Добірка наукової літератури з теми "Laplace transformation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Laplace transformation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Laplace transformation"

1

Devi, Rekha. "Applications of Laplace Transformation." Research Journal of Science and Technology 9, no. 1 (2017): 167. http://dx.doi.org/10.5958/2349-2988.2017.00027.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ohshima, Hiroyuki. "Approximate Analytic Expression for the Time-Dependent Transient Electrophoretic Mobility of a Spherical Colloidal Particle." Molecules 27, no. 16 (August 11, 2022): 5108. http://dx.doi.org/10.3390/molecules27165108.

Повний текст джерела
Анотація:
The general expression is derived for the Laplace transform of the time-dependent transient electrophoretic mobility (with respect to time) of a spherical colloidal particle when a step electric field is applied. The transient electrophoretic mobility can be obtained by the numerical inverse Laplace transformation method. The obtained expression is applicable for arbitrary particle zeta potential and arbitrary thickness of the electrical double layer around the particle. For the low potential case, this expression gives the result obtained by Huang and Keh. On the basis of the obtained general expression for the Laplace transform of the transient electrophoretic mobility, we present an approximation method to avoid the numerical inverse Laplace transformation and derive a simple approximate analytic mobility expression for a weakly charged particle without involving numerical inverse Laplace transformations. The transient electrophoretic mobility can be obtained directly from this approximate mobility expression without recourse to the numerical inverse Laplace transformation. The results are found to be in excellent agreement with the exact numerical results obtained by Huang and Keh.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khedkar, B. G., and S. B. Gaikwad. "Stieltjes transformation as the iterated Laplace transformation." International Journal of Mathematical Analysis 11 (2017): 833–38. http://dx.doi.org/10.12988/ijma.2017.7796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rao, G. L. N., and L. Debnath. "A generalized Meijer transformation." International Journal of Mathematics and Mathematical Sciences 8, no. 2 (1985): 359–65. http://dx.doi.org/10.1155/s0161171285000370.

Повний текст джерела
Анотація:
In a series of papers [1-6], Kratzel studies a generalized version of the classical Meijer transformation with the Kernel function(st)νη(q,ν+1; (st)q). This transformation is referred to as GM transformation which reduces to the classical Meijer transform whenq=1. He also discussed a second generalization of the Meijer transform involving the Kernel functionλν(n)(x)which reduces to the Meijer function whenn=2and the Laplace transform whenn=1. This is called the Meijer-Laplace (or ML) transformation. This paper is concerned with a study of both GM and ML transforms in the distributional sense. Several properties of these transformations including inversion, uniqueness, and analyticity are discussed in some detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pérez-Esteva, Salvador. "Convolution operators for the one-sided Laplace transformation." Časopis pro pěstování matematiky 110, no. 1 (1985): 69–76. http://dx.doi.org/10.21136/cpm.1985.118223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Horvath, Illes, Andras Meszaros, and Miklos Telek. "Optimized numerical inverse Laplace transformation." ACM SIGMETRICS Performance Evaluation Review 50, no. 2 (August 30, 2022): 36–38. http://dx.doi.org/10.1145/3561074.3561087.

Повний текст джерела
Анотація:
Among the numerical inverse Laplace transformation (NILT) methods, those that belong to the Abate-Whitt framework (AWF) are considered to be the most efficient ones currently. It is a characteristic feature of the AWF NILT procedures that they are independent of the transform function and the time point of interest. In this work we propose an NILT procedure that goes beyond this limitation and optimize the accuracy of the NILT utilizing also the transform function and the time point of interest.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kamran, Niky, and Keti Tenenblat. "Laplace transformation in higher dimensions." Duke Mathematical Journal 84, no. 1 (July 1996): 237–66. http://dx.doi.org/10.1215/s0012-7094-96-08409-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jafarian, Ahmad, Alireza Khalili Golmankhaneh, and Dumitru Baleanu. "On Fuzzy Fractional Laplace Transformation." Advances in Mathematical Physics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/295432.

Повний текст джерела
Анотація:
Fuzzy and fractional differential equations are used to model problems with uncertainty and memory. Using the fractional fuzzy Laplace transformation we have solved the fuzzy fractional eigenvalue differential equation. By illustrative examples we have shown the results.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

XIAO, Y. "2-D Laplace-Z Transformation." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, no. 5 (May 1, 2006): 1500–1504. http://dx.doi.org/10.1093/ietfec/e89-a.5.1500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Novikov, I. A. "Laplace transformation and dynamic measurements." Measurement Techniques 31, no. 5 (May 1988): 405–9. http://dx.doi.org/10.1007/bf00864455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Laplace transformation"

1

BERNI, OLIVIER. "Cohomologie formelle. Transformation de laplace." Paris 6, 1999. http://www.theses.fr/1999PA066057.

Повний текст джерела
Анотація:
Pour resoudre le probleme de riemann-hilbert, m. Kashiwara introduit le foncteur de cohomologie temperee qui echange les faisceaux pervers et les d-modules holonomes. En 1995, m. Kashiwara et p. Schapira introduisent le foncteur de cohomologie formelle, dual en un certain sens du precedent. Dans la premiere partie de la these, nous montrons un theoreme d'annulation : sur une variete complexe de stein, les sections globales a support compact du foncteur de cohomologie formelle associe a un faisceau pervers sont concentrees en degre. La preuve utilise des resultats de siu et hormander, et la dualite dans les categories derivees des espaces vectoriels topologiques. Nous montrons d'abord la platitude du faisceau des fonctions holomorphes temperees sur un ouvert de stein sous-analytique relativement compact de x. Puis nous montrons une version temperee du theoreme b de cartan. Dans la deuxieme partie, nous montrons la stabilite sous la transformation de laplace du faisceau conique des fonctions holomorphes temperees (a l'origine et a l'infini) sur un espace vectoriel complexe. Nous utilisons le resultat connu : la transformation de laplace echange l'espace des distributions temperees de support contenu dans un cone convexe ferme d'un espace vectoriel reel et l'espace des fonctions holomorphes temperees sur le tube dual. Nous retrouvons alors le theoreme de brylinski-malgrange-verdier qui etablit la correspondance entre le transformee de fourier geometrique des solutions d'un d-module de type fini monodromique et les solutions de son transforme de fourier formel.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hunt, Colleen Helen. "Inference for general random effects models." Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09SM/09smh9394.pdf.

Повний текст джерела
Анотація:
"October 13, 2003" Bibliography: leaves 102-105. This work describes methods associated with general random effects models. Part one describes a technique for investigating mean-variance relationships in random effects models. Part two derives and approximation to the likelihood function using a Laplace expansion to the fourth order.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, James Raphael. "A vectorised Fourier-Laplace transformation and its application to Green's tensors." Thesis, Lancaster University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ngounda, Edgard. "Numerical Laplace transformation methods for integrating linear parabolic partial differential equations." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2735.

Повний текст джерела
Анотація:
Thesis (MSc (Applied Mathematics))--University of Stellenbosch, 2009.
ENGLISH ABSTRACT: In recent years the Laplace inversion method has emerged as a viable alternative method for the numerical solution of PDEs. Effective methods for the numerical inversion are based on the approximation of the Bromwich integral. In this thesis, a numerical study is undertaken to compare the efficiency of the Laplace inversion method with more conventional time integrator methods. Particularly, we consider the method-of-lines based on MATLAB’s ODE15s and the Crank-Nicolson method. Our studies include an introductory chapter on the Laplace inversion method. Then we proceed with spectral methods for the space discretization where we introduce the interpolation polynomial and the concept of a differentiation matrix to approximate derivatives of a function. Next, formulas of the numerical differentiation formulas (NDFs) implemented in ODE15s, as well as the well-known second order Crank-Nicolson method, are derived. In the Laplace method, to compute the Bromwich integral, we use the trapezoidal rule over a hyperbolic contour. Enhancement to the computational efficiency of these methods include the LU as well as the Hessenberg decompositions. In order to compare the three methods, we consider two criteria: The number of linear system solves per unit of accuracy and the CPU time per unit of accuracy. The numerical results demonstrate that the new method, i.e., the Laplace inversion method, is accurate to an exponential order of convergence compared to the linear convergence rate of the ODE15s and the Crank-Nicolson methods. This exponential convergence leads to high accuracy with only a few linear system solves. Similarly, in terms of computational cost, the Laplace inversion method is more efficient than ODE15s and the Crank-Nicolson method as the results show. Finally, we apply with satisfactory results the inversion method to the axial dispersion model and the heat equation in two dimensions.
AFRIKAANSE OPSOMMING: In die afgelope paar jaar het die Laplace omkeringsmetode na vore getree as ’n lewensvatbare alternatiewe metode vir die numeriese oplossing van PDVs. Effektiewe metodes vir die numeriese omkering word gebasseer op die benadering van die Bromwich integraal. In hierdie tesis word ’n numeriese studie onderneem om die effektiwiteit van die Laplace omkeringsmetode te vergelyk met meer konvensionele tydintegrasie metodes. Ons ondersoek spesifiek die metode-van-lyne, gebasseer op MATLAB se ODE15s en die Crank-Nicolson metode. Ons studies sluit in ’n inleidende hoofstuk oor die Laplace omkeringsmetode. Dan gaan ons voort met spektraalmetodes vir die ruimtelike diskretisasie, waar ons die interpolasie polinoom invoer sowel as die konsep van ’n differensiasie-matriks waarmee afgeleides van ’n funksie benader kan word. Daarna word formules vir die numeriese differensiasie formules (NDFs) ingebou in ODE15s herlei, sowel as die welbekende tweede orde Crank-Nicolson metode. Om die Bromwich integraal te benader in die Laplace metode, gebruik ons die trapesiumreël oor ’n hiperboliese kontoer. Die berekeningskoste van al hierdie metodes word verbeter met die LU sowel as die Hessenberg ontbindings. Ten einde die drie metodes te vergelyk beskou ons twee kriteria: Die aantal lineêre stelsels wat moet opgelos word per eenheid van akkuraatheid, en die sentrale prosesseringstyd per eenheid van akkuraatheid. Die numeriese resultate demonstreer dat die nuwe metode, d.i. die Laplace omkeringsmetode, akkuraat is tot ’n eksponensiële orde van konvergensie in vergelyking tot die lineêre konvergensie van ODE15s en die Crank-Nicolson metodes. Die eksponensiële konvergensie lei na hoë akkuraatheid met slegs ’n klein aantal oplossings van die lineêre stelsel. Netso, in terme van berekeningskoste is die Laplace omkeringsmetode meer effektief as ODE15s en die Crank-Nicolson metode. Laastens pas ons die omkeringsmetode toe op die aksiale dispersiemodel sowel as die hittevergelyking in twee dimensies, met bevredigende resultate.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Tingting, and 王婷婷. "Fast simulation of weakly nonlinear circuits based on multidimensionalinverse Laplace transform." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49858610.

Повний текст джерела
Анотація:
This dissertation presents several solutions on the simulation of weakly nonlinear circuits. The work is motivated by the increasing demand on fast yet accurate simulation methods circuits (IC)s, and the current lack of such methods in the electronic design automation (EDA) / computer-aided design (CAD) community. Three types of frequency domain methods are studied to analyze weakly nonlinear circuits. The first method employs numerical multi-dimensional inverse Laplace transform based on Laguerre function expansion. An adaptive mesh refinement (AMR) technique is developed and its parallel implementation is introduced to speed up the computation. The second method applies a Fourier series based algorithm to invert Laplace transform. The algorithm is straightforward to implement, and gives increasing accuracy with increasing number of frequency sampling points. It employs a fast Fourier transform (FFT)-based method to directly invert the frequency domain solution. Its parallel routine is also studied. The third method is based on Gaver functional. It enjoys a high accuracy independent of the number of sampling points, and for multidimensional simulation, only the diagonal points in the matrix are required to be computer, which can be further speeded up by parallel implementation. Numerical results show that the aforementioned three methods enjoy good accuracy as well as high efficiency. A comparative study is carried out to investigate the strengths and drawbacks of each method.
published_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Merchant, Richard W. "Recursive estimation using the bilinear operator with applications to synchronous machine parameter identification /." Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phm5543.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Simonaitytė, Irena. "Priverstinės sinchronizacijos sistemos matematinio modelio sudarymas ir tyrimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050608_132909-70485.

Повний текст джерела
Анотація:
The mathematical model of the forced synchronization system, composed of four oscillators is investigated. The mathematical model of the system is the matrix differential equation with delayed arguments. The matrix differential equation is solved using method of steps and applying Laplace transform. Using this method and exact solution of the matrix differential equation with delayed arguments was obtained and exact expressions of the elements of the step responses matrix, of the synchronization system are got. On the base of derived formulas the transition processes of the system are investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kurban, Feyza Uyhan Ramazan. "Isıl yazıcı başlıkta matematiksel modelleme /." Isparta : SDÜ Fen Bilimleri Enstitüsü, 2007. http://tez.sdu.edu.tr/Tezler/TF01132.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ho, Lok-ping, and 何樂平. "Laplace transform deep level transient spectroscopic study on PLD grown ZnO." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2015. http://hdl.handle.net/10722/211117.

Повний текст джерела
Анотація:
The fundamental physics and techniques employed in Laplace transform deep level transient spectroscopy (L-DLTS) are reviewed. A Laplace-DLTS system has been constructed. The high resolving power of this system has been demonstrated experimentally. The L-DLTS system was applied to characterize the defects in undoped n-type ZnO thin film grown by the pulsed laser deposition (PLD) method. A 0.3 eV deep trap has been identified. The formations of Ec-0.39eV and Ec-0.20eVcan be enhanced when the sample surface is seriously damaged by high temperature annealing.AnEc-0.25eV trap is identified in the freshly grown samples, but would disappear after the storage of 3 months. Copper doped n-type ZnO thin film samples with low carrier concentration (n~〖10〗^16 〖cm〗^(-3)) were investigated by using both conventional and Laplace DLTS techniques. Positive DLTS signal peaks were detected that are suspected to be contributed by the minority carrier (hole carrier) emission. A physics model involving the inversion layer of a metal-insulator-semiconductor contact has been invoked to interpret the hole carrier concentration existing near the metal-semiconductor interface. Expression for the defect concentration is determined as a function of the temperature of DLTS peaks. AnEv+0.6eV defect with high concentration (N_T~〖10〗^17 〖cm〗^(-3)) was detected. The concentration of Ev+0.6eVcan be enhanced when the annealing temperature was increased from 750 to 900 degree C.
published_or_final_version
Physics
Master
Master of Philosophy
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bohr, Mathieu. "Analyse harmonique L² de la transformée hypergéométrique de Laplace." Electronic Thesis or Diss., Metz, 2010. http://www.theses.fr/2010METZ016S.

Повний текст джерела
Анотація:
Les fonctions - hypergéométriques sont des fonctions spéciales associées à un système de racines. Elles donnent en même temps une généralisation des fonctions hypergéométriques de Gauss (et plus spécifiquement des fonctions de Jacobi) et des fonctions sphériques sur les espaces symétriques riemanniens et pseudo-riemanniens causaux. Dans cette thèse, on étudie l’analyse harmonique L² pour la transformation - hypergéométrique. Le théorème principal détermine (sous certaines hypothèses sur le système de racines et leur multiplicités) l’image, par cette transformation, des fonctions qui sont de classe L² par rapport à la mesure canonique (a) = où est la multiplicité de la racine positive α. Ce théorème généralise à la situation considérée le théorème classique qui caractérise l’image des fonctions L² sur la demi-droite réelle, par la transformation de Laplace, comme espace de Hardy. Quelques théorèmes de développement en séries de fonctions spéciales sont obtenus en tant qu’applications du théorème principal
The hypergeometric functions are special functions associated with root systems. They provide a generalization either of Gauss' hypergeometric function (and more precisely of the Jacobi functions) or of the spherical functions on Riemannian symmetric spaces and pseudo-Riemannian noncompacty causal symmetric spaces. In this thesis, we study the L²-harmonic analysis for the so-called -hypergeometric transform. Our main theorem characterizes (under certain hypothesis on the root systems and their multiplicities) the image, under this transform, of the functions which are of class L² with respect to the canonical measure (a) = , Here denotes the multiplicity of the positive root α. This theorem generalizes to the above mentioned setting, the classical theorem characterizing as a Hardy space the image of the L²-functions on the positive real half-line under the Laplace transform. Some theorems dealing with series decompositions with resoect to special functions are obtained as application of our main theorem
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Laplace transformation"

1

Weber, Hubert. Laplace-Transformation. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-96634-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weber, Hubert. Laplace-Transformation. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bolton, W. Laplace and z-transforms. Harlow: Longman, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Widder, D. V. The laplace transform. Mineola, N.Y: Dover Publications, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dewald, Lee Samuel. [Lambda]-Laplace processes. Monterey, Calif: Naval Postgraduate School, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ulrich, Helmut, and Stephan Ulrich. Laplace-Transformation, Diskrete Fourier-Transformation und z-Transformation. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-31877-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Buschman, R. G. Tables addenda for Laplace transforms. [Langlois, Or: R.G. Buschman], 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ulrich, Helmut, and Hubert Weber. Laplace-, Fourier- und z-Transformation. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-03450-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weber, Hubert, and Helmut Ulrich. Laplace-, Fourier- und z-Transformation. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-8291-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cohen, A. M. Numerical methods for Laplace transform inversion. New York: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Laplace transformation"

1

Weber, Hubert. "Laplace — Transformation." In Laplace-Transformation, 39–201. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weber, Hubert. "Laplace — Transformation." In Laplace-Transformation, 31–176. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weber, Hubert. "Fourierreihen." In Laplace-Transformation, 9–25. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Weber, Hubert. "Fourierintegral." In Laplace-Transformation, 26–34. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Weber, Hubert. "Fouriertransformation." In Laplace-Transformation, 35–38. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Weber, Hubert. "Fourierreihen." In Laplace-Transformation, 1–16. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Weber, Hubert. "Fourierintegral." In Laplace-Transformation, 17–26. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Weber, Hubert. "Fouriertransformation." In Laplace-Transformation, 27–30. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weber, Hubert. "Anhang." In Laplace-Transformation, 177–202. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ohm, Jens-Rainer, and Hans Dieter Lüke. "Laplace-Transformation." In Springer-Lehrbuch, 35–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53901-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Laplace transformation"

1

Yahay, Mohamed, and Najlae Falah Hameed Al Saffar. "Image encryption based Laplace transformation." In 4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0181941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Łopuszański, O. "Polynomial ultradistributions: differentiation and Laplace transformation." In Linear and Non-Linear Theory of Generalized Functions and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc88-0-16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

HRISTOV, Milen J. "VECTOR-VALUED LAPLACE TRANSFORMATION APPLIED TO RATIONAL BÉZIER CURVES." In 4th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719780_0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ha, Wansoo, Changsoo Shin, and Taeyoung Ha. "Efficient Laplace-domain modeling using an axis transformation technique." In SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 2012. http://dx.doi.org/10.1190/segam2012-0565.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mustafa, Omar Saber. "A Study on Laplace and Fourier Transformation its Application." In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020. http://dx.doi.org/10.1109/icaccs48705.2020.9074384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Suzuki, Satoshi, and Katsuhisa Furuta. "Real number Laplace transformation-based identification and its application." In 2009 International Conference on Mechatronics and Automation (ICMA). IEEE, 2009. http://dx.doi.org/10.1109/icma.2009.5246314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Onur, M., and A. C. Reynolds. "Well Testing Applications of Numerical Laplace Transformation of Sampled-Data." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/36554-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abhisek, Barida Bratati, and Harish Nagar. "A review on the study of application of laplace transformation." In 14TH INTERNATIONAL CONFERENCE ON MATERIALS PROCESSING AND CHARACTERIZATION 2023. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0192795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yi, Sun, A. Galip Ulsoy, and Patrick W. Nelson. "Solution of Systems of Linear Delay Differential Equations via Laplace Transformation." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zongying Li and Xiang Liu. "The image encryption algorithm based on the backward Laplace-like transformation." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії