Добірка наукової літератури з теми "Layout problems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Layout problems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Layout problems"
Hosseini, Seyedeh Sabereh, Kuan Yew Wong, Seyed Ali Mirzapour, and Reza Ahmadi. "Multi-Floor Facility Layout Improvement Using Systematic Layout Planning." Advanced Materials Research 845 (December 2013): 532–37. http://dx.doi.org/10.4028/www.scientific.net/amr.845.532.
Повний текст джерелаKoenig, Reinhard, and Sven Schneider. "Hierarchical structuring of layout problems in an interactive evolutionary layout system." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 26, no. 2 (April 20, 2012): 129–42. http://dx.doi.org/10.1017/s0890060412000030.
Повний текст джерелаPankratov, A., T. Romanova, and A. Kotelevskiy. "Layout problems for arc objects in convex domains." Journal of Mechanical Engineering 19, no. 3 (September 30, 2016): 43–60. http://dx.doi.org/10.15407/pmach2016.03.043.
Повний текст джерелаMadhusudanan Pillai, V., Irappa Basappa Hunagund, and Krishna K. Krishnan. "Design of robust layout for Dynamic Plant Layout Problems." Computers & Industrial Engineering 61, no. 3 (October 2011): 813–23. http://dx.doi.org/10.1016/j.cie.2011.05.014.
Повний текст джерелаLarasati, Indira, Parwadi Moengin, and Sucipto Adisuwiryo. "Perbaikan Tata Letak Lantai Produksi untuk Meminimasi Waktu Produksi dengan Menggunakan Metode Simulasi Pada PT. Argha Karya Prima Industry, Tbk." JURNAL TEKNIK INDUSTRI 8, no. 1 (March 31, 2018): 47–57. http://dx.doi.org/10.25105/jti.v8i1.4720.
Повний текст джерелаDrira, Amine, Henri Pierreval, and Sonia Hajri-Gabouj. "Facility layout problems: A survey." Annual Reviews in Control 31, no. 2 (January 2007): 255–67. http://dx.doi.org/10.1016/j.arcontrol.2007.04.001.
Повний текст джерелаSzykman, S., and J. Cagan. "Constrained Three-Dimensional Component Layout Using Simulated Annealing." Journal of Mechanical Design 119, no. 1 (March 1, 1997): 28–35. http://dx.doi.org/10.1115/1.2828785.
Повний текст джерелаPEER, S. K., DINESH K. SHARMA, K. RAVINDRANATH, and M. M. NAIDU. "A MULTI-CRITERIA PROCEDURE FOR THE USER INTERFACE COMPONENTS LAYOUT PROBLEM." Asia-Pacific Journal of Operational Research 26, no. 02 (April 2009): 257–84. http://dx.doi.org/10.1142/s0217595909002195.
Повний текст джерелаLi, Jia, and Chenyan Bai. "Ammann-Beenker Pixels." Journal of Computational and Theoretical Nanoscience 14, no. 1 (January 1, 2017): 807–14. http://dx.doi.org/10.1166/jctn.2017.6278.
Повний текст джерелаSuharjito, Suharjito, and Muslim Muslim. "Optimization of Facility Layout Problems Using Genetic Algorithm." Syntax Literate ; Jurnal Ilmiah Indonesia 7, no. 9 (October 20, 2023): 16058–77. http://dx.doi.org/10.36418/syntax-literate.v7i9.13787.
Повний текст джерелаДисертації з теми "Layout problems"
Narayanan, Venkataramani. "Design of hybrid layouts for large size facility layout problems." Thesis, Wichita State University, 2007. http://hdl.handle.net/10057/1544.
Повний текст джерелаThesis (M.S)--Wichita State University, College of Engineering, Dept. of Industrial and Manufacturing Engineering
"December 2007."
Narayanan, Venkataramani Krishnan Krishna K. "Design of hybrid layouts for large size facility layout problems /." Thesis, A link to full text of this thesis in SOAR, 2007. http://hdl.handle.net/10057/1544.
Повний текст джерелаSprague, Alan P. "Problems in VLSI layout design /." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487597424138645.
Повний текст джерелаRen, Jintong. "Optimization algorithms for graph layout problems." Thesis, Angers, 2020. https://tel.archives-ouvertes.fr/tel-03178385.
Повний текст джерелаThis thesis considers two graph layout problems: the cyclic bandwidth problem (CBP) and the minimum linear arrangement problem (MinLA). The CBP is a natural extension of the bandwidth minimization problem (BMP) and the MinLA is a min-sum problem. These problems are widely applied in the real life. Since they are NP-hard problems, it is computational difficult to solve them in the general case. Therefore, this thesis is dedicated to developing effective heuristic algorithms to deal with these challenging problems.Specifically, we introduce two iterated local search algorithms, a memetic algorithm with different recombination operators for the CBP and a set based neighborhood heuristic algorithm to solve the MinLA. The two iterated local search algorithms are experimentallydemonstrated to be able to compete favourably with state-of-the-art methods, the feature of a suitable crossover for the memetic algorithm is identified for the CBP and the set based neighborhood heuristic algorithm is proven to be more efficient than the traditional 2-flip neighborhood algorithm
Dahlbeck, Mirko [Verfasser]. "Solution approaches for facility layout problems / Mirko Dahlbeck." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/1226425682/34.
Повний текст джерелаTraversi, Emiliano <1981>. "Orientation and layout problems on graphs, with applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2637/2/traversi_emiliano_tesi.pdf.
Повний текст джерелаTraversi, Emiliano <1981>. "Orientation and layout problems on graphs, with applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2637/.
Повний текст джерелаGamot, Juliette. "Algorithms for Conditional Search Space Optimal Layout Problems." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILB042.
Повний текст джерелаThis thesis falls within the scope of layout optimization, which is an important stage in the design of complex multidisciplinary engineering systems such as aerospace vehicles. Optimal layout problems (OLPs) involve finding the best arrangement of a set of components within a single- or multi-container system or space to meet specific objectives (cost reduction, performance enhancement, etc.) while satisfying various constraints (geometrical, functional, etc.). Dealing with OLPs is challenging both in terms of their formulation and their efficient and effective resolution. Actually, OLPs are often highly constrained and involve many mixed decision variables (continuous, discrete/categorial) which may be fixed or conditional. Conditional variables are highly useful to define different design choices when the set of components to be arranged is variable and dynamic. Consequently, their resolution requires the use of advanced optimization algorithms combining different classes of (mixed-variable) methods including metaheuristics and Bayesian optimization.The overall objective of the thesis is to investigate OLPs, their formulation in different contexts, their resolution using various optimization methods and their hybridization, and their validation within the framework of aerospace vehicle design. The contributions of the thesis are organized in two parts corresponding to two types of OLPs. In the first (resp. second) part, the set of components to be arranged is fixed (variable or conditional) involving fixed search space OLPs or FSS-OLPs (resp. conditional search space OLPs or CSS-OLPs). In both cases, the system/space in which the components are arranged is considered single- or multi-container.In the first part, a survey of constrained mixed-variable FSS-OLPs is proposed including their generic formulations, applications and resolution methods with a particular focus on quasi-physical methods and population-based metaheuristics. Based on a virtual force system (VF) quasi-physical algorithms emulate the principle of physical laws in system dynamics and deal efficiently with highly constrained problems. A variant (namely CSO-VF) of these algorithms is devised for solving single-container FSS-OLPs. In CSO-VF, the positions and orientations of the components are evolved using VF. To deal with multi-container systems, CSO-VF is combined with a Genetic Algorithm (GA) in a two-stage algorithm that assigns the components to the containers and optimizes their layout. These single- and multi-container algorithms are assessed considering satellite module FSS-OLPs that are representative benchmarks.In the second part, a survey of constrained mixed-variable CSS-OLPs is proposed in the same way than in the first part. Conditional variables involve more complex OLPs. Actually, for instance, in the context of aerospace concept design, a given amount of fuel could be included in a container in either one large tank or two smaller ones. Therefore, as the number of components to position is not the same in both cases the number of design variables as well as constraint functions vary during the optimization process. To deal with single-container CSS-OLPs, two approaches have been investigated: the first one is a GA revisited considering hidden variables, leading to variable-geometry OLPs (in objective and constraint functions). The second approach is a two-stage surrogate guided-CSO-VF algorithm combining Bayesian Optimization with CSO-VF. Bayesian Optimization selects the components with are considered by CSO-VF for layout optimization. This latter approach has been extended with a GA in a three-stage algorithm to tackle multi-container CSS-OLPs. Finally, all the algorithms are evaluated and compared based on their application to CSS variants of satellite module OLPs
Freire, Marco. "Layout problems under topological constraints for computational fabrication." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0073.
Повний текст джерелаLayout problems appear in many areas of engineering and computer science. Typically, a layout problem requires to spatially arrange and interconnect a number of geometric elements in a domain. The elements can have a fixed or variable size, as well as an arbitrary shape. The domain may be be a volume, a planar region or a surface. It may be fixed or allowed to reshape. The interconnections may be simple paths, shared contact regions, or both. A set of constraints and objectives complement the problem definition, such as minimizing interconnection length, fixed positions for some elements, and many others. Layout problems are ubiquitous: floorplanning in architectural design, video game level design, industrial facility layout planning, electronics physical layout design, and so on. Topological constraints often arise in layout problems. Topology considers objects as defined by their elements' neighborhoods, without consideration for their specific geometry of placement. For example, a graph is a purely topological structure, consisting only of the relationships between its nodes. On the other hand, a graph drawing needs to specify the position of its nodes, i.e. the geometry of the graph. This thesis focuses on tackling two specific layout problems subject to topological constraints arising in computational design and fabrication. These are electronic circuit physical layout generation and 3D printing support generation. The first contribution is an entire system for the design of freeform RGB LED displays through bendable circuit boards. Typical rigid PCBs are made to bend by strategically using kerfing, i.e. cutting patterns into the board to create `hinges' where it needs to fold. The system takes a low-poly mesh as an input and outputs fabrication-ready blueprints, that can be sent to any online PCB manufacturer. After fabrication, the display is obtained by folding the circuit over the 3D printed mesh. The LEDs are commonly found on commercially available LED strips and are easy to control. Thus, the display can be used through a programmable interface to generate impressive lighting effects in real time. The global layout problem is decomposed into local per-triangle sub-problems by exploiting the chain topology of the electronic circuit, the final layout being obtained by stitching the local solutions. Instead of traditionally following the physical design pipeline, i.e. schematics design, component placement and routing; we decide the number of components, their placement and their routing per-triangle on the fly. The second contribution is a procedural algorithm for generating bridges-and-pillars supports for 3D printing. These supports have been shown to print reliably and in a stable manner in [DHL14]. Unfortunately, the previous algorithm struggles to generate supports that do not intersect the object, leaving visible scars on its surface after support removal. Additionally, its complexity scales with the number of points to support. We propose an algorithm based on emph{Model Synthesis} (MS) [Mer09] to generate these supports, with an implicit knowledge of object avoidance and a complexity independent of the number of points to support. Our algorithm works on a voxelized representation of the object. The supports are encoded in the algorithm with a set of labels, each representing a part of the structure (e.g. a pillar block, a bridge block, a pillar-bridge junction); and a set of adjacency constraints defining all possible label combinations in every direction. The supports for an object are generated top to bottom by repeatedly assigning labels to voxels and propagating constraints to remove inconsistent labels in the domain. The algorithm, adjacency constraints and heuristics are co-designed to avoid the need for trial-and-error or backtracking, typical of MS and similar approaches
Finney, Andrew Martin. "The application of graph algorithms to VLSI layout." Thesis, Brunel University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235887.
Повний текст джерелаКниги з теми "Layout problems"
Berlin, Technische Universität, ed. Bounds for linear VLSI layout problems: Schranken für lineare VLSI-Layout-Probleme. [s.l.]: [s.n.], 1993.
Знайти повний текст джерелаCamp, Drew J. Van. A nonlinear optimization approach for solving facility layout problems. Ottawa: National Library of Canada, 1990.
Знайти повний текст джерелаKothari, Ravi. Sensitivity analysis for the single row facility layout problem. Ahmedabad: Indian Institute of Management, Ahmedabad, 2012.
Знайти повний текст джерелаKothari, Ravi. Scatter search altgorithms for the single row facility layout problem. Ahmedabad: Indian Institute of Management, 2012.
Знайти повний текст джерелаSteve, Middleditch, ed. Design for media: A handbook for students and professionals in journalism, PR and advertising. Harlow, England: Pearson Education, 2013.
Знайти повний текст джерелаKothari, Ravi. Tabu search for the single row facility layout problem using exhaustive 2-Opt and insertion neighborhoods. Ahmedabad: Indian Institute of Management, 2012.
Знайти повний текст джерелаKothari, Ravi. Tabu search for the single row facility layout problem in FMS using a 3-opt neighborhood. Ahmedabad: Indian Institute of Management, 2012.
Знайти повний текст джерелаLammermann, Rolf. Aktuelle Probleme im Rahmen der betriebsbedingten Kündigung unter besonderer Berücksichtigung der betrieblichen und sozialen Auswahl. Bielefeld: [s.n.], 1996.
Знайти повний текст джерелаWirtgen, Jürgen. Approximation algorithms for layout problems. 1998.
Знайти повний текст джерелаKinnersley, Nancy Gail. Obstruction set isolation for layout permutation problems. 1989.
Знайти повний текст джерелаЧастини книг з теми "Layout problems"
Díaz, J. "Graph layout problems." In Mathematical Foundations of Computer Science 1992, 14–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55808-x_2.
Повний текст джерелаPardo, Eduardo G., Rafael Martí, and Abraham Duarte. "Linear Layout Problems." In Handbook of Heuristics, 1025–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-07124-4_45.
Повний текст джерелаPardo, Eduardo G., Rafael Martí, and Abraham Duarte. "Linear Layout Problems." In Handbook of Heuristics, 1–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-07153-4_45-1.
Повний текст джерелаEiselt, H. A., and C. L. Sandblom. "Layout Models." In Decision Analysis, Location Models, and Scheduling Problems, 255–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24722-7_9.
Повний текст джерелаLengauer, Thomas. "Optimization Problems." In Combinatorial Algorithms for Integrated Circuit Layout, 31–45. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-92106-2_2.
Повний текст джерелаStiglmayr, Michael. "Layout Problems with Reachability Constraint." In Operations Research Proceedings, 183–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48439-2_22.
Повний текст джерелаDíaz, Josep, Mathew D. Penrose, Jordi Petit, and María Serna. "Layout Problems on Lattice Graphs." In Lecture Notes in Computer Science, 103–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48686-0_10.
Повний текст джерелаZaks, Shmuel. "Duality in ATM Layout Problems." In Lecture Notes in Computer Science, 44–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46521-9_4.
Повний текст джерелаEiselt, H. A., and C. L. Sandblom. "Fundamentals of Location and Layout Problems." In Decision Analysis, Location Models, and Scheduling Problems, 153–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24722-7_5.
Повний текст джерелаArnolds, Ines, and Stefan Nickel. "Layout Planning Problems in Health Care." In Applications of Location Analysis, 109–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20282-2_5.
Повний текст джерелаТези доповідей конференцій з теми "Layout problems"
Chen, Shuai, Zeqiang Zhang, Junqi Liu, Dan Ji, and Yu Zhang. "Unidirectional loop layout problems based on asymmetric flow and facility location." In 4th International Conference on Automation Control. Algorithm and Intelligent Bionics, edited by Jing Na and Shuping He, 170. SPIE, 2024. http://dx.doi.org/10.1117/12.3040279.
Повний текст джерелаPerry, Travis, and Andrew Gallaher. "Automated Layout with a Python Integrated NDARC Environment." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12723.
Повний текст джерелаBénabès, Julien, Benoît Guédas, Emilie Poirson, and Fouad Bennis. "Indicator of Feasibility for Layout Problems." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70640.
Повний текст джерелаWonka, Peter. "Integer programming for layout problems." In SA '18: SIGGRAPH Asia 2018. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3277644.3277794.
Повний текст джерелаPierreval, H. "Integrated Simulation Optimization for Layout Problems." In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2018. http://dx.doi.org/10.1109/ieem.2018.8607591.
Повний текст джерелаSubhash, Sarin,. "Layout of Facilities Involving Arbitrary-Shaped Departments." In Information Control Problems in Manufacturing, edited by Bakhtadze, Natalia, chair Dolgui, Alexandre and Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00206.
Повний текст джерелаBe´nabe`s, Julien, Emilie Poirson, Fouad Bennis, and Yannick Ravaut. "Interactive Modular Optimization Strategy for Layout Problems." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47925.
Повний текст джерелаSalman, Mohagheghi,. "Evolutionary Approaches to the Linear Machine Layout Problem." In Information Control Problems in Manufacturing, edited by Bakhtadze, Natalia, chair Dolgui, Alexandre and Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00207.
Повний текст джерелаDavoudpour, Hamid, Amir Ardestani Jaafari, Leila Najafabadi Farahani, and Sio-Iong Ao. "Facility Layout Problems Using Bays: A Survey." In IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES: Volume 4: Special Edition of the World Congress on Engineering and Computer Science-2009. AIP, 2010. http://dx.doi.org/10.1063/1.3460254.
Повний текст джерелаVardanyan, V. A., and S. M. Koksharova. "Development of educational virtual laboratory work for the study of electrooptical switch on connected planar waveguides." In Modern Problems of Telecommunications - 2024. Siberian State University of Telecommunications and Information Systems, 2024. http://dx.doi.org/10.55648/spt-2024-1-6.
Повний текст джерелаЗвіти організацій з теми "Layout problems"
Hrebeniuk, Bohdan V. Modification of the analytical gamma-algorithm for the flat layout of the graph. [б. в.], December 2018. http://dx.doi.org/10.31812/123456789/2882.
Повний текст джерелаKaku, Bharat K., Thomas E. Morton, and Gerald L. Thompson. A Heuristic Algorithm for the Facilities Layout Problem. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada196093.
Повний текст джерела