Добірка наукової літератури з теми "Language Representation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Language Representation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Language Representation"
Andrade, Cláudia Braga de. "THE SPECIFICITY OF LANGUAGE IN PSYCHOANALYSIS." Ágora: Estudos em Teoria Psicanalítica 19, no. 2 (August 2016): 279–94. http://dx.doi.org/10.1590/s1516-14982016002009.
Повний текст джерелаRutten, Geert-Jan, and Nick Ramsey. "Language Representation." Journal of Neurosurgery 106, no. 4 (April 2007): 726–27. http://dx.doi.org/10.3171/jns.2007.106.4.726.
Повний текст джерелаTomasello, Michael. "Language and Representation." Contemporary Psychology: A Journal of Reviews 42, no. 12 (December 1997): 1080–83. http://dx.doi.org/10.1037/000637.
Повний текст джерелаJing, Chenchen, Yuwei Wu, Xiaoxun Zhang, Yunde Jia, and Qi Wu. "Overcoming Language Priors in VQA via Decomposed Linguistic Representations." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 11181–88. http://dx.doi.org/10.1609/aaai.v34i07.6776.
Повний текст джерелаBen-Yami, Hanoch. "Word, Sign and Representation in Descartes." Journal of Early Modern Studies 10, no. 1 (2021): 29–46. http://dx.doi.org/10.5840/jems20211012.
Повний текст джерела최숙이. "Language as Volition and Representation : Representation of Volition in Language." Journal of japanese Language and Culture ll, no. 26 (December 2013): 321–45. http://dx.doi.org/10.17314/jjlc.2013..26.016.
Повний текст джерелаNavigli, Roberto, Rexhina Blloshmi, and Abelardo Carlos Martínez Lorenzo. "BabelNet Meaning Representation: A Fully Semantic Formalism to Overcome Language Barriers." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12274–79. http://dx.doi.org/10.1609/aaai.v36i11.21490.
Повний текст джерелаInozemtsev, V. A. "Deductive logic in solving computer knowledge representation." Izvestiya MGTU MAMI 8, no. 1-5 (September 10, 2014): 121–26. http://dx.doi.org/10.17816/2074-0530-67477.
Повний текст джерелаGilbert, Stephen B., and Whitman Richards. "The Classification of Representational Forms." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 63, no. 1 (November 2019): 2244–48. http://dx.doi.org/10.1177/1071181319631530.
Повний текст джерелаMiller, R. A., R. H. Baud, J. R. Scherrer, and A. M. Rassinoux. "Modeling Concepts in Medicine for Medical Language Understanding." Methods of Information in Medicine 37, no. 04/05 (October 1998): 361–72. http://dx.doi.org/10.1055/s-0038-1634561.
Повний текст джерелаДисертації з теми "Language Representation"
Sukkarieh, Jana Zuheir. "Natural language for knowledge representation." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620452.
Повний текст джерелаWilhelmson, Mika. "Representations of culture in EIL : Cultural representation in Swedish EFL textbooks." Thesis, Högskolan Dalarna, Engelska, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:du-21120.
Повний текст джерелаLuebbering, Candice Rae. "The Cartographic Representation of Language: Understanding language map construction and visualizing language diversity." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/37543.
Повний текст джерелаPh. D.
Perfors, Amy (Amy Francesca). "Learnability, representation, and language : a Bayesian approach." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45601.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 225-243).
Within the metaphor of the "mind as a computation device" that dominates cognitive science, understanding human cognition means understanding learnability not only what (and how) the brain learns, but also what data is available to it from the world. Ideal learnability arguments seek to characterize what knowledge is in theory possible for an ideal reasoner to acquire, which illuminates the path towards understanding what human reasoners actually do acquire. The goal of this thesis is to exploit recent advances in machine learning to revisit three common learnability arguments in language acquisition. By formalizing them in Bayesian terms and evaluating them given realistic, real-world datasets, we achieve insight about what must be assumed about a child's representational capacity, learning mechanism, and cognitive biases. Exploring learnability in the context of an ideal learner but realistic (rather than ideal) datasets enables us to investigate what could be learned in practice rather than noting what is impossible in theory. Understanding how higher-order inductive constraints can themselves be learned permits us to reconsider inferences about innate inductive constraints in a new light. And realizing how a learner who evaluates theories based on a simplicity/goodness-of-fit tradeoff can handle sparse evidence may lead to a new perspective on how humans reason based on the noisy and impoverished data in the world. The learnability arguments I consider all ultimately stem from the impoverishment of the input either because it lacks negative evidence, it lacks a certain essential kind of positive evidence, or it lacks suffcient quantity of evidence necessary for choosing from an infinite set of possible generalizations.
(cont.) I focus on these learnability arguments in the context of three major topics in language acquisition: the acquisition of abstract linguistic knowledge about hierarchical phrase structure, the acquisition of verb argument structures, and the acquisition of word leaning biases.
by Amy Perfors.
Ph.D.
Nayak, Sunita. "Representation and learning for sign language recognition." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002362.
Повний текст джерелаJarosiewicz, Eugenio. "Natural language parsing and representation in XML." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000707.
Повний текст джерелаDawborn, Timothy James. "DOCREP: Document Representation for Natural Language Processing." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14767.
Повний текст джерелаRamos, González Juan José. "PML - A modeling Language for Physical Knowledge Representation." Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/5801.
Повний текст джерелаEl propósito de este trabajo ha sido el diseño de un lenguaje de modelado, PML, capaz de automatizar el proceso de modelado asegurando la reusabilidad de modelos que pueden ser predefinidos de manera independiente al contexto físico don seran reutilizados. La reutilización de modelos se contempla tanto en la contrucción de nuevos modelos (modelado estructurado) como en su utilización para diferentes objetivos de experimentación. Los nuevos modelos son contruidos acoplando modelos predefinidos de acurdo a la topología física del sistema modelado. Tales modelos pueden ser manipulados para adecuarlos a distintos objetivos de experimentación, adecuándose la formulación matemática de la dinámicas de interés marcadas por dichos objetivos.
PML es un lenguaje de modelado orientado a objetos diseñado para describir el comportamiento del sistema físico mediante estructuras de representación modulares (clases de modelado). La clases PML representan conceptos físicos que son familiares al modelador. El conocimiento físico declarado por la clases se utiliza para analizar los modelos estructurados, obteniéndose de manera automatizada la representación matemática de las dinámicas de interés.
The topic of this thesis is the automated modeling of physical systems. Modeling automation has been a common objective in many of the present modeling tools. Reuse of predefined models is probably the main approach adopted by many of them in order to reduce the modeling burden. However, to facilitate reuse is difficult to achieve and, as it is discussed thoroughly in the thesis, reusability of models can not be assured when they are predefined to represent the system dynamics in a particular physical context. In order to avoid the reuse constraints due to the system dynamics formulation, a modeling language should be defined with a clear separation between the physical behaviour representation aspects (declarative physical knowledge) and the computational aspects concerning to model simulation (procedural computational knowledge). The physical knowledge will represent the system behaviour and it will support the analysis of the model reusing context in order to set the system dynamics formulation.
The aim of this work is the design of a modeling language, PML, able to automate the modeling process by assuring the reusability of ready-made models independently of the physical context where they have been defined. The reuse of a predefined model contemplates both the construction of new models (structured modeling) and the model usage for different experimentation purposes. New models are constructed by coupling predefined models according to the physical system topology. Such structured models are manipulated in order to obtain the representation of the system dynamics which are of interest for the experimentation purposes.
PML is an object oriented modeling language designed to represent system behaviour by means of modular structures (modeling classes). The PML modeling classes describe physical concepts well-known by the modeller. The physical knowledge declared by the modeling classes is used to analyze structured models in order to generate automatically the mathematical representation of the system dynamics. The simulation model is obtained by means of an equation-based object oriented modeling language.
Stephens, Robert Andrew. "Representation and knowledge acquisition : the problem of language." Thesis, University of the West of England, Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321831.
Повний текст джерелаRocktaschel, Tim. "Combining representation learning with logic for language processing." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10040845/.
Повний текст джерелаКниги з теми "Language Representation"
Language, thought, and representation. Chichester: J. Wiley & Sons, 1993.
Знайти повний текст джерелаLarrazabal, Jesús M., and Luis A. Pérez Miranda, eds. Language, Knowledge, and Representation. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2783-3.
Повний текст джерелаM, Larrazabal Jesús, and Pérez Miranda Luis A, eds. Language, knowledge, and representation. Boston, Mass: Kluwer Academic Publishers, 2004.
Знайти повний текст джерелаCrumplin, Mary-Ann. Problems of democracy: Language and speaking. Freeland, Oxfordshire: Inter-Disciplinary Press, 2011.
Знайти повний текст джерелаProblems of democracy: Language and speaking. Freeland, Oxfordshire: Inter-Disciplinary Press, 2011.
Знайти повний текст джерелаDivjak, Dagmar, and Stefan Th Gries, eds. Frequency Effects in Language Representation. Berlin, Boston: DE GRUYTER, 2012. http://dx.doi.org/10.1515/9783110274073.
Повний текст джерелаMacGregor, R. The Loom Knowledge representation language. Marina Del Ray: University of Southern California, 1987.
Знайти повний текст джерелаFrequency effects in language representation. Berlin: De Gruyter Mouton, 2012.
Знайти повний текст джерелаPeter, Robinson, Jungheim Nicholas O, and Pacific Second Language Research Forum., eds. Representation and process. Tokyo [Japan]: Pacific Second Language Research Forum, 1999.
Знайти повний текст джерелаLiu, Zhiyuan, Yankai Lin, and Maosong Sun. Representation Learning for Natural Language Processing. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2.
Повний текст джерелаЧастини книг з теми "Language Representation"
Buhmann, M. D., Prem Melville, Vikas Sindhwani, Novi Quadrianto, Wray L. Buntine, Luís Torgo, Xinhua Zhang, et al. "Representation Language." In Encyclopedia of Machine Learning, 863. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_725.
Повний текст джерелаSimchen, Ori. "Semantics and Ordinary Language." In Philosophical Representation, 61–80. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003306443-4.
Повний текст джерелаCoupland, Nikolas. "‘Other’ representation." In Society and Language Use, 241–60. Amsterdam: John Benjamins Publishing Company, 2010. http://dx.doi.org/10.1075/hoph.7.16cou.
Повний текст джерелаJohnson, Michael L. "Form, Representation, Presence." In Mind, Language, Machine, 80–85. London: Palgrave Macmillan UK, 1988. http://dx.doi.org/10.1007/978-1-349-19404-9_15.
Повний текст джерелаBosch, Peter. "Indexicality and representation." In Natural Language and Logic, 50–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-53082-7_16.
Повний текст джерелаLiu, Zhiyuan, Yankai Lin, and Maosong Sun. "Word Representation." In Representation Learning for Natural Language Processing, 13–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_2.
Повний текст джерелаLiu, Zhiyuan, Yankai Lin, and Maosong Sun. "Sentence Representation." In Representation Learning for Natural Language Processing, 59–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_4.
Повний текст джерелаLiu, Zhiyuan, Yankai Lin, and Maosong Sun. "Document Representation." In Representation Learning for Natural Language Processing, 91–123. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_5.
Повний текст джерелаLiu, Zhiyuan, Yankai Lin, and Maosong Sun. "Network Representation." In Representation Learning for Natural Language Processing, 217–83. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_8.
Повний текст джерелаScott, Bernard. "The SAL Representation Language." In Translation, Brains and the Computer, 205–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76629-4_9.
Повний текст джерелаТези доповідей конференцій з теми "Language Representation"
Chen, Zhenpeng, Sheng Shen, Ziniu Hu, Xuan Lu, Qiaozhu Mei, and Xuanzhe Liu. "Emoji-Powered Representation Learning for Cross-Lingual Sentiment Classification (Extended Abstract)." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/649.
Повний текст джерелаCheng, Nancy Yen-wen. "Teaching CAD with Language Learning Methods." In ACADIA 1997: Representation and Design. ACADIA, 1997. http://dx.doi.org/10.52842/conf.acadia.1997.173.
Повний текст джерелаAchsas, Sanae, and El Habib Nfaoui. "Language representation learning models." In SITA'20: Theories and Applications. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3419604.3419773.
Повний текст джерелаMuji, Muji. "Language: Representation of Mind." In Proceedings of the 1st Konferensi Internasional Berbahasa Indonesia Universitas Indraprasta PGRI, KIBAR 2020, 28 October 2020, Jakarta, Indonesia. EAI, 2022. http://dx.doi.org/10.4108/eai.28-10-2020.2315327.
Повний текст джерелаLevialdi, S., and C. E. Bernardelli. "Representation: Relationship between Language and Image." In Conference on Representation: Relationship between Language and Image. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814534659.
Повний текст джерелаKountchev, R., Vl Todorov, and R. Kountcheva. "Efficient sign language video representation." In 2008 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2008. http://dx.doi.org/10.1109/iwssip.2008.4604396.
Повний текст джерелаLi, Yian, and Hai Zhao. "Pre-training Universal Language Representation." In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.acl-long.398.
Повний текст джерелаKollar, Thomas, Danielle Berry, Lauren Stuart, Karolina Owczarzak, Tagyoung Chung, Lambert Mathias, Michael Kayser, Bradford Snow, and Spyros Matsoukas. "The Alexa Meaning Representation Language." In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/n18-3022.
Повний текст джерелаBrown, Paul C. "A Concept Representation Language (CRL)." In 2018 IEEE 12th International Conference on Semantic Computing (ICSC). IEEE, 2018. http://dx.doi.org/10.1109/icsc.2018.00010.
Повний текст джерелаNeville, Dorothy, and Leo Joskowicz. "A Representation Language for Mechanical Behavior." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0001.
Повний текст джерелаЗвіти організацій з теми "Language Representation"
Moore, Robert C. Knowledge Representation and Natural-Language Semantics. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada181422.
Повний текст джерелаMoore, Robert C. Knowledge Representation and Natural-Language Semantics. Fort Belvoir, VA: Defense Technical Information Center, August 1985. http://dx.doi.org/10.21236/ada162389.
Повний текст джерелаAllen, James F. Natural Language, Knowledge Representation, and Logical Form. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada247389.
Повний текст джерелаSidner, C. Research in Knowledge Representation for Natural Language Understanding. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada152260.
Повний текст джерелаDelugach, Harry S., Lissa C. Cox, and David J. Skipper. Dependency Language Representation Using Conceptual Graphs. Autonomic Information Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada399504.
Повний текст джерелаKuehne, Sven E. On the Representation of Physical Quantities in Natural Language Text. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada465872.
Повний текст джерелаBirkholz, H., C. Vigano, and C. Bormann. Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures. RFC Editor, June 2019. http://dx.doi.org/10.17487/rfc8610.
Повний текст джерелаZelenskyi, Arkadii A. Relevance of research of programs for semantic analysis of texts and review of methods of their realization. [б. в.], December 2018. http://dx.doi.org/10.31812/123456789/2884.
Повний текст джерелаTarasenko, Rostyslav O., Svitlana M. Amelina, Yuliya M. Kazhan, and Olga V. Bondarenko. The use of AR elements in the study of foreign languages at the university. CEUR Workshop Proceedings, November 2020. http://dx.doi.org/10.31812/123456789/4421.
Повний текст джерелаTarasenko, Rostyslav O., Svitlana M. Amelina, Yuliya M. Kazhan, and Olga V. Bondarenko. The use of AR elements in the study of foreign languages at the university. CEUR Workshop Proceedings, November 2020. http://dx.doi.org/10.31812/123456789/4421.
Повний текст джерела