Добірка наукової літератури з теми "Laplace transformation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Laplace transformation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Laplace transformation"
Devi, Rekha. "Applications of Laplace Transformation." Research Journal of Science and Technology 9, no. 1 (2017): 167. http://dx.doi.org/10.5958/2349-2988.2017.00027.4.
Повний текст джерелаOhshima, Hiroyuki. "Approximate Analytic Expression for the Time-Dependent Transient Electrophoretic Mobility of a Spherical Colloidal Particle." Molecules 27, no. 16 (August 11, 2022): 5108. http://dx.doi.org/10.3390/molecules27165108.
Повний текст джерелаKhedkar, B. G., and S. B. Gaikwad. "Stieltjes transformation as the iterated Laplace transformation." International Journal of Mathematical Analysis 11 (2017): 833–38. http://dx.doi.org/10.12988/ijma.2017.7796.
Повний текст джерелаRao, G. L. N., and L. Debnath. "A generalized Meijer transformation." International Journal of Mathematics and Mathematical Sciences 8, no. 2 (1985): 359–65. http://dx.doi.org/10.1155/s0161171285000370.
Повний текст джерелаPérez-Esteva, Salvador. "Convolution operators for the one-sided Laplace transformation." Časopis pro pěstování matematiky 110, no. 1 (1985): 69–76. http://dx.doi.org/10.21136/cpm.1985.118223.
Повний текст джерелаHorvath, Illes, Andras Meszaros, and Miklos Telek. "Optimized numerical inverse Laplace transformation." ACM SIGMETRICS Performance Evaluation Review 50, no. 2 (August 30, 2022): 36–38. http://dx.doi.org/10.1145/3561074.3561087.
Повний текст джерелаKamran, Niky, and Keti Tenenblat. "Laplace transformation in higher dimensions." Duke Mathematical Journal 84, no. 1 (July 1996): 237–66. http://dx.doi.org/10.1215/s0012-7094-96-08409-4.
Повний текст джерелаJafarian, Ahmad, Alireza Khalili Golmankhaneh, and Dumitru Baleanu. "On Fuzzy Fractional Laplace Transformation." Advances in Mathematical Physics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/295432.
Повний текст джерелаXIAO, Y. "2-D Laplace-Z Transformation." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, no. 5 (May 1, 2006): 1500–1504. http://dx.doi.org/10.1093/ietfec/e89-a.5.1500.
Повний текст джерелаNovikov, I. A. "Laplace transformation and dynamic measurements." Measurement Techniques 31, no. 5 (May 1988): 405–9. http://dx.doi.org/10.1007/bf00864455.
Повний текст джерелаДисертації з теми "Laplace transformation"
BERNI, OLIVIER. "Cohomologie formelle. Transformation de laplace." Paris 6, 1999. http://www.theses.fr/1999PA066057.
Повний текст джерелаHunt, Colleen Helen. "Inference for general random effects models." Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09SM/09smh9394.pdf.
Повний текст джерелаSmith, James Raphael. "A vectorised Fourier-Laplace transformation and its application to Green's tensors." Thesis, Lancaster University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296967.
Повний текст джерелаNgounda, Edgard. "Numerical Laplace transformation methods for integrating linear parabolic partial differential equations." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2735.
Повний текст джерелаENGLISH ABSTRACT: In recent years the Laplace inversion method has emerged as a viable alternative method for the numerical solution of PDEs. Effective methods for the numerical inversion are based on the approximation of the Bromwich integral. In this thesis, a numerical study is undertaken to compare the efficiency of the Laplace inversion method with more conventional time integrator methods. Particularly, we consider the method-of-lines based on MATLAB’s ODE15s and the Crank-Nicolson method. Our studies include an introductory chapter on the Laplace inversion method. Then we proceed with spectral methods for the space discretization where we introduce the interpolation polynomial and the concept of a differentiation matrix to approximate derivatives of a function. Next, formulas of the numerical differentiation formulas (NDFs) implemented in ODE15s, as well as the well-known second order Crank-Nicolson method, are derived. In the Laplace method, to compute the Bromwich integral, we use the trapezoidal rule over a hyperbolic contour. Enhancement to the computational efficiency of these methods include the LU as well as the Hessenberg decompositions. In order to compare the three methods, we consider two criteria: The number of linear system solves per unit of accuracy and the CPU time per unit of accuracy. The numerical results demonstrate that the new method, i.e., the Laplace inversion method, is accurate to an exponential order of convergence compared to the linear convergence rate of the ODE15s and the Crank-Nicolson methods. This exponential convergence leads to high accuracy with only a few linear system solves. Similarly, in terms of computational cost, the Laplace inversion method is more efficient than ODE15s and the Crank-Nicolson method as the results show. Finally, we apply with satisfactory results the inversion method to the axial dispersion model and the heat equation in two dimensions.
AFRIKAANSE OPSOMMING: In die afgelope paar jaar het die Laplace omkeringsmetode na vore getree as ’n lewensvatbare alternatiewe metode vir die numeriese oplossing van PDVs. Effektiewe metodes vir die numeriese omkering word gebasseer op die benadering van die Bromwich integraal. In hierdie tesis word ’n numeriese studie onderneem om die effektiwiteit van die Laplace omkeringsmetode te vergelyk met meer konvensionele tydintegrasie metodes. Ons ondersoek spesifiek die metode-van-lyne, gebasseer op MATLAB se ODE15s en die Crank-Nicolson metode. Ons studies sluit in ’n inleidende hoofstuk oor die Laplace omkeringsmetode. Dan gaan ons voort met spektraalmetodes vir die ruimtelike diskretisasie, waar ons die interpolasie polinoom invoer sowel as die konsep van ’n differensiasie-matriks waarmee afgeleides van ’n funksie benader kan word. Daarna word formules vir die numeriese differensiasie formules (NDFs) ingebou in ODE15s herlei, sowel as die welbekende tweede orde Crank-Nicolson metode. Om die Bromwich integraal te benader in die Laplace metode, gebruik ons die trapesiumreël oor ’n hiperboliese kontoer. Die berekeningskoste van al hierdie metodes word verbeter met die LU sowel as die Hessenberg ontbindings. Ten einde die drie metodes te vergelyk beskou ons twee kriteria: Die aantal lineêre stelsels wat moet opgelos word per eenheid van akkuraatheid, en die sentrale prosesseringstyd per eenheid van akkuraatheid. Die numeriese resultate demonstreer dat die nuwe metode, d.i. die Laplace omkeringsmetode, akkuraat is tot ’n eksponensiële orde van konvergensie in vergelyking tot die lineêre konvergensie van ODE15s en die Crank-Nicolson metodes. Die eksponensiële konvergensie lei na hoë akkuraatheid met slegs ’n klein aantal oplossings van die lineêre stelsel. Netso, in terme van berekeningskoste is die Laplace omkeringsmetode meer effektief as ODE15s en die Crank-Nicolson metode. Laastens pas ons die omkeringsmetode toe op die aksiale dispersiemodel sowel as die hittevergelyking in twee dimensies, met bevredigende resultate.
Wang, Tingting, and 王婷婷. "Fast simulation of weakly nonlinear circuits based on multidimensionalinverse Laplace transform." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49858610.
Повний текст джерелаpublished_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Merchant, Richard W. "Recursive estimation using the bilinear operator with applications to synchronous machine parameter identification /." Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phm5543.pdf.
Повний текст джерелаSimonaitytė, Irena. "Priverstinės sinchronizacijos sistemos matematinio modelio sudarymas ir tyrimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050608_132909-70485.
Повний текст джерелаKurban, Feyza Uyhan Ramazan. "Isıl yazıcı başlıkta matematiksel modelleme /." Isparta : SDÜ Fen Bilimleri Enstitüsü, 2007. http://tez.sdu.edu.tr/Tezler/TF01132.pdf.
Повний текст джерелаHo, Lok-ping, and 何樂平. "Laplace transform deep level transient spectroscopic study on PLD grown ZnO." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2015. http://hdl.handle.net/10722/211117.
Повний текст джерелаpublished_or_final_version
Physics
Master
Master of Philosophy
Bohr, Mathieu. "Analyse harmonique L² de la transformée hypergéométrique de Laplace." Electronic Thesis or Diss., Metz, 2010. http://www.theses.fr/2010METZ016S.
Повний текст джерелаThe hypergeometric functions are special functions associated with root systems. They provide a generalization either of Gauss' hypergeometric function (and more precisely of the Jacobi functions) or of the spherical functions on Riemannian symmetric spaces and pseudo-Riemannian noncompacty causal symmetric spaces. In this thesis, we study the L²-harmonic analysis for the so-called -hypergeometric transform. Our main theorem characterizes (under certain hypothesis on the root systems and their multiplicities) the image, under this transform, of the functions which are of class L² with respect to the canonical measure (a) = , Here denotes the multiplicity of the positive root α. This theorem generalizes to the above mentioned setting, the classical theorem characterizing as a Hardy space the image of the L²-functions on the positive real half-line under the Laplace transform. Some theorems dealing with series decompositions with resoect to special functions are obtained as application of our main theorem
Книги з теми "Laplace transformation"
Weber, Hubert. Laplace-Transformation. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-96634-6.
Повний текст джерелаWeber, Hubert. Laplace-Transformation. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3.
Повний текст джерелаBolton, W. Laplace and z-transforms. Harlow: Longman, 1994.
Знайти повний текст джерелаWidder, D. V. The laplace transform. Mineola, N.Y: Dover Publications, 2010.
Знайти повний текст джерелаDewald, Lee Samuel. [Lambda]-Laplace processes. Monterey, Calif: Naval Postgraduate School, 1988.
Знайти повний текст джерелаUlrich, Helmut, and Stephan Ulrich. Laplace-Transformation, Diskrete Fourier-Transformation und z-Transformation. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-31877-2.
Повний текст джерелаBuschman, R. G. Tables addenda for Laplace transforms. [Langlois, Or: R.G. Buschman], 1996.
Знайти повний текст джерелаUlrich, Helmut, and Hubert Weber. Laplace-, Fourier- und z-Transformation. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-03450-4.
Повний текст джерелаWeber, Hubert, and Helmut Ulrich. Laplace-, Fourier- und z-Transformation. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-8291-2.
Повний текст джерелаCohen, A. M. Numerical methods for Laplace transform inversion. New York: Springer, 2011.
Знайти повний текст джерелаЧастини книг з теми "Laplace transformation"
Weber, Hubert. "Laplace — Transformation." In Laplace-Transformation, 39–201. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_4.
Повний текст джерелаWeber, Hubert. "Laplace — Transformation." In Laplace-Transformation, 31–176. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_4.
Повний текст джерелаWeber, Hubert. "Fourierreihen." In Laplace-Transformation, 9–25. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_1.
Повний текст джерелаWeber, Hubert. "Fourierintegral." In Laplace-Transformation, 26–34. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_2.
Повний текст джерелаWeber, Hubert. "Fouriertransformation." In Laplace-Transformation, 35–38. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-96634-6_3.
Повний текст джерелаWeber, Hubert. "Fourierreihen." In Laplace-Transformation, 1–16. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_1.
Повний текст джерелаWeber, Hubert. "Fourierintegral." In Laplace-Transformation, 17–26. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_2.
Повний текст джерелаWeber, Hubert. "Fouriertransformation." In Laplace-Transformation, 27–30. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_3.
Повний текст джерелаWeber, Hubert. "Anhang." In Laplace-Transformation, 177–202. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-96747-3_5.
Повний текст джерелаOhm, Jens-Rainer, and Hans Dieter Lüke. "Laplace-Transformation." In Springer-Lehrbuch, 35–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53901-5_2.
Повний текст джерелаТези доповідей конференцій з теми "Laplace transformation"
Yahay, Mohamed, and Najlae Falah Hameed Al Saffar. "Image encryption based Laplace transformation." In 4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0181941.
Повний текст джерелаŁopuszański, O. "Polynomial ultradistributions: differentiation and Laplace transformation." In Linear and Non-Linear Theory of Generalized Functions and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc88-0-16.
Повний текст джерелаHRISTOV, Milen J. "VECTOR-VALUED LAPLACE TRANSFORMATION APPLIED TO RATIONAL BÉZIER CURVES." In 4th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719780_0016.
Повний текст джерелаHa, Wansoo, Changsoo Shin, and Taeyoung Ha. "Efficient Laplace-domain modeling using an axis transformation technique." In SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 2012. http://dx.doi.org/10.1190/segam2012-0565.1.
Повний текст джерелаMustafa, Omar Saber. "A Study on Laplace and Fourier Transformation its Application." In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020. http://dx.doi.org/10.1109/icaccs48705.2020.9074384.
Повний текст джерелаSuzuki, Satoshi, and Katsuhisa Furuta. "Real number Laplace transformation-based identification and its application." In 2009 International Conference on Mechatronics and Automation (ICMA). IEEE, 2009. http://dx.doi.org/10.1109/icma.2009.5246314.
Повний текст джерелаOnur, M., and A. C. Reynolds. "Well Testing Applications of Numerical Laplace Transformation of Sampled-Data." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/36554-ms.
Повний текст джерелаAbhisek, Barida Bratati, and Harish Nagar. "A review on the study of application of laplace transformation." In 14TH INTERNATIONAL CONFERENCE ON MATERIALS PROCESSING AND CHARACTERIZATION 2023. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0192795.
Повний текст джерелаYi, Sun, A. Galip Ulsoy, and Patrick W. Nelson. "Solution of Systems of Linear Delay Differential Equations via Laplace Transformation." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377712.
Повний текст джерелаZongying Li and Xiang Liu. "The image encryption algorithm based on the backward Laplace-like transformation." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622411.
Повний текст джерела