.0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Machefert, Frederic. "Particle identification at LHC: Alice and LHCb." In 14th International Conference on B-Physics at Hadron Machines. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.190.0043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bonechi, L., O. Adriani, M. Bongi, G. Castellini, R. D’Alessandro, A. Faus, M. Haguenauer, et al. "The LHCf experiment at the LHC accelerator." In CALORIMETRY IN HIGH ENERGY PHYSICS: XII International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2396963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tricomi, Alessia. "Early Physics with the LHCf detector at LHC." In European Physical Society Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.084.0088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Berti, Eugenio, Oscar Adriani, Lorenzo Bonechi, Massimo Bongi, Raffaello D'Alessandro, Guido Castellini, Maurice Haguenauer, et al. "LHCf plan for proton-oxygen collisions at LHC." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tricomi, Alessia. "Latest results of the LHCf experiment at LHC." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.314.0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tricomi, Alessia. "Early Physics with the LHCf detector at LHC." In 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Komarov, Ilya. "First LHCb results from the 13 TeV LHC data." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.234.0436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Feng, Jianqiang, Jiafang Shan, and Mao Wang. "A Fault Diagnosis Expert System for LHCD System on EAST." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29346.

Повний текст джерела
Анотація:
Lower hybrid current drive (LHCD) is an efficient method for noninductive current drive in fusion devices. The LHCD system has been constructed on the Experimental Advanced Superconduct Tokamak (EAST). It is a complex system due to lots of devices involved. Each device has possibility of faults, which causes great difficulties in fault diagnosis. Consequently, a fault diagnosis expert system is essential for a safe and steady operation of the LHCD system. This paper proposes an expert system called LFDES (lower hybrid current drive fault diagnosis expert system) to aid operators in diagnosing and analyzing abnormal situations of the LHCD system. After a brief description of the structure of LHCD system, the LFDES architecture, the knowledge base, the inference engine and the database are presented in detail. Based on an empirical knowledge, the diagnostic tree of LHCD system is built. A fuzzy group multiple attribute decision making method is used to determine the priorities of nodes in the diagnostic tree. KDevelop tool, QT Designer tool and Linux operation system have been used in developing the proposed system. In the study, satisfactory results were obtained. The analyses of the results indicated that LFDES can provide reliable, efficient and economical service.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "LHCI"

1

Cartiglia, N., and C. Royon. LHC forward physics. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1222458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bartl, A., J. Soederqvist, and F. Paige. Supersymmetry at LHC. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/425352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ambrosio, G., F. M. Ametrano, F. Broggi, N. Andreev, K. Artoos, M. Begg, G. Bellomo, et al. EPAC/LHC Magnet Papers. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/1119495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pelaez, Jose R. Strong WW Interaction at LHC. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/9985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ibe, M. R-axion detection at LHC. Office of Scientific and Technical Information (OSTI), June 2009. http://dx.doi.org/10.2172/957442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Quigg, Chris, and /Fermilab. LHC Physics Potential versus Energy. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/963444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lambertson, G. R. LHC Kicker Beam-Impedance Calculation. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/7369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Benjamin, Doug, Kenneth Bloom, Brian Bockelman, Lincoln Bryant, Kyle Cranmer, Rob Gardner, Chris Hollowell, et al. Analysis Facilities for HL-LHC. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1863001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Naumann, Axel, Philippe Canal, Enric Tejedor, Enrico Guiraud, Lorenzo Moneta, Bertrand Bellenot, Olivier Couet, et al. HL-LHC Analysis With ROOT. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1873703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ko, Jinseok, Steve Scott, Syun'ichi Shiraiwa, Martin Greenwald, Ronald Parker, and Gregory Wallace. Intra-shot MSE Calibration Technique For LHCD Experiments. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/969308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії