Добірка наукової літератури з теми "Ito equation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ito equation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ito equation"
SAITO, T., and T. ARIMITSU. "QUANTUM STOCHASTIC LIOUVILLE EQUATION OF ITO TYPE." Modern Physics Letters B 07, no. 29n30 (December 30, 1993): 1951–59. http://dx.doi.org/10.1142/s0217984993001983.
Повний текст джерелаNiu, Xiaoxing, Mengxia Zhang, and Shuqiang Lv. "A Darboux Transformation for Ito Equation." Zeitschrift für Naturforschung A 71, no. 5 (May 1, 2016): 427–31. http://dx.doi.org/10.1515/zna-2016-0004.
Повний текст джерелаMa, Wen-Xiu, Jie Li, and Chaudry Masood Khalique. "A Study on Lump Solutions to a Generalized Hirota-Satsuma-Ito Equation in (2+1)-Dimensions." Complexity 2018 (December 2, 2018): 1–7. http://dx.doi.org/10.1155/2018/9059858.
Повний текст джерелаRen, Bo, Ji Lin, and Jun Yu. "Supersymmetric Ito equation: Bosonization and exact solutions." AIP Advances 3, no. 4 (April 2013): 042129. http://dx.doi.org/10.1063/1.4802969.
Повний текст джерелаYi, Zhang, and Chen Deng-Yuan. "N -Soliton-like Solution of Ito Equation." Communications in Theoretical Physics 42, no. 5 (November 15, 2004): 641–44. http://dx.doi.org/10.1088/0253-6102/42/5/641.
Повний текст джерелаCen, Feng-Jie, Yan-Dan Zhao, Shuang-Yun Fang, Huan Meng, and Jun Yu. "Painlevé integrability of the supersymmetric Ito equation." Chinese Physics B 28, no. 9 (September 2019): 090201. http://dx.doi.org/10.1088/1674-1056/ab38a7.
Повний текст джерелаTleubergenov, M. I., G. K. Vassilina, and D. T. Azhymbaev. "Construction of the differential equations system of the program motion in Lagrangian variables in the presence of random perturbations." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 105, no. 1 (March 30, 2022): 118–26. http://dx.doi.org/10.31489/2022m1/118-126.
Повний текст джерелаRezazadeh, Hadi, Sharanjeet Dhawan, Savaïssou Nestor, Ahmet Bekir, and Alper Korkmaz. "Computational solutions of the generalized Ito equation in nonlinear dispersive systems." International Journal of Modern Physics B 35, no. 13 (May 20, 2021): 2150172. http://dx.doi.org/10.1142/s0217979221501721.
Повний текст джерелаZhou, Yuan, and Solomon Manukure. "Complexiton solutions to the Hirota‐Satsuma‐Ito equation." Mathematical Methods in the Applied Sciences 42, no. 7 (February 3, 2019): 2344–51. http://dx.doi.org/10.1002/mma.5512.
Повний текст джерелаMa, Hongcai, Xiangmin Meng, Hanfang Wu, and Aiping Deng. "A class of lump solutions for ito equation." Thermal Science 23, no. 4 (2019): 2205–10. http://dx.doi.org/10.2298/tsci1904205m.
Повний текст джерелаДисертації з теми "Ito equation"
Pihnastyi, O. M., and V. D. Khodusov. "Stochastic equation of the technological process." Thesis, Igor Sikorsky Kyiv Polytechnic Institute, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39059.
Повний текст джерелаFornasaro, Federico. "The Krylov Equation and Filtering of Stochastic Diffusion Processes." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21741/.
Повний текст джерелаPrömel, David Johannes. "Robust stochastic analysis with applications." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17373.
Повний текст джерелаIn this thesis new robust integration techniques, which are suitable for various problems from stochastic analysis and mathematical finance, as well as some applications are presented. We begin with two different approaches to stochastic integration in robust financial mathematics. The first one is inspired by Ito’s integration and based on a certain topology induced by an outer measure corresponding to a minimal superhedging price. The second approach relies on the controlled rough path integral. We prove that this integral is the limit of non-anticipating Riemann sums and that every "typical price path" has an associated Ito rough path. For one-dimensional "typical price paths" it is further shown that they possess Hölder continuous local times. Additionally, we provide various generalizations of Föllmer’s pathwise Ito formula. Recalling that rough path theory can be developed using the concept of controlled paths and with a topology including the information of Levy’s area, sufficient conditions for the pathwise existence of Levy’s area are provided in terms of being controlled. This leads us to study Föllmer’s pathwise Ito formulas from the perspective of controlled paths. A multi-parameter extension to rough path theory is the paracontrolled distribution approach, recently introduced by Gubinelli, Imkeller and Perkowski. We generalize their approach from Hölder spaces to Besov spaces to solve rough differential equations. As an application we deal with stochastic differential equations driven by random functions. Finally, considering strongly coupled systems of forward and backward stochastic differential equations (FBSDEs), we extend the existence, uniqueness and regularity theory of so-called decoupling fields to Markovian FBSDEs with locally Lipschitz continuous coefficients. These results allow to solve the Skorokhod embedding problem for a class of Gaussian processes with non-linear drift.
Ben, Ghorbal Anis. "Fondements algébriques des probabilités quantiques et calcul stochastique sur l'espace de Fock booléen." Nancy 1, 2001. http://www.theses.fr/2001NAN10009.
Повний текст джерелаFan, Qianzhu. "Stochastic heat equations with Markovian switching." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/stochastic-heat-equations-with-markovian-switching(8958d026-671e-4c63-a639-b4a7b120a968).html.
Повний текст джерелаZheng, Bing. "Incorporating equation solving into unification through stratified term rewriting." Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/52096.
Повний текст джерелаMaster of Science
Zimmermann, Nils E. R., Timm J. Zabel, and Frerich J. Keil. "Transport into zeolite nanosheets: diffusion equations put to test." Diffusion fundamentals 20 (2013 ) 53, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13629.
Повний текст джерелаHigham, Jeffrey. "An investigation into the de broglie bohm approach to the dirac equation." Thesis, University of Portsmouth, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516158.
Повний текст джерелаDavis, Benjamin J. "A study into discontinuous Galerkin methods for the second order wave equation." Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45836.
Повний текст джерелаThere are numerous numerical methods for solving different types of partial differential equations (PDEs) that describe the physical dynamics of the world. For instance, PDEs are used to understand fluid flow for aerodynamics, wave dynamics for seismic exploration, and orbital mechanics. The goal of these numerical methods is to approximate the solution to a continuous PDE with an accurate discrete representation. The focus of this thesis is to explore a new Discontinuous Galerkin (DG) method for approximating the second order wave equation in complex geometries with curved elements. We begin by briefly highlighting some of the numerical methods used to solve PDEs and discuss the necessary concepts to understand DG methods. These concepts are used to develop a one- and two-dimensional DG method with an upwind flux, boundary conditions, and curved elements. We demonstrate convergence numerically and prove discrete stability of the method through an energy analysis.
Ashworth, Eileen. "Heat flow into underground openings: Significant factors." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185768.
Повний текст джерелаКниги з теми "Ito equation"
Orlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.
Повний текст джерелаChung, Kai Lai. Introduction to stochastic integration. 2nd ed. Boston: Birkhäuser, 1990.
Знайти повний текст джерелаStuart, Charles A. Bifurcation into spectral gaps. Brussels, Belgium: Société mathématique de Belgique, 1995.
Знайти повний текст джерелаBillings, S. A. Mapping nonlinear integro-differential equations into the frequency domain. Sheffield: University of Sheffield, Dept. of Control Engineering, 1989.
Знайти повний текст джерелаZhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.
Повний текст джерелаPollock, Marcia (Marcia Kay), 1942-2011, ed. Putting God back into Einstein's equations: Energy of the soul. Boynton Beach, FL: Shechinah Third Temple, Inc., 2012.
Знайти повний текст джерелаSinha, N. Inclusion of chemical kinetics into beam-warming based PNS model for hypersonic propulsion applications. New York: AIAA, 1987.
Знайти повний текст джерелаKudinov, Igor', Anton Eremin, Konstantin Trubicyn, Vitaliy Zhukov, and Vasiliy Tkachev. Vibrations of solids, liquids and gases taking into account local disequilibrium. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1859642.
Повний текст джерелаHartley, T. T. Insights into the fractional order initial value problem via semi-infinite systems. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Знайти повний текст джерелаIkeda, Nobuyuki. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Pub. Co., 1989.
Знайти повний текст джерелаЧастини книг з теми "Ito equation"
Verma, Pallavi, and Lakhveer Kaur. "Bilinearization and Analytic Solutions of $$(2+1)$$-Dimensional Generalized Hirota-Satsuma-Ito Equation." In Advances in Intelligent Systems and Computing, 235–44. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5414-8_19.
Повний текст джерелаCai, Zhenning, Yuwei Fan, and Ruo Li. "Hyperbolic Model Reduction for Kinetic Equations." In SEMA SIMAI Springer Series, 137–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86236-7_8.
Повний текст джерелаKloeden, Peter E., and Eckhard Platen. "Ito Stochastic Calculus." In Numerical Solution of Stochastic Differential Equations, 75–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-12616-5_3.
Повний текст джерелаGarrett, Steven L. "Ideal Gas Laws." In Understanding Acoustics, 333–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_7.
Повний текст джерелаGiese, Guido. "Decomposition of the Elastic-plastic Wave Equation into Advection Equations." In Hyperbolic Problems: Theory, Numerics, Applications, 375–84. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8720-5_41.
Повний текст джерелаOrlandi, Paolo. "The Burgers equation." In Fluid Mechanics and Its Applications, 40–50. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4281-6_4.
Повний текст джерелаJung, Soon-Mo. "Isometric Functional Equation." In Springer Optimization and Its Applications, 285–323. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_13.
Повний текст джерелаJung, Soon-Mo. "Additive Cauchy Equation." In Springer Optimization and Its Applications, 19–86. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_2.
Повний текст джерелаJung, Soon-Mo. "Hosszú’s Functional Equation." In Springer Optimization and Its Applications, 105–22. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_4.
Повний текст джерелаJung, Soon-Mo. "Homogeneous Functional Equation." In Springer Optimization and Its Applications, 123–42. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_5.
Повний текст джерелаТези доповідей конференцій з теми "Ito equation"
Wen, Xiaoxia, and Jin Huang. "A Numerical Method for Linear Stochastic Ito-Volterra Integral Equation Driven by Fractional Brownian Motion." In 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2019. http://dx.doi.org/10.1109/icaica.2019.8873448.
Повний текст джерелаMuntean, Oana. "Transposing phasor equation into instantaneous values equations using Hilbert transform." In 2014 49th International Universities Power Engineering Conference (UPEC). IEEE, 2014. http://dx.doi.org/10.1109/upec.2014.6934825.
Повний текст джерелаLiu, Qi, Yuxin Wu, Yang Zhang, and Junfu Lyu. "Experimental and Numerical Study of Nucleate Pool Boiling Heat Transfer and Bubble Dynamics in Saline Solution." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-8988.
Повний текст джерелаKeshinro, Olalekan, Yetunde Aladeitan, Olugbenga Oni, Jemimah-Sandra Samuel, and Jaja Adagogo. "Improved Decline Curve Analysis Equations – Integration of Reservoir Properties into Arps Equation." In SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/193419-ms.
Повний текст джерелаNoreika, Alius, and Paulius Tarvydas. "Analysis of Finite Element Method Equation Solvers." In 2007 29th International Conference on Information Technology Interfaces. IEEE, 2007. http://dx.doi.org/10.1109/iti.2007.4283845.
Повний текст джерелаAppleby, John A. D. "Almost sure subexponential decay rates of scalar Ito-Volterra equations." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.1.
Повний текст джерелаCole, James B. "Insights of finite difference models of the wave equation and Maxwell's equations into the geometry of space-time." In SPIE Optical Engineering + Applications, edited by Rongguang Liang and Joseph A. Shaw. SPIE, 2014. http://dx.doi.org/10.1117/12.2061920.
Повний текст джерелаImao, Shigeki. "Bend Loss Coefficient of Drag-Reducing Surfactant Solution." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45767.
Повний текст джерелаPietrobon, Steven S., Gottfried Ungerboeck, and Daniel J. Costello. "A general parity check equation for rotationally invariant trellis codes." In IEEE/CAM Information Theory Workshop at Cornell. IEEE, 1989. http://dx.doi.org/10.1109/itw.1989.761403.
Повний текст джерелаRamli, Marwan, Dara Irsalina, Ipak Putri Iwanisa, and Vera Halfiani. "Soliton solution of Benjamin-Bona-Mahony equation and modified regularized long wave equation." In INTERNATIONAL CONFERENCE AND WORKSHOP ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS (ICWOMAA 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5016636.
Повний текст джерелаЗвіти організацій з теми "Ito equation"
Fujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190319.
Повний текст джерелаOstashev, Vladimir, Michael Muhlestein, and D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Повний текст джерелаHereman, W., P. P. Banerjee, and M. R. Chatterjee. Derivation and Implicit Solution of the Harry Dym Equation, and Its Connections with the Korteweg-De Vries Equation. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada196053.
Повний текст джерелаMuia, Esther, Violet Kimani, and Ann Leonard. Integrating men into the reproductive health equation: Acceptability and feasibility in Kenya. Population Council, 2000. http://dx.doi.org/10.31899/rh5.1005.
Повний текст джерелаJanaswamy, Ramakrishna. A Rigorous Way of Incorporating Sea Surface Roughness Into the Parabolic Equation. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300263.
Повний текст джерелаRojas, Stephen P., Michael Bruce Prime, Miles Allen Buechler, and Jacob Simon Merson. Implementation and Verification of the Sesame Equation of State Database into Abaqus. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1575766.
Повний текст джерелаD.G. Shirk. A Practical Review of the Kompaneets Equation and its Application to Compton Scattering. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/891567.
Повний текст джерелаKovalev, Valeri I. Nonlinear Optical Wave Equation for Micro- and Nano-Structured Media and Its Application. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada582416.
Повний текст джерелаLeer, Bram van. Local Preconditioning of the Equations of Magnetohydrodynamics and Its Numerical Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada417746.
Повний текст джерелаSzoke, A., and E. D. Brooks. The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1289358.
Повний текст джерела