Добірка наукової літератури з теми "Ito equation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ito equation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ito equation"

1

SAITO, T., and T. ARIMITSU. "QUANTUM STOCHASTIC LIOUVILLE EQUATION OF ITO TYPE." Modern Physics Letters B 07, no. 29n30 (December 30, 1993): 1951–59. http://dx.doi.org/10.1142/s0217984993001983.

Повний текст джерела
Анотація:
The quantum stochastic Liouville equation of Ito type is derived, for the first time, within Nonequilibrium Thermo Field Dynamics (NETFD), a unified canonical formalism for dissipative and/or stochastic fields. With the stochastic time-evolution generator of Ito type, the whole framework is inspected. Since most of the mathematical formulations of noncommutative stochastic variables are based on the equations of Ito type, the construction of the quantum stochastic Liouville equation has been highly desired. It is expected that the unified framework may provide us with a deeper insight for the mathematical foundation of quantum stochastic variables as well as for the physical one.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Niu, Xiaoxing, Mengxia Zhang, and Shuqiang Lv. "A Darboux Transformation for Ito Equation." Zeitschrift für Naturforschung A 71, no. 5 (May 1, 2016): 427–31. http://dx.doi.org/10.1515/zna-2016-0004.

Повний текст джерела
Анотація:
AbstractA system proposed by Ito is reconsidered. The corresponding Darboux transformation is presented explicitly. The resulted Bäcklund transformation is shown to be equivalent to the one found by Hirota. Also, a nonlinear superposition formula, which is of differential-algebraic, is obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ma, Wen-Xiu, Jie Li, and Chaudry Masood Khalique. "A Study on Lump Solutions to a Generalized Hirota-Satsuma-Ito Equation in (2+1)-Dimensions." Complexity 2018 (December 2, 2018): 1–7. http://dx.doi.org/10.1155/2018/9059858.

Повний текст джерела
Анотація:
The Hirota-Satsuma-Ito equation in (2+1)-dimensions passes the three-soliton test. This paper aims to generalize this equation to a new one which still has abundant interesting solution structures. Based on the Hirota bilinear formulation, a symbolic computation with a new class of Hirota-Satsuma-Ito type equations involving general second-order derivative terms is conducted to require having lump solutions. Explicit expressions for lump solutions are successfully presented in terms of coefficients in a generalized Hirota-Satsuma-Ito equation. Three-dimensional plots and contour plots of a special presented lump solution are made to shed light on the characteristic of the resulting lump solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ren, Bo, Ji Lin, and Jun Yu. "Supersymmetric Ito equation: Bosonization and exact solutions." AIP Advances 3, no. 4 (April 2013): 042129. http://dx.doi.org/10.1063/1.4802969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yi, Zhang, and Chen Deng-Yuan. "N -Soliton-like Solution of Ito Equation." Communications in Theoretical Physics 42, no. 5 (November 15, 2004): 641–44. http://dx.doi.org/10.1088/0253-6102/42/5/641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cen, Feng-Jie, Yan-Dan Zhao, Shuang-Yun Fang, Huan Meng, and Jun Yu. "Painlevé integrability of the supersymmetric Ito equation." Chinese Physics B 28, no. 9 (September 2019): 090201. http://dx.doi.org/10.1088/1674-1056/ab38a7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tleubergenov, M. I., G. K. Vassilina, and D. T. Azhymbaev. "Construction of the differential equations system of the program motion in Lagrangian variables in the presence of random perturbations." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 105, no. 1 (March 30, 2022): 118–26. http://dx.doi.org/10.31489/2022m1/118-126.

Повний текст джерела
Анотація:
The classification of inverse problems of dynamics in the class of ordinary differential equations is given in the Galiullin’s monograph. The problem studied in this paper belongs to the main inverse problem of dynamics, but already in the class of second-order stochastic differential equations of the Ito type. Stochastic equations of the Lagrangian structure are constructed according to the given properties of motion under the assumption that the random perturbing forces belong to the class of processes with independent increments. The problem is solved as follows: First, a second-order Ito differential equation is constructed so that the properties of motion are the integral manifold of the constructed stochastic equation. At this stage, the quasi-inversion method, Erugin’s method and Ito’s rule of stochastic differentiation of a complex function are used. Then, by applying the constructed Ito equation, an equivalent stochastic equation of the Lagrangian structure is constructed. The necessary and sufficient conditions for the solvability of the problem of constructing the stochastic equation of the Lagrangian structure are illustrated by the example of the problem of constructing the Lagrange function from a motion property of an artificial Earth satellite under the action of gravitational forces and aerodynamic forces.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rezazadeh, Hadi, Sharanjeet Dhawan, Savaïssou Nestor, Ahmet Bekir, and Alper Korkmaz. "Computational solutions of the generalized Ito equation in nonlinear dispersive systems." International Journal of Modern Physics B 35, no. 13 (May 20, 2021): 2150172. http://dx.doi.org/10.1142/s0217979221501721.

Повний текст джерела
Анотація:
This papers presents new exact analytical solutions of a generalized Ito equation having three nonlinear terms, third- and fifth-order derivative forms that model the dynamics of traveling waves in nonlinear dispersive systems. With the help of Riccati equation method, we obtain different kinds of exact traveling wave solutions containing dark, singular, trigonometric, rational and other form of waves solutions that are more general than classical ones existing in the literature. Despite the originality of the new results obtained, the method used here is very efficient, powerful and can be extended to other types of nonlinear equations and more. Moreover, the behaviors of traveling waves solutions are portrayed graphically by selecting suitable values for the physical parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhou, Yuan, and Solomon Manukure. "Complexiton solutions to the Hirota‐Satsuma‐Ito equation." Mathematical Methods in the Applied Sciences 42, no. 7 (February 3, 2019): 2344–51. http://dx.doi.org/10.1002/mma.5512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ma, Hongcai, Xiangmin Meng, Hanfang Wu, and Aiping Deng. "A class of lump solutions for ito equation." Thermal Science 23, no. 4 (2019): 2205–10. http://dx.doi.org/10.2298/tsci1904205m.

Повний текст джерела
Анотація:
In this paper, we investigate the exact solutions for the (1+1)-D Ito equation. Some lump solutions are obtained by using Hirota?s bilinear method, and the conditions to guarantee analytical and rational localization of the lump solutions are presented. Suitable choices of the involved parameters guaranteeing analyticity of the solution are given. The 3-D plots with particular choices of the involved parameters are illustrated.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ito equation"

1

Pihnastyi, O. M., and V. D. Khodusov. "Stochastic equation of the technological process." Thesis, Igor Sikorsky Kyiv Polytechnic Institute, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39059.

Повний текст джерела
Анотація:
This document presents the construction of a stochastic equation for the process of manufacturing products on a production line. We base our research on the synchronized production line. The minimum size of the inter-operational storage is determined, at which the continuous production is possible. The stochastic equation of the production process is written in canonical form. The definition of the diffusion coefficient for the time of processing of subjects of labour.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fornasaro, Federico. "The Krylov Equation and Filtering of Stochastic Diffusion Processes." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21741/.

Повний текст джерела
Анотація:
La presente tesi ha lo scopo di analizzare alcuni aspetti rilevanti della teoria delle equazioni differenziali stocastiche e, partendo da essi, ricavare risultati di esistenza e unicità, formule di rappresentazione per soluzioni di SPDE e proprietà notevoli sull'attesa e la misura condizionata legate al problema del filtering di un processo stocastico. Nella prima parte, dopo aver dato la definizione di integrale di Ito backward e di spazio di Sobolev pesato, studieremo sotto quali ipotesi una particolare SPDE, detta equazione di Krylov, ammette soluzione r-generalizzata e classica. Nella seconda parte verranno invece illustrati alcuni risultati riguardanti il problema del calcolo dell'attesa condizionata di un processo stocastico diffusivo X rispetto a una sigma-algebra generata da un processo osservabile Y, evidenziando il legame tra la densità di filtering associata alla misura condizionata di X e le soluzioni r-generalizzate di problemi di Cauchy di tipo forward e backward.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prömel, David Johannes. "Robust stochastic analysis with applications." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17373.

Повний текст джерела
Анотація:
Diese Dissertation präsentiert neue Techniken der Integration für verschiedene Probleme der Finanzmathematik und einige Anwendungen in der Wahrscheinlichkeitstheorie. Zu Beginn entwickeln wir zwei Zugänge zur robusten stochastischen Integration. Der erste, ähnlich der Ito’schen Integration, basiert auf einer Topologie, erzeugt durch ein äußeres Maß, gegeben durch einen minimalen Superreplikationspreis. Der zweite gründet auf der Integrationtheorie für rauhe Pfade. Wir zeigen, dass das entsprechende Integral als Grenzwert von nicht antizipierenden Riemannsummen existiert und dass sich jedem "typischen Preispfad" ein rauher Pfad im Ito’schen Sinne zuordnen lässt. Für eindimensionale "typische Preispfade" wird sogar gezeigt, dass sie Hölder-stetige Lokalzeiten besitzen. Zudem erhalten wir Verallgemeinerungen von Föllmer’s pfadweiser Ito-Formel. Die Integrationstheorie für rauhe Pfade kann mit dem Konzept der kontrollierten Pfade und einer Topologie, welche die Information der Levy-Fläche enthält, entwickelt werden. Deshalb untersuchen wir hinreichende Bedingungen an die Kontrollstruktur für die Existenz der Levy-Fläche. Dies führt uns zur Untersuchung von Föllmer’s Ito-Formel aus der Sicht kontrollierter Pfade. Para-kontrollierte Distributionen, kürzlich von Gubinelli, Imkeller und Perkowski eingeführt, erweitern die Theorie rauher Pfade auf den Bereich von mehr-dimensionale Parameter. Wir verallgemeinern diesen Ansatz von Hölder’schen auf Besov-Räume, um rauhe Differentialgleichungen zu lösen, und wenden die Ergebnisse auf stochastische Differentialgleichungen an. Zum Schluß betrachten wir stark gekoppelte Systeme von stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDEs) und erweitern die Theorie der Existenz, Eindeutigkeit und Regularität der sogenannten Entkopplungsfelder auf Markovsche FBSDEs mit lokal Lipschitz-stetigen Koeffizienten. Als Anwendung wird das Skorokhodsche Einbettungsproblem für Gaußsche Prozesse mit nichtlinearem Drift gelöst.
In this thesis new robust integration techniques, which are suitable for various problems from stochastic analysis and mathematical finance, as well as some applications are presented. We begin with two different approaches to stochastic integration in robust financial mathematics. The first one is inspired by Ito’s integration and based on a certain topology induced by an outer measure corresponding to a minimal superhedging price. The second approach relies on the controlled rough path integral. We prove that this integral is the limit of non-anticipating Riemann sums and that every "typical price path" has an associated Ito rough path. For one-dimensional "typical price paths" it is further shown that they possess Hölder continuous local times. Additionally, we provide various generalizations of Föllmer’s pathwise Ito formula. Recalling that rough path theory can be developed using the concept of controlled paths and with a topology including the information of Levy’s area, sufficient conditions for the pathwise existence of Levy’s area are provided in terms of being controlled. This leads us to study Föllmer’s pathwise Ito formulas from the perspective of controlled paths. A multi-parameter extension to rough path theory is the paracontrolled distribution approach, recently introduced by Gubinelli, Imkeller and Perkowski. We generalize their approach from Hölder spaces to Besov spaces to solve rough differential equations. As an application we deal with stochastic differential equations driven by random functions. Finally, considering strongly coupled systems of forward and backward stochastic differential equations (FBSDEs), we extend the existence, uniqueness and regularity theory of so-called decoupling fields to Markovian FBSDEs with locally Lipschitz continuous coefficients. These results allow to solve the Skorokhod embedding problem for a class of Gaussian processes with non-linear drift.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ben, Ghorbal Anis. "Fondements algébriques des probabilités quantiques et calcul stochastique sur l'espace de Fock booléen." Nancy 1, 2001. http://www.theses.fr/2001NAN10009.

Повний текст джерела
Анотація:
Ce mémoire est divisé en trois grandes parties. La première est consacrée essentiellement à l'étude des produits en probabilités quantiques. Nous donnons une classification complète à l'aide du produit universel défini par un ensemble d'axiomes canoniques dans les différentes catégories d'algèbres associatives. Ceci nous permet aussi de définir la notion d'indépendance stochastique non-commutative. En particulier nous démontrons que les seuls produits sont les produits tensoriel (classique), libre et booléen. La seconde partie est motivée directement par la première. Elle est consacrée à l'étude des processus de Lévy sur les groupes duaux de D. Voiculescu. Ce nouveau concept généralise la théorie des processus de Lévy sur les algèbres de Hopf (groupes quantiques) où la seule notion d'indépendance est donnée par le produit tensoriel. Ce principe nous fournit l'outil principal pour montrer qu'un processus de Lévy sur un groupe dual est déterminé par son générateur. Comme application directe, nous donnons une réalisation des processus de Lévy additifs sur les trois espaces de Fock (bosonique, libre et booléen). La troisième partie est consacrée au développement du calcul stochastique quantique sur l'espace de Fock booléen. En particulier nous introduisons l'intégrale stochastique et nous donnons une formule d'Itô quantique. Nous construisons aussi les solutions de l'équation différentielle stochastique quantique au sens de R. L. Hudson et K. R. Parthasarathy. Finalement nous construisons les dilatations des semi-groupes complètement positifs.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fan, Qianzhu. "Stochastic heat equations with Markovian switching." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/stochastic-heat-equations-with-markovian-switching(8958d026-671e-4c63-a639-b4a7b120a968).html.

Повний текст джерела
Анотація:
This thesis consists of three parts. In the first part, we recall some background theory that will be used throughout the thesis. In the second part, we studied the existence and uniqueness of solutions of the stochastic heat equations with Markovian switching. In the third part, we investigate the properties of solutions, such as Feller property, strong Feller property and stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zheng, Bing. "Incorporating equation solving into unification through stratified term rewriting." Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/52096.

Повний текст джерела
Анотація:
This thesis studies equational theories incorporated into unification and describes STAR, a stratified term rewriting system that achieves a full integration. STAR is an advance over existing systems because it integrates an equational theory with unification at a lower, more fundamental level. Certain properties of STAR are proven including termination and confluence. We also discuss the algorithmic complexity of the reduction algorithm, a vital component of STAR. We compare our system with narrowing and discuss the merits and drawbacks of each technique. Since our system is an experimental integration of equation solving and unification, we are not concerned with the efficiency of the implementation. We do propose, however, some future improvements.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zimmermann, Nils E. R., Timm J. Zabel, and Frerich J. Keil. "Transport into zeolite nanosheets: diffusion equations put to test." Diffusion fundamentals 20 (2013 ) 53, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Higham, Jeffrey. "An investigation into the de broglie bohm approach to the dirac equation." Thesis, University of Portsmouth, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Davis, Benjamin J. "A study into discontinuous Galerkin methods for the second order wave equation." Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45836.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
There are numerous numerical methods for solving different types of partial differential equations (PDEs) that describe the physical dynamics of the world. For instance, PDEs are used to understand fluid flow for aerodynamics, wave dynamics for seismic exploration, and orbital mechanics. The goal of these numerical methods is to approximate the solution to a continuous PDE with an accurate discrete representation. The focus of this thesis is to explore a new Discontinuous Galerkin (DG) method for approximating the second order wave equation in complex geometries with curved elements. We begin by briefly highlighting some of the numerical methods used to solve PDEs and discuss the necessary concepts to understand DG methods. These concepts are used to develop a one- and two-dimensional DG method with an upwind flux, boundary conditions, and curved elements. We demonstrate convergence numerically and prove discrete stability of the method through an energy analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ashworth, Eileen. "Heat flow into underground openings: Significant factors." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185768.

Повний текст джерела
Анотація:
This project investigates the heat flow from the rock into ventilating airways by studying various parameters. Two approaches have been used: laboratory measurement of thermal properties to study their variation, and analytic and numerical models to study the effect of these variations on the heat flow. Access to a heat-flux system and special treatment of contact resistance has provided the opportunity to study thermal conductivity as a function of moisture contained in rock specimens. For porous sandstone, tuff, and concretes, thermal conductivity can double when the specimens are soaked; the functional dependence of conductivity on moisture for the first two cases is definitely non-linear. Five previous models for conductivity as a function of porosity are shown not to explain this new phenomenon. A preliminary finite element model is proposed which explains the key features. Other variations of conductivity with applied pressure, location, constituents, weathering or other damage, and anisotropy have been measured. In the second phase of the research, analytical and numerical methods have been employed to consider the effects of the variation in the thermal properties plus the use of insulation on the heat flow from the rock into the ventilated and cooled airways. Temperature measurements taken in drill holes at a local mine provide confirmation for some of the models. Results have been provided in a sensitivity analysis mode so that engineers working on other projects can see which parameters would require more detailed consideration. The thermal conductivity of the rock close to the airways is a key factor in affecting heat loads. Dewatering and the use of insulation, such as lightweight foamed shotcretes, are recommended.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Ito equation"

1

Orlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.

Повний текст джерела
Анотація:
The monograph is devoted to the application of methods of functional analysis to the problems of qualitative theory of differential equations. Describes an algorithm to bring the differential boundary value problem to an operator equation. The research of solutions to operator equations of special kind in the spaces polutoratonny with a cone, where the limitations of the elements of these spaces is understood as the comparability them with a fixed scale element of exponential type. Found representations of the solutions of operator equations in the form of contour integrals, theorems of existence and uniqueness of such solutions. The spectral criteria for boundedness of solutions of operator equations and, as a consequence, sufficient spectral features boundedness of solutions of differential and differential-difference equations in Banach space. The results obtained for operator equations with operators and work of Volterra operators, allowed to extend to some systems of partial differential equations known spectral stability criteria for solutions of A. M. Lyapunov and also to generalize theorems on the exponential characteristic. The results of the monograph may be useful in the study of linear mechanical and electrical systems, in problems of diffraction of electromagnetic waves, theory of automatic control, etc. It is intended for researchers, graduate students functional analysis and its applications to operator and differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chung, Kai Lai. Introduction to stochastic integration. 2nd ed. Boston: Birkhäuser, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stuart, Charles A. Bifurcation into spectral gaps. Brussels, Belgium: Société mathématique de Belgique, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Billings, S. A. Mapping nonlinear integro-differential equations into the frequency domain. Sheffield: University of Sheffield, Dept. of Control Engineering, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.

Повний текст джерела
Анотація:
The textbook presents the theory of ordinary differential equations constituting the subject of the discipline "Differential equations". Studied topics: differential equations of first, second, arbitrary order; differential equations; integration of initial and boundary value problems; stability theory of solutions of differential equations and systems. Introduced the basic concepts, proven properties of differential equations and systems. The article presents methods of analysis and solutions. We consider the applications of the obtained results, which are illustrated on a large number of specific tasks. For independent quality control mastering the course material suggested test questions on the theory, exercises and tasks. It is recommended that teachers, postgraduates and students of higher educational institutions, studying differential equations and their applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pollock, Marcia (Marcia Kay), 1942-2011, ed. Putting God back into Einstein's equations: Energy of the soul. Boynton Beach, FL: Shechinah Third Temple, Inc., 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sinha, N. Inclusion of chemical kinetics into beam-warming based PNS model for hypersonic propulsion applications. New York: AIAA, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kudinov, Igor', Anton Eremin, Konstantin Trubicyn, Vitaliy Zhukov, and Vasiliy Tkachev. Vibrations of solids, liquids and gases taking into account local disequilibrium. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1859642.

Повний текст джерела
Анотація:
The monograph presents the results of the development and research of new mathematical models of the processes of vibrations of solids, liquids and gases, taking into account local disequilibrium. To derive differential equations, the Navier—Stokes equations, Newton's second law and modified formulas of the classical empirical laws of Fourier, Hooke, Newton are used, which take into account the velocities and accelerations of the driving forces (gradients of the corresponding quantities) and their consequences (heat flow, normal and tangential stresses). The conditions for the occurrence of shock waves of stresses and displacements in dynamic thermoelasticity problems formulated taking into account relaxation phenomena in thermal and thermoelastic problems are investigated, new results are obtained in the study of longitudinal and transverse vibrations of rods, strings, liquids and gases, and the conditions for the excitation of gas self-oscillations arising from a time-constant heat source are determined. It is intended for scientific and technical workers specializing in mathematics, thermophysics, thermoelasticity, as well as teachers and students of technical universities.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hartley, T. T. Insights into the fractional order initial value problem via semi-infinite systems. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ikeda, Nobuyuki. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Pub. Co., 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ito equation"

1

Verma, Pallavi, and Lakhveer Kaur. "Bilinearization and Analytic Solutions of $$(2+1)$$-Dimensional Generalized Hirota-Satsuma-Ito Equation." In Advances in Intelligent Systems and Computing, 235–44. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5414-8_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cai, Zhenning, Yuwei Fan, and Ruo Li. "Hyperbolic Model Reduction for Kinetic Equations." In SEMA SIMAI Springer Series, 137–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86236-7_8.

Повний текст джерела
Анотація:
AbstractWe make a brief historical review of the moment model reduction for the kinetic equations, particularly Grad’s moment method for Boltzmann equation. We focus on the hyperbolicity of the reduced model, which is essential for the existence of its classical solution as a Cauchy problem. The theory of the framework we developed in the past years is then introduced, which preserves the hyperbolic nature of the kinetic equations with high universality. Some lastest progress on the comparison between models with/without hyperbolicity is presented to validate the hyperbolic moment models for rarefied gases.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kloeden, Peter E., and Eckhard Platen. "Ito Stochastic Calculus." In Numerical Solution of Stochastic Differential Equations, 75–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-12616-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garrett, Steven L. "Ideal Gas Laws." In Understanding Acoustics, 333–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_7.

Повний текст джерела
Анотація:
Abstract This is the first chapter to explicitly address fluid media. For springs and solids, Hooke’s law, or its generalization using stress, strain, and elastic moduli provided an equation of state. In fluids, we have an equation of state that relates changes in pressure (stresses) to changes in density (strain). The simplest fluidic equations of state are the Ideal Gas Laws. Our presentation of these laws will combine microscopic models that treat gas atoms as hard spheres with phenomenological (thermodynamic) models that combine the variables that describe the gas with conservation laws that restrict those variables. The combination of microscopic and phenomenological models will give us the important characteristics of gas behavior under isothermal or adiabatic conditions and will provide relationships between gas heat capacities and their constituent particles when augmented with elementary concepts from quantum mechanics. The chapter ends by adding a velocity field to the pressure, temperature, and density, thus providing the equations of hydrodynamics that will guide all of the subsequent development of acoustics in fluids.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Giese, Guido. "Decomposition of the Elastic-plastic Wave Equation into Advection Equations." In Hyperbolic Problems: Theory, Numerics, Applications, 375–84. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8720-5_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Orlandi, Paolo. "The Burgers equation." In Fluid Mechanics and Its Applications, 40–50. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4281-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jung, Soon-Mo. "Isometric Functional Equation." In Springer Optimization and Its Applications, 285–323. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jung, Soon-Mo. "Additive Cauchy Equation." In Springer Optimization and Its Applications, 19–86. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jung, Soon-Mo. "Hosszú’s Functional Equation." In Springer Optimization and Its Applications, 105–22. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jung, Soon-Mo. "Homogeneous Functional Equation." In Springer Optimization and Its Applications, 123–42. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9637-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ito equation"

1

Wen, Xiaoxia, and Jin Huang. "A Numerical Method for Linear Stochastic Ito-Volterra Integral Equation Driven by Fractional Brownian Motion." In 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2019. http://dx.doi.org/10.1109/icaica.2019.8873448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Muntean, Oana. "Transposing phasor equation into instantaneous values equations using Hilbert transform." In 2014 49th International Universities Power Engineering Conference (UPEC). IEEE, 2014. http://dx.doi.org/10.1109/upec.2014.6934825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Qi, Yuxin Wu, Yang Zhang, and Junfu Lyu. "Experimental and Numerical Study of Nucleate Pool Boiling Heat Transfer and Bubble Dynamics in Saline Solution." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-8988.

Повний текст джерела
Анотація:
Abstract A visual pool boiling experimental device based on ITO coating layer heater and high-speed shooting technology was established for studying the bubble behavior and heat transfer characteristics of saline solution, which is of great significance for ensuring heat transfer safety in nuclear power plants, steam injection boilers and seawater desalination. Volume of fluid method was applied to simulate numerically the liquid–vapor phase change by adding source terms in the continuity equation and energy equation. The predictions of the model are quantitatively verified against the experimental data. It can be found based on the experimental data that the pool boiling heat transfer coefficient is enhanced as the salt concentration increases. Visualization studies and numerical data have shown that the presence and precipitation of salt leads to a decrease in the detachment diameter and growth time of the bubble and an increase in the frequency of detachment, thereby increasing the pool boiling heat transfer coefficient.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Keshinro, Olalekan, Yetunde Aladeitan, Olugbenga Oni, Jemimah-Sandra Samuel, and Jaja Adagogo. "Improved Decline Curve Analysis Equations – Integration of Reservoir Properties into Arps Equation." In SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/193419-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Noreika, Alius, and Paulius Tarvydas. "Analysis of Finite Element Method Equation Solvers." In 2007 29th International Conference on Information Technology Interfaces. IEEE, 2007. http://dx.doi.org/10.1109/iti.2007.4283845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Appleby, John A. D. "Almost sure subexponential decay rates of scalar Ito-Volterra equations." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cole, James B. "Insights of finite difference models of the wave equation and Maxwell's equations into the geometry of space-time." In SPIE Optical Engineering + Applications, edited by Rongguang Liang and Joseph A. Shaw. SPIE, 2014. http://dx.doi.org/10.1117/12.2061920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Imao, Shigeki. "Bend Loss Coefficient of Drag-Reducing Surfactant Solution." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45767.

Повний текст джерела
Анотація:
In this study, an effect of an additive on a bend loss was examined. Measurements of pressure distributions along pipes connected to pipe bends were performed using a drag-reducing surfactant solution. The additive used is being commercialized as a drag reducer and it has a non-degrading or rapidly repairable nature. Dimensions of the apparatus are pipe diameters d = 5, 10, 15 mm, radius ratios R/r = 20, 40, 60, 100, and a bend angle θ = 180 degree. It has been confirmed that total bend loss coefficients for water can be expressed by the equation deduced by Ito. When the surfactant solution is used, remarkable drag reduction was recognized in the inlet and the exit straight pipes. Pressure recovery length for the surfactant solution after the passage of the bend is longer than that for water. The curve of total bend loss coefficients for the surfactant solution intersects that for water. The former is larger than the latter at low Reynolds number and is smaller at high Reynolds number. The coefficients don’t depend on the pipe diameter but they depend on the radius ratio. It is shown that total bend loss coefficients for the surfactant solution can be expressed by a single curve and the empirical formula is deduced.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pietrobon, Steven S., Gottfried Ungerboeck, and Daniel J. Costello. "A general parity check equation for rotationally invariant trellis codes." In IEEE/CAM Information Theory Workshop at Cornell. IEEE, 1989. http://dx.doi.org/10.1109/itw.1989.761403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ramli, Marwan, Dara Irsalina, Ipak Putri Iwanisa, and Vera Halfiani. "Soliton solution of Benjamin-Bona-Mahony equation and modified regularized long wave equation." In INTERNATIONAL CONFERENCE AND WORKSHOP ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS (ICWOMAA 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5016636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ito equation"

1

Fujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ostashev, Vladimir, Michael Muhlestein, and D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.

Повний текст джерела
Анотація:
Wide-angle parabolic equations (WAPEs) play an important role in physics. They are derived by an expansion of a square-root pseudo-differential operator in one-way wave equations, and then solved by finite-difference techniques. In the present paper, a different approach is suggested. The starting point is an extra-wide-angle parabolic equation (EWAPE) valid for small variations of the refractive index of a medium. This equation is written in an integral form, solved by a perturbation technique, and transformed to the spectral domain. The resulting split-step spectral algorithm for the EWAPE accounts for the propagation angles up to 90° with respect to the nominal direction. This EWAPE is also generalized to large variations in the refractive index. It is shown that WAPEs known in the literature are particular cases of the two EWAPEs. This provides an alternative derivation of the WAPEs, enables a better understanding of the underlying physics and ranges of their applicability, and opens an opportunity for innovative algorithms. Sound propagation in both motionless and moving media is considered. The split-step spectral algorithm is particularly useful in the latter case since complicated partial derivatives of the sound pressure and medium velocity reduce to wave vectors (essentially, propagation angles) in the spectral domain.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hereman, W., P. P. Banerjee, and M. R. Chatterjee. Derivation and Implicit Solution of the Harry Dym Equation, and Its Connections with the Korteweg-De Vries Equation. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada196053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Muia, Esther, Violet Kimani, and Ann Leonard. Integrating men into the reproductive health equation: Acceptability and feasibility in Kenya. Population Council, 2000. http://dx.doi.org/10.31899/rh5.1005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Janaswamy, Ramakrishna. A Rigorous Way of Incorporating Sea Surface Roughness Into the Parabolic Equation. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rojas, Stephen P., Michael Bruce Prime, Miles Allen Buechler, and Jacob Simon Merson. Implementation and Verification of the Sesame Equation of State Database into Abaqus. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1575766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

D.G. Shirk. A Practical Review of the Kompaneets Equation and its Application to Compton Scattering. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/891567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kovalev, Valeri I. Nonlinear Optical Wave Equation for Micro- and Nano-Structured Media and Its Application. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada582416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leer, Bram van. Local Preconditioning of the Equations of Magnetohydrodynamics and Its Numerical Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada417746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Szoke, A., and E. D. Brooks. The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1289358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії