Добірка наукової літератури з теми "Lasers interbandes en cascade"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lasers interbandes en cascade".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Lasers interbandes en cascade"

1

Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt, and Igor Vurgaftman. "The Interband Cascade Laser." Photonics 7, no. 3 (September 15, 2020): 75. http://dx.doi.org/10.3390/photonics7030075.

Повний текст джерела
Анотація:
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertical-cavity surface-emitting lasers, interband cascade LEDs, interband cascade detectors, and integrated ICLs are reviewed for the first time.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ning, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li, and Fengqi Liu. "Interband cascade lasers with short electron injector." Chinese Optics Letters 20, no. 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Horiuchi, Noriaki. "Interband cascade lasers." Nature Photonics 9, no. 8 (July 30, 2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, et al. "Interband cascade lasers." Journal of Physics D: Applied Physics 48, no. 12 (March 11, 2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ryczko, Krzysztof, and Grzegorz Sęk. "Towards unstrained interband cascade lasers." Applied Physics Express 11, no. 1 (December 4, 2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins, and J. F. Klem. "Long wavelength interband cascade lasers." Applied Physics Letters 120, no. 9 (February 28, 2022): 091105. http://dx.doi.org/10.1063/5.0084565.

Повний текст джерела
Анотація:
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour, and Geof C. Aers. "InAs-Based Interband Cascade Lasers." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 6 (November 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer. "Room temperature interband cascade lasers." Physics Procedia 3, no. 2 (January 2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang, et al. "Strain mapping in interband cascade lasers." AIP Advances 12, no. 1 (January 1, 2022): 015027. http://dx.doi.org/10.1063/5.0079193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth, and Gottfried Strasser. "Substrate-emitting ring interband cascade lasers." Applied Physics Letters 111, no. 17 (October 23, 2017): 171101. http://dx.doi.org/10.1063/1.4989514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Lasers interbandes en cascade"

1

Fordyce, Jordan. "Single-mode interband cascade lasers for petrochemical process monitoring." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS070.

Повний текст джерела
Анотація:
Les lasers à cascade interbandes (ICL) fournissent des sources pour la gamme spectrale du moyen infrarouge compris entre 3 et 6 µm particulièrement efficaces en termes de consommation d’énergie. Cette gamme spectrale est particulièrement intéressante pour la détection des gaz impliqués dans l’industrie pétrochimique, car des gaz tels que le méthane, l'éthane et le dioxyde de carbone présentent une forte absorption dans cette gamme de longueur d’onde. L'identification correcte d'un gaz présent dans un échantillon nécessite des lasers avec une émission monomode et une certaine accordabilité en longueur d’onde. L'amélioration de cette plage de réglage possible avec une source laser offre de nouvelles opportunités dans des applications liées à la spectroscopie. Une alternative à ce qui est actuellement disponible dans le commerce peut être réalisée grâce à l'utilisation de guides d'ondes à fente, qui peuvent être fabriqués en utilisant de la photolithographie conventionnelle, réduisant ainsi le coût de fabrication.Deux nouveaux types d'ICL ont été conçus, fabriqués, et étudiés dans le cadre de cette thèse : un ICL à fentes à section unique et un ICL à fentes multiples accordé par Vernier (SVT). Une étude approfondie des étapes de fabrication et en particulier de la gravure sèche a été réalisée pour obtenir une gravure verticale des matériaux constituants les ICLs. Les premiers ICLs à fentes ont été fabriqués démontrant un e une émission monomode en régime continu à température ambiante avec une émission proche de 3.4 µm. Sur cette base, l'ICL SVT a été fabriqué pour étendre la plage d'accord et démontrer que l'accord par effet Vernier pouvait être mis en œuvre sur ce système de matériaux
Interband cascade lasers (ICLs) provide sources for the mid-infrared spectral range between 3 – 6 µm with low power consumption and efficient performance. This spectral range is of particular interest to the detection of gases involved with petrochemical processing, such as methane, ethane, and carbon dioxide due to their strong absorption in this range. Correct identification of a gas present in a sample requires single-mode emission and some tuning to match the absorption line, depending on the environmental conditions. Increasing the tuning range possible with one laser source opens up new possibilities in spectroscopic applications. An economical design alternative to what is currently commercially available can be realized through the use of slotted waveguides, which can be fabricated using photolithography, reducing the cost of fabrication.Two new types of ICLs have been designed, fabricated, and studied in this thesis: a single-section slotted ICL and a multi-section slotted Vernier tuned (SVT) ICL. An extensive study of the fabrication step and in particular dry etching was carried out to achieve vertical etching of the materials constituting the ICLs. First, the slotted ICLs were fabricated demonstrating single-mode emission in continuous wave operation at room temperature with emission close to 3.4 µm. Building from this foundation, the SVT ICL was fabricated to extend the tuning range and demonstrate that Vernier tuning could be implemented on this material system
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O'Hagan, Seamus. "Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:6f422683-7c50-47dd-8824-56b4b4ea941d.

Повний текст джерела
Анотація:
The extension of Multi-mode Absorption Spectroscopy (MUMAS) to the infra-red spectral region for multi-species gas sensing is reported. A computationally efficient, theoretical model for analysis of MUMAS spectra is presented that avoids approximations used in previous work and treats arbitrary and time-dependent spectral intensity envelopes, thus facilitating the use of commercially available Interband Cascade Lasers (ICLs) and Quantum Cascade Lasers (QCLs). The first use of an ICL for MUMAS is reported using a multi-mode device operating at 3.7 μm to detect CH4 transitions over a range of 30 nm. Mode-linewidths are measured using the pressure-dependent widths of an isolated absorption feature in HCl. Multi- species sensing is demonstrated by measurement of partial pressures of CH4, C2H2 and H2CO in a low-pressure mixture with uncertainties of around 10%. Detection of CH4 in N2 at 1 bar is demonstrated using a shorter-cavity ICL to resolve spectral features in pressure-broadened and congested spectra. The first use of a QCL for MUMAS is reported using a commercially available device operating at 5.3 μm to detect multiple absorption transitions of NO at a partial pressure of 2.79 μbar in N2 buffer gas. The revised model is shown to enable good fits to MUMAS data by accounting for the time-variation of the spectral intensity profile during frequency scanning. Individual mode-linewidths are derived from fits to pressure- dependent MUMAS spectra and features from background interferences due to H2O in laboratory air are distinguished from those of the target species, NO. Data obtained at scan rates up to 10 kHz demonstrate the potential for achieving short measurement times. The development of a balanced ratiometric detection scheme for MUMAS with commercially available multi-mode lasers operating at 1.5 μm is reported for simultaneous detection of CO and CO2 showing improved SNR performance over previous direct transmission methods and suitability for a compact field-employable instrument. In addition, MUMAS spectra of CO2 are used to derive gas temperatures with an uncertainty of 3.2% in the range 300 - 700 K.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ikyo, Achakpa Barnabas. "Physical properties of interband and interband cascade edge- and surface-emitting mid-infrared lasers." Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Herdt, Andreas Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer, and Thomas [Akademischer Betreuer] [Walther. "The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Herdt, Andreas [Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer, and Thomas [Akademischer Betreuer] Walther. "The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Patterson, Steven Gregory. "Bipolar cascade lasers." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8805.

Повний текст джерела
Анотація:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.
Includes bibliographical references.
This thesis addresses issues of the design and modeling of the Bipolar Cascade Laser (BCL), a new type of quantum well laser. BCLs consist of multiple single stage lasers electrically coupled via tunnel junctions. The BCL ideally operates by having each injected electron participate in a recombination event in the topmost active region, then tunnel from the valence band of the first active region into the conduction band of the next active region, participate in another recombination event, and so on through each stage of the cascade. As each electron may produce more than one photon the quantum efficiency of the device can, in theory, exceed 100%. This work resulted in the first room temperature, continuous-wave operation of a BCL, with a record 99.3% differential slope efficiency. The device was fully characterized and modeled to include light output and voltage versus current bias, modulation response and thermal properties. A new singlemode bipolar cascade laser, the bipolar cascade antiresonant reflecting optical waveguide laser, was proposed and modeled.
by Steven G. Patterson.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Williams, Benjamin S. (Benjamin Stanford) 1974. "Terahertz quantum cascade lasers." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17012.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
Includes bibliographical references (p. 297-310).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The development of the terahertz frequency range has long been impeded by the relative dearth of compact, coherent radiation sources of reasonable power. This thesis details the development of quantum cascade lasers (QCLs) that operate in the terahertz with photon energies below the semiconductor Reststrahlen band. Photons are emitted via electronic intersubband transitions that take place entirely within the conduction band, where the wavelength is chosen by engineering the well and barrier widths in multiple-quantum-well heterostructures. Fabrication of such long wavelength lasers has traditionally been challenging, since it is difficult to obtain a population inversion between such closely spaced energy levels, and because traditional dielectric waveguides become extremely lossy due to free carrier absorption. This thesis reports the development of terahertz QCLs in which the lower radiative state is depopulated via resonant longitudinal-optical phonon scattering. This mechanism is efficient and temperature insensitive, and provides protection from thermal backfilling due to the large energy separation between the lower radiative state and the injector. Both properties are important in allowing higher temperature operation at longer wavelengths. Lasers using a surface plasmon based waveguide grown on a semi-insulating (SI) GaAs substrate were demonstrated at 3.4 THz in pulsed mode up to 87 K, with peak collected powers of 14 mW at 5 K, and 4 mW at 77 K.
Additionally, the first terahertz QCLs have been demonstrated that use metalmetal waveguides, where the mode is confined between metal layers placed immediately above and below the active region. These devices have confinement factors close to unity, and are expected to be advantageous over SI-surface-plasmon waveguides, especially at long wavelengths. Such a waveguide was used to obtain lasing at 3.8 THz in pulsed mode up to a record high temperature of 137 K, whereas similar devices fabricated in SI-surface-plasmon waveguides had lower maximum lasing temperatures due to the higher losses and lower confinement factors. This thesis describes the theory, design, fabrication, and testing of terahertz quantum cascade laser devices. A summary of theory relevant to design is presented, including intersubband radiative transitions and gain, intersubband scattering, and coherent resonant tunneling transport using a tight-binding density matrix model. Analysis of the effects of the complex heterostructure phonon spectra on terahertz QCL design are considered. Calculations of the properties of various terahertz waveguides are presented and compared with experimental results. Various fabrication methods have been developed, including a robust metallic wafer bonding technique used to fabricate metal-metal waveguides. A wide variety of quantum cascade structures, both lasing and non-lasing, have been experimentally characterized, which yield valuable information about the transport and optical properties of terahertz devices. Finally, prospects for higher temperature operation of terahertz QCLs are considered.
by Benjamin S. Williams.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rochat, Michel. "Far-infrared quantum cascade lasers." Online version, 2002. http://bibpurl.oclc.org/web/24095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dhirhe, Devnath. "Monolithic tuneable quantum cascade lasers." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4604/.

Повний текст джерела
Анотація:
This thesis is concerned with the design, fabrication and characterisation of monolithic tuneable quantum cascade lasers (QCLs), which are suitable for tuneable diode laser based absorption spectroscopy and polarisation dependent spectroscopy in the mid-infrared wavelength range. All investigations and device development work were carried out using the QCL structure based on strain-compensated Ga0.331In0.669As/Al0.659In0.341As grown on an InP substrate that emits light around 4500 nm wavelength. To make the QCLs electrically tuned, two laser designs were investigated: the double ring quantum cascade laser based on the Vernier-tuning effect, and the integrated tuneable birefringent waveguide utilising current controlled birefringence in quantum-wells. The key advantage of the Vernier tuning effect based the double ring laser design is that it can facilitate both a single mode and wide-tuning range operation. The Vernier tuning enhancement factor associated with the coupled waveguide is responsible for a wide-tuning range observed in double ring configuration. However, the tuning range is limited by the available gain bandwidth (i.e. FWHM of spontaneous spectra) in the material and the maximum obtainable index change of the tuner ring. Theoretically, the tuning range of 155 nm was estimated for the double ring quantum cascade laser (DRQCL) design employed in this thesis. However, experimentally, a single mode (~19 dB single sideband suppression ratio) and tuning range of 59 nm which covers almost half the bandwidth were observed. For the first time in the history of the QCL, a research into the design, fabrication and characterisation of integrated polarisation mode convertors (PMCs) has been carried out. The PMC design is based upon etching trenches, using the RIE lag effect, of sub-wavelength dimensions into one side of a waveguide in order to achieve an asymmetric cross-sectional profile, resulting in a waveplating effect. This thesis presents such PMCs integrated with QCLs that emit 69% TE light with the polarisation angle of 65 degree from one facet and a pure TM light emitted from the other facet using a 256 μm long PMC design (design D2). An integrated tunable birefringent waveguide (ITBW) consisting of two PMCs with a differential phase shift (DPS) section between them. To probe the birefringence operation, a sub-threshold electroluminescence was employed to investigate the single pass operation of the ITBW. A theory based on the electro-optic properties of birefringence in QCL waveguides was used combined with a Jones-matrix based description to gain an understanding of the electroluminescence results. With the QCL operating above threshold, polarisation and wavelength tuning of the signal output was demonstrated. By comparing the sub-threshold electroluminescence and active polarisation angle measurement result with the Jones matrix model, the material birefringence (no DPS current), 4n, was estimated to be around 0.005 for the QCL employed in this work. However, single mode emission was not observed and 24 nm discontinuous tuning was recorded. Despite this, using a QCL incorporating an ITBW device, active polarisation control over 45 degree was demonstrated, and currently, to the best of the authors knowledge there has been no other QCL device that is capable of electronically controlling the output polarisation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

bin, Hashim Hasnul Hidayat. "Travelling-wave series cascade lasers." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493548.

Повний текст джерела
Анотація:
A travelling-wave microwave fibre-optic hnk (TWMFL) is proposed consisting of two transmission line structures that are periodically loaded with laser diodes and photodiodes, connected to one another by a fibre array.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Lasers interbandes en cascade"

1

Faist, Jérôme. Quantum cascade lasers. Oxford, United Kingdom: Oxford University Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Spitz, Olivier. Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74307-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Decker, Arthur J. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. Cleveland, Ohio: Lewis Research Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stavrou, Vasilios N., ed. Quantum Cascade Lasers. InTech, 2017. http://dx.doi.org/10.5772/62674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Faist, J. Quantum Cascade Lasers. Oxford University Press, Incorporated, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Faist, Jérôme. Quantum Cascade Lasers. Oxford University Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Lasers interbandes en cascade"

1

Jumpertz, Louise. "Optical Feedback in Interband Lasers." In Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers, 35–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling, and A. Forchel. "Mid infrared interband cascade lasers for sensing applications." In TDLS 2009, 43–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-02292-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Höfling, C., C. Schneider, and A. Forchel. "6.6.4 Growth of quantum wells in GaSb-based interband cascade lasers." In Growth and Structuring, 160–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Paul, Douglas J. "Quantum Cascade Lasers." In Springer Series in Optical Sciences, 103–21. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-3837-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Razeghi, Manijeh. "Quantum Cascade Lasers." In Technology of Quantum Devices, 271–319. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1056-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pearsall, Thomas P. "Quantum Cascade Lasers." In Quantum Photonics, 237–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rossi, Fausto. "Quantum-Cascade Lasers." In Theory of Semiconductor Quantum Devices, 249–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10556-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Q., and O. Ambacher. "9.4 Quantum cascade lasers." In Laser Systems, 74–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14177-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Köhler, Rüdeger, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, Edmund H. Linfield, Giles A. Davies, and David A. Ritchie. "Terahertz Quantum Cascade Lasers." In Advances in Solid State Physics, 327–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Razeghi, Manijeh, and Neelanjan Bandyopadhyay. "Broadband Heterogeneous Quantum Cascade Lasers." In NATO Science for Peace and Security Series B: Physics and Biophysics, 135–43. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Lasers interbandes en cascade"

1

Vurgaftman, I., C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, S. Tomasulo, and J. R. Meyer. "Interband Cascade Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, C. H. T., WenYen Hwang, Han Q. Le, Yao-Ming Mu, A. Liu, Jun Zheng, A. M. Delaney, Chau-Hong Kuo, and Shin Shem Pei. "Interband cascade lasers." In Symposium on Integrated Optoelectronics, edited by Luke J. Mawst and Ramon U. Martinelli. SPIE, 2000. http://dx.doi.org/10.1117/12.382089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schwarz, Benedikt, Maximilian Beiser, Florian Pilat, Sandro Dal Cin, Johannes Hillbrand, Robert Weih, Johannes Koeth, and Sven Höfling. "Interband cascade laser frequency combs." In Semiconductor Lasers and Laser Dynamics X, edited by Krassimir Panajotov, Marc Sciamanna, and Sven Höfling. SPIE, 2022. http://dx.doi.org/10.1117/12.2624340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Holzbauer, Martin, Borislav Hinkov, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Erich Gornik, Johannes Koeth, and Gottfried Strasser. "Ring Interband Cascade Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sf2g.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Knotig, Hedwig, Aaron Maxwell Andrews, Borislav Hinkov, Robert Weih, Johannes Koeth, Benedikt Schwarz, and Gottfried Strasser. "Interband Cascade and Quantum Cascade Ring Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tian, Zhaobing, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Robert T. Hinkey, Mark E. Curtis, and Matthew B. Johnson. "Plasmon Waveguide Interband Cascade Lasers." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cthaa7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, R. Q., B. H. Yang, D. Zhang, S. J. Murry, C. H. Lin, and S. S. Pei. "Mid-IR interband cascade lasers." In Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting. IEEE, 1997. http://dx.doi.org/10.1109/leos.1997.630592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meyer, J. R., C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, and I. Vurgaftman. "Interband cascade distributed-feedback lasers." In Integrated Optoelectronic Devices 2007, edited by Manijeh Razeghi and Gail J. Brown. SPIE, 2007. http://dx.doi.org/10.1117/12.693445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Höfling, S., R. Weih, A. Bauer, A. Forchel, and M. Kamp. "Low threshold interband cascade lasers." In SPIE OPTO, edited by Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2004680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meyer, J. R., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, and I. Vurgaftman. "High-Brightness Interband Cascade Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.stu2g.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Lasers interbandes en cascade"

1

Folkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada507657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tober, Richard L., Carlos Monroy, Kimberly Olver, and John D. Bruno. Processing Interband Cascade Laser for High Temperature CW Operation. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gmachl, Claire. Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada429769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Capasso, Federico, and Franz X. Kaertner. Mode Locking of Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Deppe, Dennis G. Mid-Infrared Quantum Dot Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada447301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mohseni, Hooman. Phonon Avoided and Scalable Cascade Lasers (PASCAL). Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada498465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Harper, Warren W., Jana D. Strasburg, Pam M. Aker, and John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/15010485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Harper, Warren W., and John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/969751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chow, Weng Wah, Michael Clement Wanke, Maytee Lerttamrab, and Ines Waldmueller. THz quantum cascade lasers for standoff molecule detection. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/921751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zaytsev, Sergey, and Dabiran. Development of III-V Terahertz Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada434866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії