Добірка наукової літератури з теми "Kinematics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Kinematics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Kinematics":

1

Ge, Dawei. "Kinematics modeling of redundant manipulator based on screw theory and Newton-Raphson method." Journal of Physics: Conference Series 2246, no. 1 (April 1, 2022): 012068. http://dx.doi.org/10.1088/1742-6596/2246/1/012068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this paper, forward kinematics and inverse kinematicsis algorithms are proposed to solve the problem that the redundant manipulator has more freedom than the traditional manipulator and cannot directly solve the inverse kinematics analytical solution. Firstly, the forward kinematics model is established through the screw theory; secondly, Newton-Raphson method is used to solve the inverse kinematics of the manipulator. Finally, the algorithms of redundant manipulator are verified through an example simulated by Matlab Robotics toolbox. The results show that the kinematic algorithms are correct, which provides a good algorithm basis for subsequent dynamic control.
2

Purwana, Unang, Dadi Rusdiana, and Winny Liliawati. "PENGUJIAN KEMAMPUAN MENGINTERPRETASIKAN GRAFIK KINEMATIKA CALON GURU FISIKA: THE POLYTOMOUS RASCH ANALYSIS." ORBITA: Jurnal Kajian, Inovasi dan Aplikasi Pendidikan Fisika 6, no. 2 (November 8, 2020): 259. http://dx.doi.org/10.31764/orbita.v6i2.3264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRAKKemampuan interpretasi grafik merupakan kemampuan yang sangat penting dan kunci utama dalam memahami materi kinematika dan materi fisika lanjutan. Namun kemampuan interpretasi grafik materi kinematika mahasiswa calon guru masih rendah. Tujuan penelitian ini menguji kemampuan membaca dan menginterpretasikan grafik kinematika calon guru dengan analisis polytomous rasch model. Instrumen terdiri dari empat soal uraian menyajikan grafik kinematika. Tes diberikan ke 20 mahasiswa calon guru, terdiri dari 14 perempuan dan 6 laki-laki. Metode yang digunakan survei deskriptif kuantitatif dengan analisis menggunakan rasch model dengan data politomi. Hasil yang diperoleh nilai reliabilitas 0,58 kategori lemah, tingkat kesukaran untuk 3 soal dalam kategori sukar dan satu soal kategori mudah, daya pembeda berkategori sangat baik untuk seluruh soal. Kemampuan membaca dan menginterpretasikan grafik kinematika secara keseluruhan cukup baik. Kesimpulannya instrumen dan analisis yang digunakan dapat menguji kemampuan menginterpretasikan grafik kinematika calon guru. Kata kunci: interpretasi; grafik, kinematika; polytomous rasch. ABSTRACTThe ability to interpret graphs is a very important ability and the main key in understanding kinematics and advanced physics materials. However, the ability to interpret graphs of prospective teachers is still low. The purpose of this study is to test the ability to read and interpret the kinematic graphs of prospective teachers using polytomous rasch model analysis. The instrument consists of four essay questions presenting a kinematic graph. The test was given to 20 prospective teachers, consisting of 14 females and 6 males. The method used is quantitative descriptive survey with analysis using the rasch model with polytomous data. The results obtained were the reliability value of 0.58 in the weak category, the level of difficulty for 3 questions in the difficult category and one question in the easy category, the distinguishing power was very good for all the questions. The overall ability to read and interpret kinematics graphs is quite good. In conclusion, the instruments and analysis used can test the ability to interpret the prospective teacher's kinematics graph. Keywords: interpretation; graph; kinematics; polytomous.
3

Zhao, Rui Feng, Zhen Zhang, and Jiu Qiang Cui. "The Kinematics Modeling and Simulation of a Mechanical Arm in Nuclear Industry with Postpositional Drive." Applied Mechanics and Materials 496-500 (January 2014): 754–59. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For the particularity of the environment in nuclear industry, this paper puts forward a modularized mechanical arm with postpositional drive. On the basis of structural characteristics and kinematic constraints, the kinematics of robotic arm is analyzed. The D-H method is used for describing the workspace, based on considering the kinematic constraints, the forward kinematics model is achieved. Using an improved search method, the inverse kinematics solution is obtained. Through the simulation on data processing software, the validity of positive kinematics model and inverse kinematic solutions are verified. Finally, the trajectory planning is completed on the three-dimensional modeling platform.
4

Hanuschik, R. W. "FeII line widths as tracers for the geometry of Be star envelopes." Symposium - International Astronomical Union 162 (1994): 265–66. http://dx.doi.org/10.1017/s0074180900215015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The geometry of Be star envelopes is not directly observable, apart from those very few cases where interferometry has been successful. This is even more true for the kinematical conditions in these envelopes. An indirect measure of kinematics, density law and geometry can be achieved by comparing line widths of photospheric absorption lines (⇔ v* sin i) and circumstellar emission lines (⇔ v(r) sin i). Hitherto existing determinations of line widths have been, however, quite unsatisfactory. The reason is that in these studies Balmer line parameters were used [see Hanuschik (1989) and references therein] which are strongly broadened by radiative transfer and Thomson scattering in addition to kinematic broadening. Because the question of geometry and kinematics is of crucial importance for understanding the Be phenomenon, I have started a new study, using measurements of the Fe ii λ5317 line. This line shows almost optically thin emission and is broadened primarily by kinematics.
5

Tan, Yue Sheng, Peng Le Cheng, and Ai Ping Xiao. "Inverse Kinematics Solution for a 6R Special Configuration Manipulators Based on Screw Theory." Advanced Materials Research 216 (March 2011): 250–53. http://dx.doi.org/10.4028/www.scientific.net/amr.216.250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three basic sub-problems of screw theory are acceptable for some particular configuration manipulators’ inverse kinematics, which can not solve the inverse kinematics of all configuration manipulators. This paper introduces two extra extended sub-problems, through which all inverse kinematic solutions for 6-R manipulators having closed-form inverse kinematics can be gained. The inverse kinematic solution for a new particular configuration manipulator is presented.
6

Cho, Dong Kwon, Byoung Wook Choi, and Myung Jin Chung. "Optimal conditions for inverse kinematics of a robot manipulator with redundancy." Robotica 13, no. 1 (January 1995): 95–101. http://dx.doi.org/10.1017/s0263574700017525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SummaryThe algorithms of inverse kinematics based on optimality constraints have some problems because those are based only on necessary conditions for optimality. One of the problems is a switching problem, i.e., an undesirable configuration change from a maximum value of a performance measure to a minimum value may occur and cause an inverse kinematic solution to be unstable. In this paper, we derive sufficient conditions for the optimal solution of the kinematic control of a redundant manipulator. In particular, we obtain the explicit forms of the switching condition for the optimality constraintsbased methods. We also show that the configuration at which switching occurs is equivalent to an algorithmic singularity in the extended Jacobian method. Through a numerical example of a cyclic task, we show the problems of the optimality constraints-based methods. To obtain good configurations without switching and kinematical singularities, we propose a simple algorithm of inverse kinematics.
7

Lu, Chen Hua, and Meng Jun Song. "The Research of Rapid Construction Method of Kinematics Coordinate System from a Kind of Mobile Robot." Applied Mechanics and Materials 721 (December 2014): 299–302. http://dx.doi.org/10.4028/www.scientific.net/amm.721.299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In order to study how to solve the serial robot kinematics quickly, so we transformed the kinematics coordinate system by Y axis, and the computed results show that transforming the kinematics coordinate system by Y axis could solve the kinematic model quickly and efficiently; the computed results suggest that constructing the redundant coordinate system and transforming the kinematics coordinate system by Y axis could solve the serial robotic kinematics efficiently.
8

Cai, Lin. "Kinematic Analysis of 5-UPS Parallel Machine Tool Based on Adams." Applied Mechanics and Materials 644-650 (September 2014): 215–19. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, the kinematics of 5-UPS parallel machine tool is analyzed, and a kinematic analysis method combining kinematic analysis and computer kinematics software is proposed. Under the premise that the parallel machine tool sector parameters is known, firstly we use the vector method to establish a mathematical model of inverse kinematics, and in accordance with a U-shaped processing trajectory the inverse solution is calculated; Secondly, three-dimensional model of the parallel machine tool is modeled in Adams, and kinematic constraints are set correctly; Finally, the inverse kinematics solution of the mathematical model is used as the Adams drive input, then the positive solutions is carried out. Compared through the Adams simulation results with U-machining path, it is verified that the inverse solution of the mathematical model and parallel machine tool bodies both are correct, it has certain significance for Parallel machine tools and other parallel robot kinematics analysis.
9

Han, Ziyong, Shihua Yuan, Xueyuan Li, and Junjie Zhou. "Enhanced closed-loop systematic kinematics analysis of wheeled mobile robots." International Journal of Advanced Robotic Systems 16, no. 4 (July 2019): 172988141986324. http://dx.doi.org/10.1177/1729881419863242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The traditional homogeneous transform maintains central position in the kinematic modelling of robotics. However, for these kinematic modelling of wheeled mobile robots over uneven terrain, the homogeneous transform that represents angular velocity implicitly in the time derivative of the rotation matrix has a drawback in orientation representation. In this article, to improve the angular representation, a new general systematic method for kinematics modelling and analysis of wheeled mobile robot is proposed. The approach uses the Sheth–Uicker convention and loop-closure kinematic chains to derive the position, velocity and acceleration kinematics. The screw coordinates are used to reform the velocity kinematics to centroidal kinematics; then, the Jacobian calculation is simplified to solve the screw vector algebra equations instead of the matrix equations. Meanwhile, the linear and angular components of the centroidal kinematics are endowed with physical meanings and are easy to be selected as control variables. The approach is applied to a wheeled mobile robot, and its effectiveness is verified by the simulation results with various terrain.
10

Xin, Shi Zhi, Luo Yu Feng, Hang Lu Bing, and Yang Ting Li. "A Simple Method for Inverse Kinematic Analysis of the General 6R Serial Robot." Journal of Mechanical Design 129, no. 8 (August 18, 2006): 793–98. http://dx.doi.org/10.1115/1.2735636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The inverse kinematic analysis of the general 6R serial robot has been a very significant and important problem in the theory of the spatial mechanisms. Because the solution to inverse kinematics problem of the general 5R serial robot is unique and its assembly condition has been derived, a simple effective method for inverse kinematics problem of general 6R serial robot or forward kinematics problem of general 7R single-loop mechanism is presented based on a one-dimension searching algorithm. All the real solutions to inverse kinematics problems of the general 6R serial robot or forward kinematics problems of the general 7R single-loop mechanism can be obtained. The new method has the following features: (1) using one-dimension searching algorithm, all the real inverse kinematic solutions are obtained and it has higher computing efficiency; and (2) compared with the algebraic method, it has evidently reduced the difficulty of deducing formulas. The principle of the new method can be generalized to kinematic analysis of parallel mechanisms.

Дисертації з теми "Kinematics":

1

Zaplana, Agut Isiah. "Solving robotic kinematic problems : singularities and inverse kinematics." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/667496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Kinematics is a branch of classical mechanics that describes the motion of points, bodies, and systems of bodies without considering the forces that cause such motion. For serial robot manipulators, kinematics consists of describing the open chain geometry as well as the position, velocity and/or acceleration of each one of its components. Rigid serial robot manipulators are designed as a sequence of rigid bodies, called links, connected by motor-actuated pairs, called joints, that provide relative motion between consecutive links. Two kinematic problems of special relevance for serial robots are: - Singularities: are the configurations where the robot loses at least one degree of freedom (DOF). This is equivalent to: (a) The robot cannot translate or rotate its end-effector in at least one direction. (b) Unbounded joint velocities are required to generate finite linear and angular velocities. Either if it is real-time teleoperation or off-line path planning, singularities must be addressed to make the robot exhibit a good performance for a given task. The objective is not only to identify the singularities and their associated singular directions but to design strategies to avoid or handle them. - Inverse kinematic problem: Given a particular position and orientation of the end-effector, also known as the end-effector pose, the inverse kinematics consists of finding the configurations that provide such desired pose. The importance of the inverse kinematics relies on its role in the programming and control of serial robots. Besides, since for each given pose the inverse kinematics has up to sixteen different solutions, the objective is to find a closed-form method for solving this problem, since closed-form methods allow to obtain all the solutions in a compact form. The main goal of the Ph.D. dissertation is to contribute to the solution of both problems. In particular, with respect to the singularity problem, a novel scheme for the identification of the singularities and their associated singular directions is introduced. Moreover, geometric algebra is used to simplify such identification and to provide a distance function in the configuration space of the robot that allows the definition of algorithms for avoiding them. With respect to the inverse kinematics, redundant robots are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and by parameterizing their joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions. Once these joints have been identified, several closed-form methods developed for non-redundant manipulators can be applied to obtain the analytical expressions of all the solutions. One of these methods is a novel strategy developed using again the conformal model of the spatial geometric algebra. To sum up, the Ph.D dissertation provides a rigorous analysis of the two above-mentioned kinematic problems as well as novel strategies for solving them. To illustrate the different results introduced in the Ph.D. memory, examples are given at the end of each of its chapters.
La cinemática es una rama de la mecánica clásica que describe el movimiento de puntos, cuerpos y sistemas de cuerpos sin considerar las fuerzas que causan dicho movimiento. Para un robot manipulador serie, la cinemática consiste en la descripción de su geometría, su posición, velocidad y/o aceleración. Los robots manipuladores serie están diseñados como una secuencia de elementos estructurales rígidos, llamados eslabones, conectados entres si por articulaciones actuadas, que permiten el movimiento relativo entre pares de eslabones consecutivos. Dos problemas cinemáticos de especial relevancia para robots serie son: - Singularidades: son aquellas configuraciones donde el robot pierde al menos un grado de libertad (GDL). Esto equivale a: (a) El robot no puede trasladar ni rotar su elemento terminal en al menos una dirección. (b) Se requieren velocidades articulares no acotadas para generar velocidades lineales y angulares finitas. Ya sea en un sistema teleoperado en tiempo real o planificando una trayectoria, las singularidades deben manejarse para que el robot muestre un rendimiento óptimo mientras realiza una tarea. El objetivo no es solo identificar las singularidades y sus direcciones singulares asociadas, sino diseñar estrategias para evitarlas o manejarlas. - Problema de la cinemática inversa: dada una posición y orientación del elemento terminal (también conocida como la pose del elemento terminal), la cinemática inversa consiste en obtener las configuraciones asociadas a dicha pose. La importancia de la cinemática inversa se basa en el papel que juega en la programación y el control de robots serie. Además, dado que para cada pose la cinemática inversa tiene hasta dieciséis soluciones diferentes, el objetivo es encontrar un método cerrado para resolver este problema, ya que los métodos cerrados permiten obtener todas las soluciones en una forma compacta. El objetivo principal de la tesis doctoral es contribuir a la solución de ambos problemas. En particular, con respecto al problema de las singularidades, se presenta un nuevo método para su identificación basado en el álgebra geométrica. Además, el álgebra geométrica permite definir una distancia en el espacio de configuraciones del robot que permite la definición de distintos algoritmos para evitar las configuraciones singulares. Con respecto a la cinemática inversa, los robots redundantes se reducen a robots no-redundantes mediante la selección de un conjunto de articulaciones, las articulaciones redundantes, para después parametrizar sus variables articulares. Esta selección se realiza a través de un análisis de espacio de trabajo que también proporciona un límite superior para el número de diferentes soluciones en forma cerrada. Una vez las articulaciones redundantes han sido identificadas, varios métodos en forma cerrada desarrollados para robots no-redundantes pueden aplicarse a fin de obtener las expresiones analíticas de todas las soluciones. Uno de dichos métodos es una nueva estrategia desarrollada usando el modelo conforme del álgebra geométrica tridimensional. En resumen, la tesis doctoral proporciona un análisis riguroso de los dos problemas cinemáticos mencionados anteriormente, así como nuevas estrategias para resolverlos. Para ilustrar los diferentes resultados presentados en la tesis, la memoria contiene varios ejemplos al final de cada uno de sus capítulos.
2

Šimková, Kristýna. "Návrh SW pro řízení delta robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis deals with software creation for delt robot in TwinCAT 3 program. First part describes the general characteristics of a delta robot. Next part deals with hardware and PLC coding in TwinCAT 3 and the final part discusses the creation of an application.
3

Kozubík, Jiří. "Experimentální robotizované pracoviště s delta-robotem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This diploma thesis was written within Czech-German study programme Production systems (VUT v Brně & TU Chemnitz). This thesis is divided into four main parts. In the first part is brought out the introduction to design of robotic cells. Following part is concentrated on analysis of present state in area of machines with parallel kinematics. The penultimate part, on which is focused the main attention, is dedicated to kinematic analysis of delta-robot. Closing part of this Thesis presents the study of experimental robotized workplace with integrated delta-robot.
4

Fabricius, Maximilian Hieronymus. "Kinematics across bulge types a longslit kinematic survey and dedicated instrumentation." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-144409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Centea, Dan Elbestawi Mohamed A. A. "Design, kinematics and dynamics of a machine tool based on parallel kinematic structure." *McMaster only, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Köhn, Daniel. "Kinematics of fibrous aggregates." [S.l. : s.n.], 2000. http://ArchiMeD.uni-mainz.de/pub/2000/0027/diss.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Evans, Dafydd Wyn. "Galactic structures and kinematics." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shih, Yi-Fen. "Assessment of patellofemoral kinematics." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Petrou, Georgios. "Kinematics of cricket phonotaxis." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Male crickets produce a species specific song to attract females which in response move towards the sound source. This behaviour, termed phonotaxis, has been the subject of many morphological, neurophysiological and behavioural studies making it one of the most well studied examples of acoustic communication in the animal kingdom. Despite this fact, the precise leg movements during this behaviour is unknown. This is of specific interest as the cricket’s ears are located on their front legs, meaning that the perception of the sound input might change as the insect moves. This dissertation describes a methodology and an analysis that fills this knowledge gap. I developed a semi-automated tracking system for insect motion based on commercially available high-speed video cameras and freely available software. I used it to collect detailed three dimensional kinematic information from female crickets performing free walking phonotaxis towards a calling song stimulus. I marked the insect’s joints with small dots of paint and recorded the movements from underneath with a pair of cameras following the insect as it walks on the transparent floor of an arena. Tracking is done offline, utilizing a kinematic model to constrain the processing. I obtained, for the first time, the positions and angles of all joints of all legs and six additional body joints, synchronised with stance-swing transitions and the sound pattern, at a 300 Hz frame rate. I then analysed this data based on four categories: The single leg motion analysis revealed the importance of the thoraco-coxal (ThC) and body joints in the movement of the insect. Furthermore the inside middle leg’s tibio-tarsal (TiTa) joint was the centre of the rotation during turning. Certain joints appear to be the most crucial ones for the transition from straight walking to turning. The leg coordination analysis revealed the patterns followed during straight walking and turning. Furthermore, some leg combinations cannot be explained by current coordination rules. The angles relative to the active speaker revealed the deviation of the crickets as they followed a meandering course towards it. The estimation of ears’ input revealed the differences between the two sides as the insect performed phonotaxis by using a simple algorithm. In general, the results reveal both similarities and differences with other cricket studies and other insects such as cockroaches and stick insects. The work presented herein advances the current knowledge on cricket phonotactic behaviour and will be used in the further development of models of neural control of phonotaxis.
10

Abreu, Manuel P. "Kinematics under wind waves." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Kinematics":

1

Wittenburg, Jens. Kinematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Xin-Jun. Parallel kinematics: Type, kinematics, and optimal design. Berlin: Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1943-, Angeles Jorge, Hommel Günter, Kovács Peter, and Workshop on Computational Kinematics (1993 : Dagstuhl Castle, Germany), eds. Computational kinematics. Dordrecht: Kluwer Academic Publishers, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bottema, O. Theoretical kinematics. New York: Dover Publications, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kecskeméthy, Andrés, and Andreas Müller, eds. Computational Kinematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01947-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zeghloul, Saïd, Lotfi Romdhane, and Med Amine Laribi, eds. Computational Kinematics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-60867-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Angeles, Jorge, Günter Hommel, and Peter Kovács, eds. Computational Kinematics. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8192-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thomas, Federico, and Alba Perez Gracia, eds. Computational Kinematics. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7214-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Xin-Jun, and Jinsong Wang. Parallel Kinematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36929-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Angeles, Jorge. Rational Kinematics. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3916-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Kinematics":

1

Wittenburg, Jens. "Rotation about a Fixed Point. Reflection in a Plane." In Kinematics, 1–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wittenburg, Jens. "Kinematic Differential Equations." In Kinematics, 329–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wittenburg, Jens. "Direct Kinematics of Tree-Structured Systems." In Kinematics, 349–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wittenburg, Jens. "Screw Systems." In Kinematics, 359–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wittenburg, Jens. "Shaft Couplings." In Kinematics, 387–410. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wittenburg, Jens. "Displacements in a Plane." In Kinematics, 411–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wittenburg, Jens. "Plane Motion." In Kinematics, 451–528. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wittenburg, Jens. "Theory of Gearing." In Kinematics, 529–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wittenburg, Jens. "Planar Four-Bar Mechanism." In Kinematics, 567–637. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wittenburg, Jens. "Spherical Four-Bar Mechanism." In Kinematics, 639–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48487-6_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Kinematics":

1

Bi, Z. M., Y. Jin, R. Gibson, and P. McTotal. "Kinematics of parallel kinematic machine Exechon." In 2009 International Conference on Information and Automation (ICIA). IEEE, 2009. http://dx.doi.org/10.1109/icinfa.2009.5204921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

El-Khasawneh, Bashar, and Anas Alazzam. "Kinematics, Dynamics and Vibration Models for 3RPR Parallel Kinematics Manipulator." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Parallel link manipulators are the type of mechanisms that have closed kinematics chains. Some of their advantages over open kinematics chains (called also serial kinematics manipulators) are their high stiffness and accuracy. This paper carries out forward and inverse kinematic and dynamic analysis on a certain type of parallel kinematic mechanisms. This is needed to conduct vibration analysis on the same platform. The type of mechanism is planar 3 RPR manipulator. This entails identifying the modes of the manipulator. A simplified vibration theoretical model is derived. This derivation helps in the optimization of parallel kinematics machine design for improved/optimized dynamic performance. The implications of dynamic stiffness modeling should reflect on better noise rejection, less chatter during machining, and increasing the bandwidth of such mechanisms to admit running at higher speeds.
3

Rosenkrantz, Jessica. "Kinematics." In ACM SIGGRAPH 2014 Computer Animation Festival. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2633956.2633993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Wenlong, Wei Dong, and Zhijiang Du. "Kinematics modeling for a kinematic-mechanics coupling continuum manipulator." In 2014 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2014. http://dx.doi.org/10.1109/3m-nano.2014.7057344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rico, J. M., J. J. Cervantes, A. Tadeo, J. Gallardo, L. D. Aguilera, and C. R. Diez. "Infinitesimal Kinematics Methods in the Mobility Determination of Kinematic Chains." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, there has been a good deal of controversy about the application of infinitesimal kinematics to the mobility determination of kinematic chains. On the one hand, there has been several publications that promote the use of the velocity analysis, without any additional results, for the determination of the mobility of kinematic chains. On the other hand, the authors of this contribution have received several reviews of researchers who have the strong belief that no infinitesimal method can be used to correctly determine the mobility of kinematic chains. In this contributions, it is attempted to show that velocity analysis by itself can not correctly determine the mobility of kinematic chains. However, velocity and higher order analysis coupled with some recent results about the Lie algebra, se(3), of the Euclidean group, SE(3), can correctly determine the mobility of kinematic chains.
6

Patterson, R. M., C. L. Nicodemus, S. F. Viegas, and K. W. Elder. "Wrist Kinematics." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Much work has been done related to the qualitative osseous anatomy of the wrist yet there are still very few references for its quantitative geometric, biomechanic, or kinematic characteristics.1–3 Because of the structural complexity and morphological variations of the wrist, a reference database of normal anatomy and kinematics would provide valuable reference information which will facilitate diagnosis and treatment of various injuries and diseases.
7

Vicentini, M. "Generalized kinematics." In The changing role of physics departments in modern universities. AIP, 1997. http://dx.doi.org/10.1063/1.53192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Robinson, James D., and M. John D. Hayes. "The Kinematics of A-Pair Jointed Serial Linkages." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new kinematic pair called an algebraic screw pair, or A-pair, is introduced that utilizes the self-motions inherent to a specific configuration of Griffis-Duffy platform. Using the A-pair as a joint in a hybrid parallel-serial kinematic chain results in a sinusoidal coupling of rotation and translation between adjacent links. This motion affects both the direct and inverse kinematics of such chains. Presented in this paper are the direct kinematics of chains using A-pairs and an algorithm for the inverse kinematics of a 4A-pair chain.
9

Rosyid, Abdur, Bashar El-Khasawneh, and Anas Alazzam. "Nonlinear estimation for kinematic calibration of 3PRR planar parallel kinematics manipulator." In 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE, 2017. http://dx.doi.org/10.1109/icmsao.2017.7934847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maric, Filip, Matthew Giamou, Soroush Khoubyarian, Ivan Petrovic, and Jonathan Kelly. "Inverse Kinematics for Serial Kinematic Chains via Sum of Squares Optimization." In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9196704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Kinematics":

1

Rashoyan, G. V., K. A. Shaliukhin, and A. K. Aleshin. ANALYSIS OF KINEMATICS OF A PARALLEL STRUCTURE MECHANISM WITH KINEMATICAL DECOUPLING PROPERTIES. Bulletin of Science and Technical Development, 2018. http://dx.doi.org/10.18411/vntr2018-125-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barker, Christopher H., and Rodney J. Sobey. Directional Irregular Wave Kinematics. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada353762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Hyun-Kyung. Qualitative Kinematics of Linkages. Fort Belvoir, VA: Defense Technical Information Center, May 1990. http://dx.doi.org/10.21236/ada466423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Webb, Philip. Deployment of Parallel Kinematic Machines in Manufacturing. SAE International, April 2022. http://dx.doi.org/10.4271/epr2022010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The field of parallel kinematics was viewed as being potentially transformational in manufacturing, having multiple potential advantages over conventional serial machine tools and robots. However, the technology never quite achieved market penetration or broad success envisaged. Yet, many of the inherent advantages still exist in terms of stiffness, force capability, and flexibility when compared to more conventional machine structures. Deployment of Parallel Kinematic Machines in Manufacturing examines why parallel kinematic machines have not lived up to original excitement and market interest and what needs to be done to rekindle that interest. A number of key questions and issues need to be explored to advance the technology further.
5

Sweezy, Jeremy. Neutron Next-Event Estimators Kinematics. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2000872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sugar, Thomas. SPARKy-Spring Ankle with Regenerative Kinematics. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada618766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lueck, Jan. Kinematics of electroweak single top quark production. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/879099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fischer, K. N. JFKengine: A Jacobian and Forward Kinematics Generator. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/885679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mitchell, John, and Timothy Fuller. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1096508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Welch, J. On the Kinematics of Undulator Girder Motion. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1022519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії