Добірка наукової літератури з теми "Lhcd"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lhcd".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Lhcd":

1

Shi, Bo, Zhen-Dong Yang, Bin Zhang, Cheng Yang, Kai-Fu Gan, Mei-Wen Chen, Jin-Hong Yang, et al. "Heat Flux on EAST Divertor Plate in H-mode with LHCD/LHCD+NBI." Chinese Physics Letters 34, no. 9 (August 2017): 095201. http://dx.doi.org/10.1088/0256-307x/34/9/095201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hao, Xu, and Yi Yun Huang. "The Design of High Voltage DC Power Supply of 4.6GHZ/500MW LHCD." Applied Mechanics and Materials 135-136 (October 2011): 1027–36. http://dx.doi.org/10.4028/www.scientific.net/amm.135-136.1027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The steady-state and transient performances of the power supply system of LHCD (Lower Hybrid Current Drive) heating system are highly demanded which makes it difficult to design the power source. In this thesis, the method of designing the 4.6GHZ/6MW power source of LHCD of EAST is discussed. And the results of the experiment are provided and some special characteristics are analysed to prove the accuracy of the method.
3

Sharma, P. K., D. Raju, S. K. Pathak, R. Srinivasan, K. K. Ambulkar, P. R. Parmar, C. G. Virani, et al. "Current drive experiments in SST1 tokamak with lower hybrid waves." Nuclear Fusion 62, no. 5 (March 28, 2022): 056020. http://dx.doi.org/10.1088/1741-4326/ac4297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The steadystate superconducting tokamak (SST1) is aimed to demonstrate long pulse plasma discharges employing non-inductive current drive by means of lower hybrid current drive (LHCD) system. The major and minor radius of the machine is 1.1 m and 0.2 m, respectively. The LHCD system for SST1 comprises of klystrons, each rated for 0.5 MW-CW rf power at a frequency of 3.7 GHz. The grill antenna comprises of two rows, each row accommodating 32 waveguide elements. Electron cyclotron resonance breakdown assisted Ohmic plasma is formed in SST1 to overcome the issues associated with low loop voltage start-ups. With recent modifications in the poloidal coils configuration, even with narrow EC pulse (∼50 ms), good repeatable and consistent Ohmic plasmas could be produced which helped in carrying out LHCD current drive experiments on SST1. These experiments demonstrated both fully as well as partially driven non-inductive plasma current in SST1 tokamak. Discharges with zero loop voltages were obtained. The interaction of lower hybrid waves with plasma and generation of suprathermal electrons could be established using energy spectra measured by CdTe detectors. Various other signatures like drop in loop voltages, negative loop voltages, spikes in hard x-rays and increase in second harmonic ECE signal, further confirmed the current drive by LHW’s. The beneficial effect of LHW’s in suppressing hard x-rays was also demonstrated in these experiments. The longest discharge of ∼650 ms could be obtained in SST1 with the help of LHW’s. In this paper, the experimental results obtained with LHCD experiments on SST1 is reported and discussed in more details.
4

Bing-ren, Shi. "Electron Heating in Tokamak LHCD Experiment." Plasma Science and Technology 2, no. 5 (October 2000): 423–29. http://dx.doi.org/10.1088/1009-0630/2/5/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bibet, Ph, B. Beaumont, J. H. Belo, L. Delpech, A. Ekedahl, G. Granucci, F. Kazarian, et al. "Toward a LHCD system for ITER." Fusion Engineering and Design 74, no. 1-4 (November 2005): 419–23. http://dx.doi.org/10.1016/j.fusengdes.2005.06.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pi, Xiong, Lirong Tian, Huai-En Dai, Xiaochun Qin, Lingpeng Cheng, Tingyun Kuang, Sen-Fang Sui, and Jian-Ren Shen. "Unique organization of photosystem I–light-harvesting supercomplex revealed by cryo-EM from a red alga." Proceedings of the National Academy of Sciences 115, no. 17 (April 9, 2018): 4423–28. http://dx.doi.org/10.1073/pnas.1722482115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photosystem I (PSI) is one of the two photosystems present in oxygenic photosynthetic organisms and functions to harvest and convert light energy into chemical energy in photosynthesis. In eukaryotic algae and higher plants, PSI consists of a core surrounded by variable species and numbers of light-harvesting complex (LHC)I proteins, forming a PSI-LHCI supercomplex. Here, we report cryo-EM structures of PSI-LHCR from the red alga Cyanidioschyzon merolae in two forms, one with three Lhcr subunits attached to the side, similar to that of higher plants, and the other with two additional Lhcr subunits attached to the opposite side, indicating an ancient form of PSI-LHCI. Furthermore, the red algal PSI core showed features of both cyanobacterial and higher plant PSI, suggesting an intermediate type during evolution from prokaryotes to eukaryotes. The structure of PsaO, existing in eukaryotic organisms, was identified in the PSI core and binds three chlorophylls a and may be important in harvesting energy and in mediating energy transfer from LHCII to the PSI core under state-2 conditions. Individual attaching sites of LHCRs with the core subunits were identified, and each Lhcr was found to contain 11 to 13 chlorophylls a and 5 zeaxanthins, which are apparently different from those of LHCs in plant PSI-LHCI. Together, our results reveal unique energy transfer pathways different from those of higher plant PSI-LHCI, its adaptation to the changing environment, and the possible changes of PSI-LHCI during evolution from prokaryotes to eukaryotes.
7

Esterkin, A. R., and A. D. Piliya. "Fast ray tracing code for LHCD simulations." Nuclear Fusion 36, no. 11 (November 1996): 1501–12. http://dx.doi.org/10.1088/0029-5515/36/11/i05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ding, Bojiang, Erhua Kong, Miaohui Li, Yongliang Qin, Lei Zhang, Mao Wang, Handong Xu, et al. "Recent Results of LHCD Experiments in EAST." Plasma Science and Technology 13, no. 2 (April 2011): 153–56. http://dx.doi.org/10.1088/1009-0630/13/2/05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Park, S., H. Do, J. H. Jeong, W. Namkung, M. H. Cho, H. Park, Y. S. Bae, et al. "Development status of KSTAR 5GHz LHCD system." Fusion Engineering and Design 85, no. 2 (April 2010): 197–204. http://dx.doi.org/10.1016/j.fusengdes.2009.12.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Qiuran, Peng Lu, Yu Zheng, Hua Du, Liang Liu, Qingjun Zhu, and Songlin Liu. "Neutronics assessments of LHCD antenna system for CFETR." Fusion Engineering and Design 172 (November 2021): 112877. http://dx.doi.org/10.1016/j.fusengdes.2021.112877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Lhcd":

1

Liang, Anshu. "Understanding the low to high confinement transition in tokamak plasmas." Electronic Thesis or Diss., Aix-Marseille, 2023. http://theses.univ-amu.fr.lama.univ-amu.fr/230112_LIANG_826zuy182lisgpn946fzpk544n_TH.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les travaux présentés dans cette thèse sont consacrés à la compréhension du mécanisme physique de la transition L-H. Le mécanisme d'entraînement du cisaillement de vitesse dans le bord du plasma a été étudié à l'aide d'une injection de puissance d'entraînement à courant hybride inférieur (LHCD) sur le tokamak HL-2A en Chine. Il a été montré que l'augmentation du cisaillement de vitesse est principalement entraînée par le terme diamagnétique ionique du champ électrique radial Er. Au cours de la transition L-H, on observe que le terme diamagnétique ionique du champ électrique radial Er joue un rôle dominant dans l'augmentation du cisaillement de vitesse, tandis que les contributions des termes de vitesse poloïdal et toroïdal sont négligeables. Le cisaillement de vitesse doit atteindre une valeur critique pour permettre à la transition L-H de se produire. Cela signifie que la valeur critique joue un rôle de seuil de cisaillement de vitesse pour la transition L-H. De plus, l'effet stimulé de l'injection de faisceaux moléculaires supersoniques (SMBI) sur la transition L-H a également été étudié sur HL-2A. Les résultats suggèrent que le SMBI pourrait être une méthode fiable pour réduire le seuil de puissance de transition L-H et contrôler la transition L-H dans les futurs réacteurs de fusion. Enfin, des efforts ont été faits sur l'optimisation du couplage LHCD sur le tokamak WEST en France et une analyse du couplage de l'onde LH dans les plasmas WEST a été réalisée. L'analyse montre que le remodelage toroïdal du lanceur multijonction entièrement actif effectué avant son installation à WEST a été un succès
The works presented in this thesis are devoted to understand the physical mechanism of the L-H transition. The driving mechanism of the velocity shear in the plasma edge has been studied using lower hybrid current drive (LHCD) power injection on the HL-2A tokamak in China. It has been shown that the increase of the velocity shear is mainly driven by the ion diamagnetic term of the radial electric field Er. During the L-H transition, it is observed that the ion diamagnetic term of the radial electric field Er plays a dominant role in the increase of velocity shear, while the contributions of the poloidal and toroidal velocity terms are negligible. The velocity shear must reach a critical value to allow the L-H transition to occur. This means that the critical value plays a role as a velocity shear threshold for the L-H transition. In addition, the stimulated effect of supersonic molecular beam injection (SMBI) on the L-H transition has also been investigated on HL-2A. The results suggest that SMBI could be a reliable method for reducing the L-H transition power threshold and controlling the L-H transition in future fusion reactors. Finally, efforts have been made on the optimization of LHCD coupling on the WEST tokamak in France and an analysis of the LH wave coupling in WEST plasmas has been carried out. The analysis shows that the toroidal reshaping of the fully-active-multijunction launcher carried out before its installation in WEST was successful. The experiments have also shown that the reshaping of the passive-active-multijunction launcher is necessary in order to avoid overheating on the launcher front in long pulses
2

Sierchio, Jennifer Marie. "The effect of ICRF and LHCD waveguide and launcher location on tritium breeding ratio and radiation damage in fusion reactors." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 73-76).
In most tokamak fusion reactor designs, ICRF (Ion Cyclotron Range of Frequencies) and LH (Lower Hybrid) radio frequency (RF) waves used to heat the plasma and drive current are launched from the low-field, outboard side where there is more access space. It has recently been proposed to launch these waves from the high-field side [1-3], which increases current-drive efficiency, allows for better wave penetration, and has favorable scrape-off-layer and plasma material interaction characteristics [4]. However the poloidal location and size of RF launchers will also affect important aspects of the neutronics of the tokamak fusion design, i.e. how the 14.1 MeV neutrons born out of the deuterium-tritium (D-T) fusion reaction interact with the surrounding blanket and structures. The goal of this thesis is to assess the dependence of RF launcher poloidal location on the important neutronics parameters of tritium fuel breeding, launcher damage and activation. To determine the effects of waveguide and antenna location on Tritium Breeding Ratio (TBR), damage, and activation, the MCNP Transport Code was used, as well as the EASY 2010 activation package to analyze the activation of the vacuum vessel components. A simple geometry was designed for MCNP, based on the original ARC model [1]. Seven locations for the waveguides and antenna were chosen: the inner and outer midplane, the inner and outer upper corners, two spaces between the midplane (inboard and outboard), and a central location directly above the vacuum vessel. TBR, DPA, and helium concentration were calculated at all seven points to find the optimal location for the waveguides and antenna. Four blanket materials were chosen: two liquid blankets (FliBe and Pb-17Li) and two solid blankets (Li4SiO4 and Li2TiO3). This was to test whether or not blanket material affects the optimal location of the launchers. We find that from the neutronics point of view the overall optimal location is the inboard upper corner, which minimizes DPA and helium concentration in the antenna and waveguide, and maximizes TBR. DPA in the waveguide was minimized when placed in the outboard upper corner, although the difference in DPA between the two locations was small. While TBR was maximized at the top of the vacuum vessel, the differences in TBR between all locations was less than 1%. These results reinforce the choice of inside, upper corner launch as the optimal location for current drive, launcher protection and neutronics. Activation was also assessed for the vacuum vessel, both without and with the waveguides and antenna, assuming irradiation times of one week, one month, and one year. Overall, activation was significant in the vacuum vessel, as expected, due to the use of Inconel 718. The IAEA recycling limit could be achieved, regardless of irradiation time. The dominant isotopes present after irradiation differed when the irradiation time was one week versus one month or one year. Activation was also assessed in the waveguides and antenna for the cases of the launchers being placed at the outboard midplane versus the inboard corner. The activation in the antenna was shown to be reduced by a factor of two and in the waveguides by a factor of four, when the launchers were placed in the inboard corner.
by Jennifer Marie Sierchio.
S.M.
3

McCarthy, James. "Search for rare baryonic b decays with the LHCb experiment at the LHC." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6247/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A search was performed for the Λ\(_b\)\(^0\)→Λ\(^0\)η’ and Λ\(_b\)\(^0\)→Λ\(^0\)η decays with the LHCb experiment. The full dataset recorded by LHCb in 2011 and 2012 is used, corresponding to 1.0fb\(^-\)\(^1\) of proton-proton collision data collected at a centre of mass energy of 7 TeV, and 2.0fb\(^-\)\(^1\) of data collected at a centre of mass energy of 8 TeV, respectively. The B\(^0\)→K\(_S\)\(^0\)η’ decay is used as a normalisation channel, and a selection is designed and optimised using this decay. By measuring the ratio of the branching fractions for the signal decay to the normalisation decay, many systematic uncertainties cancel out. No significant signal is observed for the Λ\(_b\)\(^0\)→Λ\(^0\)η’ decay, and some evidence is observed for the Λ\(_b\)\(^0\)→Λ\(^0\)η decay with a significance of 3σ. The Feldman-Cousins method is used to make the first measurement of the limit on the branching fractions. The limits are BF(Λ\(_b\)\(^0\)→Λ\(^0\)η’) < 3.1*10\(^-\)\(^6\) at 90% CL. BF(Λ\(_b\)\(^0\)→Λ\(^0\)η) ε[2.5,22.8]*10\(^-\)\(^6\) at 90% CL.
4

Manuzzi, Daniele. "Measure of the branching ratio of the B0→D∗−τ+ντ decay at LHCb: a preliminary study for RD∗(q2) in 3-prong τ decays". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15841/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ad oggi non sono state ancora osservate differenze significative tra i risultati sperimentali e le previsioni teoriche del Modello Standard. Tuttavia esistono delle differenze che potrebbero indicare l'esistenza di Nuova Fisica. Tre queste una delle principali riguarda: $\CMcal{R}_{D^{*}}= \CMcal{B}(B^0\to D^{*-}\tau^+\nu_\tau)/\CMcal{B}(B^0\to D^{*-}\mu^+\nu_\mu)$ e $\CMcal{R}_D \CMcal{B}(B^0\to D^{-}\tau^+\nu_\tau)/\CMcal{B}(B^0\to D^{-}\mu^+\nu_\mu)$. Questi rapporti sono stati misurati dagli esperimenti \textit{BaBar}~\cite{BaBar2013} e \textit{Belle}~\cite{Belle2015} ed anche dall'esperimento LHCb~\cite{LHCb-mu}. Al momento la combinazione di tutti questi risultati~\cite{HFAG2016} si discosta di $3.9~\sigma$ dalle previsioni teoriche basate sul Modello Standard~\cite{Fajfer2012}. Se questa deviazione fosse confermata da future misure più precise, rappresenterebbe una evidenza indiretta dell'esistenza di una nuova dinamica. Recentemente LHCb ha realizzato la misura di $\CMcal{R}_{D^*}$ utilizzando un ulteriore canale di decadimento del tauone: $\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\bar\nu_\tau$. Infatti la precedente misura era stata realizzata utilizzando il decadimento semi-leptonico del tau. Il lavoro di tesi presentato in questo documento riguarda lo studio preliminare di fattibilità della misura di $\CMcal{R}_{D^*}$ in regioni di $q^2 = (p_{B^0}-p_{D^{*-}})^2$, mediante il decadimento $B^0\to D^{*-}\tau^+(\to 3\pi\pi^0\bar\nu_\tau)\nu_\tau$. Il campione di dati utilizzato corrisponde a quelli raccolti da LHCb durante il RUN-1 e quindi pari a $3~\mathrm{fb^{-1}}$ di luminosità integrata. Questo lavoro ha permesso di concludere che questo tipo di analisi è fattibile, nonostante il piccolo numero di eventi di segnale osservati. Tuttavia per rendere l'analisi pronta per la pubblicazione, diversi studi, inclusi quelli degli effetti sistematici, sono ancora necessari.
5

MELONI, SIMONE. "Test of lepton flavour universality with the simultaneous measurement of R(D+) and R (D*+) with τ→ μνν decays at the LHCb experiment". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nel Modello Standard delle interazioni fondamentali l’accoppiamento dei bosoni di gauge ai leptoni è indipendente dal flavour leptonico. Questa proprietà, conosciuta come Universalit di Flavour leptonico, è una simmetria accidentale del modello che pu essere testata in decadimenti semileptonici di mesoni contententi quark di tipo b. Le variabili usate per testare l’Universalità di Flavour leptonico sono rapporti di ratei di decadimento tra transizioni con un leptone τ e transizioni con un leptone μ nello stato finale: R(H c ) = B(B → Hc τ ν) / B(B → Hc μν), con Hc che rappresenta un mesone contenente un quark c prodotto nel decadimento. L’osservazione di qualsiasi segno di deviazione in queste variabili rispetto alle previsioni del Modello Standard potrebbe essere un chiaro segno dell’effetto di effetti di nuova fisica. Combinando le misure dei parameteri R(D) e R(D*) effettuate dalle collaborazioni Belle, BaBar e LHCb, è stata osservata una tensione rispetto alle previsioni del Modello Standard a livello di circa 3σ. Ad oggi nessuna misura del parametro R(D) è mai stata effettuata a collider adronici. Questa tesi riporta una misura simultanea dei parametetri R(D+) e R(D *+) effettuata tramite l’analisi di decadimenti B → D(*)l ν . Questa misura utilizza il decadimento leptonico del τ , τ → μνν, sfruttando un campione di 2.0 /fb di dati raccolto in collisioni protone-protone, ad un’energia nel centro di massa di 13 TeV dall’esperimento LHCb durante la presa dati degli anni 2015 e 2016. Tutti i passi dell’analisi sono stati effettuati e le principali incertezze sistematiche sono state valutate. Il valore dei parametri è ancora blinded e l’analisi è in revisione interna presso la collaborazione LHCb. L’incertezza attesa associata ai parametri di interesse è: R(D + ) = xxx ± 0.033(stat.) ± 0.037(syst.), R(D *+ ) = xxx ± 0.040(stat.) ± 0.070(syst.).
In the Standard Model of particle physics, the coupling of the electroweak gauge bosons to the leptons is independent of the lepton flavour. This property, known as Lepton Flavour Universality, is an accidental symmetry of the Standard Model, which can be tested in semileptonic b-meson decays. The variables used to test the Lepton Flavour Universality hypothesis are ratios of branching fractions between decays with the τ lepton and the ones with the μ lepton in the final state: R(Hc) = B(B → Hc τ ν) / B(B → Hc μν) with Hc a charmed meson produced in the decay. Any sign of deviation with respect to the Standard Model predictions in these variables could be a clear sign of New Physics effects. A tension at the level of 3σ with respect to the Standard Model predictions has been observed in the combination of the measurements of R(D) and R(D*) performed by the Belle, BaBar and LHCb collaborations. At the time of writing of this thesis, no measurement of the R(D) parameter has been performed by any hadron collider experiment. This thesis reports a simultaneous measurement of the R(D+) and R(D*+) parameters performed using B → D(*)lν decays. This measurement exploits leptonic decays of the τ lepton, τ → μνν , using a data sample corresponding to an integrated luminosity of 2.0 /fb collected in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHCb experiment during the 2015 and 2016 data taking years. All the steps of the analysis have been performed and all the main systematic uncertainties have been studied. The value of the measured parameters is still blinded and the analysis is in internal review within the LHCb collaboration. The expected uncertainty on the parameters of interest is given by R(D+) = xxx ± 0.033(stat.) ± 0.037(syst.), R(D*+)= xxx ± 0.040(stat.) ± 0.070(syst.).
6

Roselló, Canal Maria del Mar. "Control de l'escintil·lador SPD del calorímetre d'LHCb." Doctoral thesis, Universitat Ramon Llull, 2009. http://hdl.handle.net/10803/9152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
En aquesta tesi es descriu l'electrònica i la gestió de la placa de control de l'SPD. SPD són les sigles corresponents a Scintillator Pad Detector, part del calorímetre d'LHCb de l'accelerador LHC.

L'LHC és un accelerador orientat a estudiar els constituents de la matèria on LHCb n'és un dels detectors. El calorímetre és aquella part del detector destinada a mesurar l'energia de les partícules que el travessen. En el nostre cas l'SPD discrimina entre partícules carregades i no carregades contribuint així en les decisions del calorímetre.

En l'electrònica de l'SPD trobareu diferenciades dues parts: l'electrònica en contacte directe amb el subdetector (Very Front End, VFE) i l'electrònica de gestió de l'SPD (la Control Board, CB). L'objectiu d'aquesta tesi és la descripció d'aquesta darrera així com la integració de l'SPD en el sistema de control del calorímetre.

El VFE realitza un primer processat de les dades del detector determinant un nivell digital el qual indica si s'ha rebut una partícula carregada o no. La CB és l'encarregada en canvi de la monitorització i el control del sistema SPD: és capaç d'enviar dades de configuració als VFE i a la vegada en monitoritza el correcte funcionament.

Veureu que el document es troba organitzat en 5 parts. A la primera part trobareu descrites les característiques principals del calorímetre, les seves funcions i la seva estructura. La part segona, tercera i quarta són dedicades integrament a la CB: a la part 2 tenim descrit el hardware, a la part 3 el sistema de control i a la quarta part hi trobarem comentats els diferents testos i proves realitzades tan sobre el hardware com amb el sistema de control. Finalment a la cinquena part hi trobarem resumits els objectius aconseguits amb el nostre disseny i les aportacions d'aquest en la globalitat de l'experiment.
En esta tesis se describe la electrónica y la gestión de la placa de control del SPD. SPD son las siglas correspondientes a Scintillator Pad Detector, parte del calorímetro de LHCb del acelerador LHC.

LHC es un acelerador orientado al estudio de los constituyentes de la materia donde LHCb es uno de los detectores. El calorímetro es aquella parte del detector destinada a medir la energía de las partículas que lo traviesan. En nuestro caso el SPD discrimina entre partículas cargadas y neutras contribuyendo así a las decisiones del calorímetro.

En la electrónica del SPD encontraréis diferenciadas dos partes: la electrónica en contacto directo con el detector (Very Front End, VFE) y la electrónica de gestión del SPD (la Control Board, CB). El objetivo de esta tesis es precisamente la descripción de esta última parte así como la integración del SPD en el sistema de control del calorímetro.

El VFE realiza un primer procesado de los datos del detector determinando un nivel digital el cual indica si la partícula detectada está cargada o no. La CB es en cambio la encargada de la monitorización y el control del sistema SPD: es capaz de enviar datos de configuración a los VFE y a la vez monitorizar su correcto funcionamiento.

Veréis que el documento se encuentra organizado en 5 partes. En la primera parte encontraréis descritas las características principales del calorímetro, sus funciones y su estructura. La segunda parte, la tercera y la cuarta están plenamente dedicadas a la CB: en la parte 2 tenemos descrito el hardware, en la parte 3 el sistema de control y en la cuarta encontraremos los diferentes tests y pruebas realizadas sobre el hardware y el sistema de control. Finalmente en la quinta parte tenemos resumidos los objetivos conseguidos con nuestro diseño y las aportaciones de este en la globalidad del experimento.
In this thesis you will have described the electronics and management of the SPD. SPD stands for Scintillator Pad Detector which is part of the LHCb calorimeter of the LHC accelerator.

LHC is an accelerator oriented to study the matter constitution and LHCb is one of the detectors designed for this challenge. The LHCb part oriented to measure the particles energy is the calorimeter. The SPD is designed to discriminate between charged and neutral particles contributing in the calorimeter decisions.

In the SPD electronics description we can distinguish between to parts: the electronics in contact with the subdetector (Very Front End, VFE) and the electronics in charge of the SPD management (the Control Board, CB). The goal of this thesis is the description of the last and also the integration of the SPD with the calorimeter control system.

The VFE captures the data from the detector and makes a first digital decision depending on if the particle detected is charged or not. The CB is in charge of the monitoring and control of the SPD system: is able to send configuration data to the VFE and also monitors parameters to assure a proper behaviour.

You will see that the document is divided in 5 parts. In the first, you will find described the calorimeter, its functionalities and its structure. Part 2, part 3 and part 4 are fully dedicated to the CB: in part 2 we will find the CB hardware, in part 3 the control system and finally in part 4 the different tests performed with the hardware and the control system. The document ends with part 5 where the main objectives of this work are summarized and also the contribution of the SPD design in the LHCb project.
7

Hopchev, Plamen. "Mesures de la luminosité absolue à l'expérience LHCb." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00684982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mesures de la luminosité intégrée pour les expériences auprés de collisionneur ont un intérêt majeur. Ces mesures participent à la détermination des sections efficaces de production des processus étudiés, elles quantifient également les performances de l'accélérateur et des expériences. Deux méthodes ont été utilisées par l'expérience LHCb pour déterminer la mesure de la luminosité absolue enregistrée durant la campagne 2010 de prise de données des collisions proton-proton à une énergie de 7 TeV dans le centre de masse: outre la méthode classique applelée "Van der Meer scan" une nouvelle technique est développée permettant une détermination directe des paramètres de chaque faisceau en localisant les interactions faisceau-faisceau et les interactions faisceau-gaz résiduel. Cette méthode n'est possible que grace à la résolution du détecteur de vertex de LHCb et sa proximité avec la zone des faisceaux de protons et les paramètres tels la position, les angles et les largeurs des faisceaux peuvent être mesurés. Les deux methodes sont décrites et leurs résultats discutés. De plus les techniques utilisées pour étendre les mesures de luminosité absolue à l'ensemble de la prise de données 2010 sont décrites.
8

Alessio, Federico. "Beam, Background and Luminosity Monitoring in LHCb and Upgrade of the LHCb Fast Readout Control." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22044/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le travail présenté dans cette thèse a été effectué au sein de la collaboration internationale LHCb qui a conçue et qui exploite un détecteur pour la physique des particules auprès de l’accélérateur proton-proton, le LHC, au CERN à Genève. Ces travaux concerne l’opération de l’expérience dans son ensemble. Ils ont montré toutes leurs forces pendant la première année de prise de données qui a débutée fin 2009. Ils couvrent plusieurs systèmes qui sont très dépendant les uns des autres. Deux systèmes sont plus particulièrement étudiés. Le premier est en charge de la surveillance des faisceaux, du niveau des bruits de fond et de la luminosité. Le second permet la visualisation, l’analyse et l’optimisation des conditions expérimentales. Ces deux systèmes sont fortement interconnectés. En effet, l’amélioration de la qualité des faisceaux de la machine et la diminution du bruit de fond augmentent le nombre de collisions utiles pour la physique. En même temps, comprendre les paramètres clefs qui gouvernent l’opération de l’expérience permet de les optimiser et d’améliorer la qualité des données collectées
There are two main central topics in the thesis: the LHCb beam, background and luminosity monitoring systems and the LHCb optimization systems of experimental conditions. These systems are heavily connected to each other, as improving the machine beam, background and luminosity conditions will automatically improve global operation by maximizing the ratio of luminosity recorded over signal background. At the same time, improving the operation of the experiment will help improve luminosity, by studying more accurately the beam and background conditions and therefore improving the LHC machine settings. In this thesis, the systems to accomplish the requirements of these two main topics are described in detail
9

Kochebina, Olga. "Study of Rare Charm Decays with the LHCb Detector at CERN." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112208/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les désintégrations charmées rares interviennent principalement via des courants neutres changeant la saveur (FCNC). Le Modèle Standard (SM) n'autorise les courants qu'au niveau des boucles. Dans les désintégrations du charme, les FCNC sont sujets à une très efficace suppression de GIM. Des processus très rares sont donc à considérer. Ils sont d'excellents outils pour la recherche Nouvelle Physique (NP) au-delà du SM. Les particules de NP pourraient devenir détectables en écartant des observables telles que des rapports de branchement et des asymétries CP et angulaires prévisions de le SM. Le sujet principal de cette thèse est la mesure du rapport de branchement D0->K-π+ρ/ω(->µ+µ-). Il sera précieux en particulier en tant que mode de normalisation lors de l'étude de toutes les désintégrations D0 -> h-h’+ µ+µ- : D0 -> K-π+µ+µ-, D0 -> π+π-µ+µ-, D0 -> K+K-µ+µ- et D0 -> K+π-µ+µ-. En utilisant 2/fb de données collectées par LHCb en 2012, nous mesurons: B(D0 -> K-π+ ρ/ω (->µ+µ-)) = (4.37± 0.12(stat.) ±0.53(syst.)) ×10^-6. C'est la toute première mesure de ce mode. Nous avons également étudié la sensibilité qu'attendra LHCb dans les modes D0 -> h-h’+ µ+µ- pour la mesure de rapport des branchements totaux et partiels, et pour celle d'asymétries, avec les échantillons de données qui seront collectés d'ici 10 ans. Par ailleurs, nous avons déterminé les incertitudes systématiques touchant les recherches de désintégrations à trois corps, D+(s) -> π+µ+µ- et D+(s) -> π-µ+µ+, effectués par LHCb dans les données recueillies en 2011 (1/fb). Enfin, les tests effectués sue les prototypes des cartes d'électronique embarquée qui assureront la lecture des calorimètres de l'expérience le LHCb mise à jour sont présenté dans cette thèse
Rare charm decays proceed mostly through the c -> u Flavor Changing Neutral Current (FCNC), which is possible only at loop level in the Standard Model (SM). In charmed decays, FCNCs are subject to a very efficient GIM suppression, leading to very rare processes. Consequently, rare charm decays are good tools to probe to New Physics (NP) beyond the SM. NP particles could become detectable by causing observables such as branching ratios and CP or angular asymmetries to deviate from the SM predictions. The main subject of this thesis is the measurement of the branching ratio of the D0 -> K-π+ ρ/ω (->µ+µ-) mode. It will be precious in the future, in particular as a normalization mode in the study of all: D0 -> h-h’+ µ+µ- decays D0 -> K-π+µ+µ-, D0 -> π+π-µ+µ-, D0 -> K+K-µ+µ- and D0 -> K+π-µ+µ-. Using 2/fb of 2012 LHCb data we find: B(D0 -> K-π+ ρ/ω (->µ+µ-)) = (4.37± 0.12(stat.) ±0.53(syst.)) ×10^-6. This is the first measurement of this mode. We also determined sensitivities to total and partial branching fractions and asymmetries in D0 -> h-h’+ µ+µ- decays with future LHCb datasets. In addition, the systematic uncertainties affecting the searches for the 3-body decays, D+(s) -> π+µ+µ- and D+(s) -> π-µ+µ+, carried out by LHCb based on the data collected in 2011 (1/fb). Finally, the results of the tests of front-end electronic board for the Upgrade of LHCb are presented
10

Laubser, J. "Conception et réalisation de l'unité de décision du système de déclenchement de premier niveau du détecteur LHCb au LHC." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2007. http://tel.archives-ouvertes.fr/tel-00283775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le détecteur LHCb est l'une des quatre expériences de physique des particules installées sur la nouvelle chaîne d'accélération LHC (Large Hadron Collider) du CERN à Genève. Afin de réduire la quantité de données destinées au stockage pour les analyses hors ligne, un dispositif de sélection en ligne des collisions intéressantes selon la physique à étudier est mis en place en parallèle de la chaîne d'acquisition des données. Ce dispositif est composé d'un premier niveau (niveau 0) réalisé par un système électronique complexe et d'un second niveau de sélection réalisé par informatique HLT (High Level Trigger). L'unité de décision de niveau 0 (L0DU) est le système central du niveau 0 de déclenchement. L0DU prend la décision d'accepter ou de rejeter la collision pour ce premier niveau à partir d'une fraction d'informations issues des sous-détecteurs les plus rapides (432 bits à 80 MHz). L'unité de décision est un circuit imprimé 16 couches intégrant des composants de haute technologie de type FPGA (Field Programmable Gate Array) en boîtier BGA (Bill Grid Array). Chaque sous-détecteur transmet ses informations via des liaisons optiques haute vitesse fonctionnant à 1,6 Gbit/s. Le traitement est implémenté en utilisant une architecture pipeline synchrone à 40 MHz. L'unité de décision applique un algorithme de physique simple pour calculer sa décision et réduire le flot de données de 40 MHz à 1 MHz pour le niveau de sélection suivant. L'architecture interne se compose principalement d'un traitement partiel des données destiné à l'ajustement des phases d'horloge, à l'alignement en temps et à la préparation des données pour la partie définition des déclenchements (TDU). L'architecture développée permet de configurer et de paramétrer l'algorithme de prise de décision via le système de contrôle général de l'expérience ECS (Experiment Control System) sans avoir à effectuer une reprogrammation des FPGA.

Книги з теми "Lhcd":

1

Gardi, Einan, Nigel Glover, and Aidan Robson, eds. LHC Phenomenology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05362-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Binoth, T. LHC physics. Boca Raton, FL: Taylor & Francis, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Giudice, Gian Francesco. Odyssee im Zeptoraum: Eine Reise in die Physik des LHC. Berlin: Springer Berlin, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brüning, O. LHC design report. Edited by European Organization for Nuclear Research. Geneva: European Organization for Nuclear Research, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zla-ba-tshe-riṅ. Lhad med g'yu loʼi rṅul thigs. Dharamsala, H.P: Bod-kyi Dgu-chu-sum Las-ʼgul Tshogs-pa, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yon-tan-tshe-riṅ. Bzo mchog lhad mo kun mthoṅ. Chʼang-tu: Si-khron mi rigs dpe skrun khaṅ, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Plehn, Tilman. Lectures on LHC physics. Heidelberg: Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Plehn, Tilman. Lectures on LHC Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24040-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Plehn, Tilman. Lectures on LHC Physics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05942-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

L, Kane G., and Pierce Aaron, eds. Perspectives on LHC physics. Hackensack, NJ: World Scientific, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Lhcd":

1

Quagliani, Renato. "The LHCb Detector at the LHC." In Springer Theses, 29–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01839-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gandini, Paolo. "The LHCb Experiment at the LHC." In Observation of CP Violation in B± → DK± Decays, 25–53. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01029-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bastianin, Andrea. "Findings from the LHC/HL-LHC Programme." In The Economics of Big Science, 71–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52391-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This note summarizes the results of a social Cost–Benefit Analysis (CBA) of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). The social CBA methodology is well-suited to assess social costs and benefits of the HL-LHC up to 2038. The analysis shows that the ratio between incremental benefits and incremental costs of the HL-LHC with respect to operating the LHC under normal consolidation (i.e. without high-luminosity upgrade) is slightly over 1.7, meaning that each Swiss Franc invested in the HL-LHC upgrade project pays back approximately 1.7 CHF in societal benefits. The rest of the note is organized as follows. We first discuss the merits of CBA; next, we present the methodology and discuss the results.
4

Frühwirth, Rudolf, and Are Strandlie. "LHC Experiments." In Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors, 169–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65771-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Heinemeyer, Sven. "Higgs/Electroweak in the SM and the MSSM." In LHC Phenomenology, 3–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05362-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grossman, Yuval. "Introduction to Flavour Physics." In LHC Phenomenology, 35–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05362-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cacciapaglia, Giacomo. "Beyond the Standard Model Phenomenology and the ElectroWeak Symmetry Breaking." In LHC Phenomenology, 81–121. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05362-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mättig, Peter. "Probing the Standard Model at Hadron Colliders." In LHC Phenomenology, 125–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05362-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Murray, William. "Higgs Boson Searches." In LHC Phenomenology, 173–202. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05362-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gershon, Tim. "Flavour Physics in the LHC Era." In LHC Phenomenology, 203–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05362-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Lhcd":

1

Feng, Jianqiang, Jiafang Shan, and Mao Wang. "A Fault Diagnosis Expert System for LHCD System on EAST." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lower hybrid current drive (LHCD) is an efficient method for noninductive current drive in fusion devices. The LHCD system has been constructed on the Experimental Advanced Superconduct Tokamak (EAST). It is a complex system due to lots of devices involved. Each device has possibility of faults, which causes great difficulties in fault diagnosis. Consequently, a fault diagnosis expert system is essential for a safe and steady operation of the LHCD system. This paper proposes an expert system called LFDES (lower hybrid current drive fault diagnosis expert system) to aid operators in diagnosing and analyzing abnormal situations of the LHCD system. After a brief description of the structure of LHCD system, the LFDES architecture, the knowledge base, the inference engine and the database are presented in detail. Based on an empirical knowledge, the diagnostic tree of LHCD system is built. A fuzzy group multiple attribute decision making method is used to determine the priorities of nodes in the diagnostic tree. KDevelop tool, QT Designer tool and Linux operation system have been used in developing the proposed system. In the study, satisfactory results were obtained. The analyses of the results indicated that LFDES can provide reliable, efficient and economical service.
2

Lu, B., X. Y. Bai, Y. Peysson, Y. P. Zhang, D. Mazon, G. L. Xiao, X. L. Zou, et al. "Recent LHCD experiments on HL-2A and LHCD system development on HL-2M." In THE 6TH INTERNATIONAL CONFERENCE ON BIOLOGICAL SCIENCE ICBS 2019: “Biodiversity as a Cornerstone for Embracing Future Humanity”. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0013734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bibet, Ph, B. Beaumont, J. Belo, J. P. S. Bizarro, L. Delpech, A. Ekedahl, G. Granucci, et al. "ITER LHCD Plans and Design." In 21st IEEE/NPS Symposium on Fusion Engineering SOFE 05. IEEE, 2005. http://dx.doi.org/10.1109/fusion.2005.252946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bai, X. Y., J. Liang, K. Feng, B. Lu, H. Zeng, C. Wang, J. Q. Wang, et al. "HL-2M LHCD antenna development." In THE 6TH INTERNATIONAL CONFERENCE ON BIOLOGICAL SCIENCE ICBS 2019: “Biodiversity as a Cornerstone for Embracing Future Humanity”. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0013732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bibet, Ph, C. Portafaix, G. Agarici, L. Cogneau-Garampon, C. Deck, Ph Froissard, M. Goniche, et al. "New launchers for Tore Supra LHCD." In The twelfth topical conference on radio frequency power in plasmas. AIP, 1997. http://dx.doi.org/10.1063/1.53401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rimini, F. G., B. Alper, Y. F. Baranov, J. C. De Haas, J. A. Dobbing, A. C. Ekedahl, L. G. Eriksson, et al. "High power LHCD experiments in JET." In The 11th topical conference on radio frequency power in plasmas. AIP, 1996. http://dx.doi.org/10.1063/1.49563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Takase, Y., P. T. Bonoli, A. Ejiri, T. Oosako, J. C. Wright, Philip M. Ryan, and David Rasmussen. "LHCD Scenarios for Spherical Tokamak Plasmas." In RADIO FREQUENCY POWER IN PLASMAS: 17th Topical Conference on Radio Frequency Power in Plasmas. AIP, 2007. http://dx.doi.org/10.1063/1.2800502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shcherbinin, O. N., E. Z. Gusakov, V. V. Dyachenko, M. A. Irzak, S. A. Khitrov, Volodymyr Bobkov, and Jean-Marie Noterdaeme. "Proposal on LHCD Experiments in Spherical Tokamaks." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mirizzi, F., A. Cardinali, R. Cesario, L. Panaccione, V. Pericoli Ridolfini, G. L. Ravera, and A. A. Tuccillo. "FAST and its LHCD System. Work in progress." In 2009 23rd IEEE/NPSS Symposium on Fusion Engineering - SOFE. IEEE, 2009. http://dx.doi.org/10.1109/fusion.2009.5226418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Côté, A., C. Côté, Y. Demers, V. Fuchs, X. Litaudon, G. Abel, J. L. Lachambre, et al. "Current profile control experiments with LHCD on TdeV." In The twelfth topical conference on radio frequency power in plasmas. AIP, 1997. http://dx.doi.org/10.1063/1.53375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Lhcd":

1

Ko, Jinseok, Steve Scott, Syun'ichi Shiraiwa, Martin Greenwald, Ronald Parker, and Gregory Wallace. Intra-shot MSE Calibration Technique For LHCD Experiments. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/969308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

J. Hosea, D. Beals, W. Beck, S. Bernabei, W. Burke, R. Childs, R. Ellis, et al. The LHCD Launcher for Alcator C-Mod - Design, Construction, Calibration and Testing. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/841200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jones, S. E., J. Kesner, S. Luckhardt, F. Paoletti, S. von Goeler, S. Bernabei, R. Kaita, and F. Rimini. Fast electron current density profile and diffusion studies during LHCD in PBX-M. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10183503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

James, A., D. Brunner, B. LaBombard, C. Lau, B. Lipschultz, D. Miller, M. Reinke, et al. Imaging of molybdenum erosion and thermography at visible wavelengths in Alcator C-Mod ICRH and LHCD discharges. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1088479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Artuso, M. Tests of LHCb Silicon Detectors. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/1985128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cartiglia, N., and C. Royon. LHC forward physics. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1222458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bartl, A., J. Soederqvist, and F. Paige. Supersymmetry at LHC. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/425352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ambrosio, G., F. M. Ametrano, F. Broggi, N. Andreev, K. Artoos, M. Begg, G. Bellomo, et al. EPAC/LHC Magnet Papers. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/1119495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dippo, James L., Tim Erikson, and Kris Hess. Fuelcell-Hybrid Mine loader (LHD). Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/990290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pelaez, Jose R. Strong WW Interaction at LHC. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/9985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії