Добірка наукової літератури з теми "Irrigation Estimates"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Irrigation Estimates".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Irrigation Estimates"
Wheaton, T. Adair, Lawrence R. Parsons, and K. T. Morgan. "Simulating Annual Irrigation Requirement for Citrus on Excessively Drained Soils." HortScience 41, no. 6 (October 2006): 1487–92. http://dx.doi.org/10.21273/hortsci.41.6.1487.
Повний текст джерелаClemmens, A. J., and C. M. Burt. "Accuracy of Irrigation Efficiency Estimates." Journal of Irrigation and Drainage Engineering 123, no. 6 (November 1997): 443–53. http://dx.doi.org/10.1061/(asce)0733-9437(1997)123:6(443).
Повний текст джерелаShalekBriski, Abby, B. Wade Brorsen, Jon T. Biermacher, Charles T. Rohla, and Will Chaney. "Effect of Irrigation Method on Tree Growth, Foliar Nutrient Levels, and Nut Characteristics of Young Pecan Trees in the Southern Great Plains." HortTechnology 29, no. 2 (April 2019): 109–13. http://dx.doi.org/10.21273/horttech04162-18.
Повний текст джерелаPavione, D. M. S., R. K. X. Bastos, and P. D. Bevilacqua. "Quantitative microbial risk assessment applied to irrigation of salad crops with waste stabilization pond effluents." Water Science and Technology 67, no. 6 (March 1, 2013): 1208–15. http://dx.doi.org/10.2166/wst.2013.674.
Повний текст джерелаSouto, Camilo, Octavio Lagos, Eduardo Holzapfel, Christopher Ruybal, David R. Bryla, and Gladys Vidal. "Evaluating a Surface Energy Balance Model for Partially Wetted Surfaces: Drip and Micro-Sprinkler Systems in Hazelnut Orchards (Corylus Avellana L.)." Water 14, no. 24 (December 8, 2022): 4011. http://dx.doi.org/10.3390/w14244011.
Повний текст джерелаNorrie, J., M. E. D. Graham, P. A. Dubé, and A. Gosselin. "Improvements in Automatic Irrigation of Peat-grown Greenhouse Tomatoes." HortTechnology 4, no. 2 (April 1994): 154–59. http://dx.doi.org/10.21273/horttech.4.2.154.
Повний текст джерелаDevitt, D. A., M. Berkowitz, P. J. Schulte, and R. L. Morris. "Estimating Transpiration for Three Woody Ornamental Tree Species using Stem-flow Gauges and Lysimetry." HortScience 28, no. 4 (April 1993): 320–22. http://dx.doi.org/10.21273/hortsci.28.4.320.
Повний текст джерелаCoelho, Eugênio Ferreira, Marcos de Souza Campos, Marcelo Rocha dos Santos, Rafael Dreux Miranda Fernandes, and Jailson Lopes Cruz. "Soil water-balance-based approach for estimating percolation with lysimeter and in field with and without mulch under micro irrigation." Ambiente e Agua - An Interdisciplinary Journal of Applied Science 16, no. 5 (October 6, 2021): 1–12. http://dx.doi.org/10.4136/ambi-agua.2760.
Повний текст джерелаChiew, FHS, and TA Mcmahon. "Groundwater recharge from rainfall and irrigation in the campaspe river basin." Soil Research 29, no. 5 (1991): 651. http://dx.doi.org/10.1071/sr9910651.
Повний текст джерелаMuchow, R. C., and B. A. Keating. "Assessing irrigation requirements in the Ord Sugar Industry using a simulation modelling approach." Australian Journal of Experimental Agriculture 38, no. 4 (1998): 345. http://dx.doi.org/10.1071/ea98023.
Повний текст джерелаДисертації з теми "Irrigation Estimates"
Watson, J., and M. Sheedy. "Crop Water Use Estimates." College of Agriculture, University of Arizona (Tucson, AZ), 1995. http://hdl.handle.net/10150/210312.
Повний текст джерелаDari, Jacopo. "Towards a better understanding of the Anthropogenic Impact on the Hydrological Cycle: Detecting and Estimating Irrigation through Remote Sensing Soil Moisture." Doctoral thesis, Universitat Ramon Llull, 2021. http://hdl.handle.net/10803/671502.
Повний текст джерелаEl riego es el principal consumo antropogénico de agua dulce. Se prevé que la explotación de los recursos hídricos para mejorar la producción de alimentos mediante prácticas de riego seguirá aumentando en los próximos decenios. De hecho, se prevé que el crecimiento demográfico y los cambios climáticos ejerzan una presión aún mayor sobre los recursos hídricos disponibles. A pesar de que el riego tiene consecuencias directas en la gestión racional de los recursos hídricos, así como en la producción de alimentos, falta un conocimiento detallado de los lugares en los que realmente se riega en todo el mundo y de cuánta agua se utiliza realmente para las prácticas de riego. En esta investigación se han elaborado métodos para detectar y cartografiar las zonas donde realmente se riega, así como métodos para estimar las cantidades de agua que se aplican para el riego; las metodologías propuestas utilizan datos de humedad del suelo provenientes de la teledetección espacial. En esta investigación se han adoptado dos casos de estudio: el primero se sitúa en la cuenca del Ebro, en el noreste de España, mientras que el otro es la cuenca del Alto Tíber, en Italia central. Se han ensayado varios productos de humedad del suelo obtenidos por teledetección con diferentes resoluciones espaciales para evaluar los que mejor funcionan en la detección del riego y, por lo tanto, en la cartografía de las zonas de regadío. Además, se han realizado estimaciones cuantitativas de las cantidades de agua aplicadas para el riego. La actividad de detección y cartografía del riego se ha llevado a cabo en ambos casos de estudio. En el español se ha evaluado inicialmente la capacidad de detección de riego de varios productos de teledetección. Se han evaluado los siguientes conjuntos de datos de humedad del suelo: SMAP (Soil Moisture Active Passive) a 1 km y 9 km, SMOS (Soil Moisture and Ocean Salinity) a 1 km, Sentinel-1 a 1 km, y ASCAT (Advanced SCATterometer) a 12,5 km. Las versiones de 1 km de SMAP y SMOS se obtienen mediante la desagregación con el método DISPATCH (DISaggregation based on Physical And Theoretical scale Change). La detectabilidad del riego por los productos considerados se ha evaluado mediante índices derivados de la teoría de la estabilidad temporal aquí utilizada bajo esta nueva perspectiva. Además, se han elaborado mapas de las zonas irrigadas producidos a través del algoritmo de agrupamiento K-medias. En las zonas agrícolas de la cuenca del Alto Tíber, en Italia, se ha realizado un análisis a doble escala. En el análisis a 1 km de resolución espacial, se ha aplicado el mismo procedimiento adoptado en el caso de estudio de la cuenca del Ebro para evaluar la detectabilidad de la irrigación mediante la humedad del suelo por teledetección. Se han utilizado los siguientes productos: SMAP a 1 km, la versión Sentinel-1 a 1 km entregada por el Copernicus Global Land Service, y una versión Sentinel-1 a escala de parcela (producida por THEIA) agregada a 1 km. Obsérvese que los dos primeros productos son los mismos que también se utilizaron en el caso de estudio español. En este análisis, así como en el realizado sobre el área de estudio en la cuenca del Ebro, se ha utilizado como soporte el modelo de superficie terrestre SURFEX-ISBA (SURface EXternalisée - Interaction Sol Biosphère Atmosphère). En el análisis a escala de parcela, los datos del THEIA Sentinel-1 agregados a 100 m se han utilizado para producir mapas de alta resolución de las zonas de regadío mediante el algoritmo de agrupamiento K-medias. La actividad de cuantificación del riego se ha llevado a cabo en la zona de estudio de la cuenca del Ebro únicamente; se han realizado dos experimentos: uno explotando SMAP con datos a 1 km de resolución y otro explotando SMOS con datos a 1 km. Ambos conjuntos de datos se han utilizado para forzar el algoritmo SM2RAIN adaptado a la estimación del riego. En el algoritmo se ha aplicado una modelización más realista del término de evapotranspiración para reproducir adecuadamente la evapotranspiración de los cultivos según el modelo de la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). Los análisis realizados tienen por objeto colmar las lagunas existentes en el campo de la investigación relacionada con el riego; los resultados obtenidos son útiles para evaluar el impacto de las prácticas de riego en el ciclo hidrológico.
Irrigation is the primary source of anthropogenic freshwater consumptions. The exploitation of water resources to improve the food production through irrigation practices is expected to further increase in the upcoming decades. In fact, the population growth and climate changes are expected to put even more pressure on the available water resources. Despite irrigation having direct implications on the rational management of water resources, as well as on food production, a detailed knowledge of where irrigation actually occurs worldwide and of how much water is actually used for irrigation practices is missing. In this research, approaches to detect and map areas where irrigation actually occurs, as well as methods to estimate the amounts of water applied for irrigation, have been developed; the proposed methodologies exploit remote sensing soil moisture. Two case studies have been considered in this research: the first one is located within the Ebro basin, in North-eastern Spain, while the other one is the Upper Tiber basin, in central Italy. Several remotely sensed soil moisture products at different spatial resolutions have been tested to evaluate the best performing ones in detecting irrigation signals and thus mapping irrigated areas. In addition, quantitative estimates of the water amounts applied for irrigation have been performed. The irrigation detection and mapping activity has been carried out over both case studies. In the Spanish one, the capability to detect irrigation of several remote sensing products has been initially assessed. The following soil moisture data sets have been evaluated: SMAP (Soil Moisture Active Passive) at 1 km and 9 km, SMOS (Soil Moisture and Ocean Salinity) at 1 km, Sentinel-1 at 1 km, and ASCAT (Advanced SCATterometer) at 12.5 km. The 1 km versions of SMAP and SMOS are obtained through downscaling with the DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) method. The detectability of irrigation by the considered products has been assessed through indices derived from the temporal stability theory here used under this new perspective. Furthermore, maps of irrigated areas have been produced through the K-means clustering algorithm. Over the agricultural areas in the Upper Tiber basin, in Italy, a double-scale analysis has been carried out. In the analysis at 1 km spatial resolution, the same procedure adopted over the case study in the Ebro basin to evaluate the detectability of irrigation through remotely sensed soil moisture has been applied. The following products have been used: SMAP at 1 km, the Sentinel-1 at 1 km version delivered by the Copernicus Global Land Service, and a plot-scale-born Sentinel-1 version (produced by THEIA) aggregated at 1 km. Note that the first two products are the same used over the Spanish case study also. In this analysis, as well as in the one carried out over the study area in the Ebro basin, surface soil moisture simulated by the SURFEX-ISBA (SURface EXternalisée - Interaction Sol Biosphère Atmosphère) land surface model has been used as support. In the plot-scale analysis, THEIA Sentinel-1 data aggregated at 100 m have been used to produce high-resolution maps of irrigated areas through the K-means clustering algorithm. The irrigation quantification activity has been carried out over the study area in the Ebro basin only; two experiments have been performed: one exploiting SMAP at 1 km data and another one exploiting SMOS at 1 km data. Both data sets have been used to force the SM2RAIN algorithm adapted to estimate irrigation. A more realistic modeling of the evapotranspiration term has been implemented into the algorithm to properly reproduce the crop evapotranspiration according to the FAO (Food and Agriculture Organization) model. The analyses carried out are aimed at filling the existing gaps in the irrigation-related research field; the obtained results are useful to assess the impact of irrigation practices on the hydrological cycle.
L’irrigazione è la principale fonte di consumo di acqua dolce. Nei prossimi decenni è atteso un ulteriore sfruttamento della risorsa idrica per incrementare la produzione di cibo attraverso le pratiche irrigue. Si stima infatti che la crescita della popolazione e i cambiamenti climatici possano esercitare una pressione ancora maggiore sulle risorse idriche disponibili. Nonostante le importanti implicazioni che ha l’irrigazione sulla gestione razionale dell’acqua e sulla produzione di cibo, non si ha una conoscenza dettagliata di dove l’irrigazione effettivamente avvenga nel mondo e di quanta acqua venga effettivamente utilizzata per le pratiche irrigue. In questa ricerca sono stati sviluppati approcci per rilevare e mappare le aree dove effettivamente si verifica l’irrigazione e per stimare i volumi irrigui; le metodologie proposte sfruttano l’umidità del suolo rilevata da satellite. In questa ricerca sono stati considerati due casi di studio: il primo si trova nel bacino del fiume Ebro, nel Nord-Est della Spagna, mentre l’altro è il bacino superiore del Tevere, nell’Italia centrale. Diversi prodotti di umidità del suolo da satellite, caratterizzati da diverse risoluzioni spaziali, sono stati valutati al fine di determinare i più performanti nel rilevare segnali di irrigazione e quindi mappare le aree irrigate. Inoltre, sono state eseguite stime quantitative dei volumi di acqua utilizzati per pratiche irrigue. L’attività di rilievo e mappatura dell’irrigazione è stata condotta su entrambe le aree pilota. In quella spagnola, è stata valutata la capacità di rilevare l’irrigazione di diversi prodotti di umidità del suolo. Sono stati considerati i seguenti set di dati: SMAP (Soil Moisture Active Passive) a 1 km e 9 km, SMOS (Soil Moisture and Ocean Salinity) a 1 km, Sentinel-1 a 1 km e ASCAT (Advanced SCATterometer) a 12.5 km. Le versioni a 1 km di SMAP e SMOS sono ottenute tramite disaggregazione eseguita con il metodo DISPATCH (DISaggregation based on Physical And Theoretical scale CHange). La capacità di rilevare l’irrigazione da parte dei prodotti considerati è stata valutata tramite indici derivanti dalla teoria della stabilità temporale e usati in questo studio sotto una nuova prospettiva. Inoltre, sono state prodotte delle mappe delle aree irrigate attraverso l’algoritmo di classificazione K-means. Un’analisi a doppia scala spaziale è stata condotta sulle aree agricole all’interno del bacino superiore del Tevere, in Italia. Nell’ambito dell’analisi alla risoluzione spaziale di 1 km, è stata applicata la stessa procedura già adottata per il caso di studio nel bacino dell’Ebro per valutare la possibilità di rilevare l’irrigazione tramite umidità del suolo da satellite. Sono stati utilizzati i seguenti prodotti: SMAP a 1 km, la versione a 1 km di Sentinel-1 fornita da Copernicus Global Land Service e una versione di Sentinel-1 originariamente prodotta de THEIA alla scala di parcella e aggregata a 1 km. Va sottolineato che i primi due prodotti menzionati sono stati utilizzati anche sull’area pilota in Spagna. Sia in questa analisi che in quella condotta nel bacino dell’Ebro, dati di umidità del suolo superficiale modellati tramite il modello di superficie terrestre SURFEX-ISBA (SURface EXternalisée - Interaction Sol Biosphère Atmosphère) sono stati utilizzati come supporto. Nell’analisi alla scala di parcella, sono stati impiegati i dati di Sentinel-1 prodotti da THEIA e aggregati a 100 m al fine di produrre mappe di aree irrigate ad alta risoluzione tramite l’algoritmo di classificazione K-means. L’attività di quantificazione dell’irrigazione è stata finalizzata solamente per l’area pilota nel bacino dell’Ebro; sono stati condotti due esperimenti: uno utilizzando i dati da SMAP a 1 km e un altro sfruttando i dati da SMOS a 1 km. Entrambi i set di dati sono stati utilizzati per forzare la versione dell’algoritmo SM2RAIN adattata per la stima dell’irrigazione. Una modellazione più realistica dell’evapotraspirazione è stata implementata nell’algoritmo al fine di riprodurre adeguatamente l’evapotraspirazione delle colture secondo il modello FAO (Food and Agriculture Organization). Le analisi condotte sono finalizzate a colmare le lacune esistenti nel campo di ricerca relativo all’irrigazione; i risultati ottenuti sono utili per valutare l’impatto delle pratiche irrigue sul ciclo idrologico.
Cornejo, Camilo. "Use of an evapotranspiration model and a Geographic Information System (GIS) to estimate the irrigation potential of the TRASVASE system in the Santa Elena Peninsula, Guayas, Ecuador." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000667.
Повний текст джерелаAlves, Paulo Roberto Vieira. "Análise de um coeficiente geométrico para estimativa de perdas de carga em linhas laterais de irrigação por gotejamento." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-17072018-090808/.
Повний текст джерелаThe hydraulic projects to drip irrigation systems, usually disregard the localized head losses because of the destach of the drip\'s connection in the lateral lines, or establish average coefficients or percentual rates to calculate these losses. However, these localized losses can be rather significant, varying according to the flow and the drip\'s model connection with the diameter of the installed tubing. This dissertation presents the results of an experimental research to determine a mathematical relation that allows us to estirnate the localized head losses to each drip group - tube. This mathematical relation associates the resistance of kinetic head, in different flows, with geometrical contents of obstruction to four sections, circular and slightly oval, from different polietilene tubes, and four models of drips, commercialized in Ribeirão Preto\'s region. It\'s also discussed the aspects of the usage of Blasius equation to calculate the losses of distributed head and the influence of viscosity variation during the drain.
Guimarães, Adriana Biassus. "MEDIDOR DE VAZÃO PROPORCIONAL PARA A QUANTIFICAÇÃO DO CONSUMO DE ÁGUA NA IRRIGAÇÃO." Universidade Federal de Santa Maria, 2007. http://repositorio.ufsm.br/handle/1/7488.
Повний текст джерелаThe present work had for objective to develop a simple process, with low cost and enough precise for its use in irrigation systems. The measurer consists of a secondary canalization provided with a hydrometer of low outflow installed in parallel with a singularity capable to provoke a pressure difference enters the extreme points of the device. The distinguishing pressure induces to the partial draining of the water through the secondary canalization being measured for the hydrometer. The work was developed in the Irrigation, Hydraulical and Draining laboratory of the Department of Agricultural Engineering of the Federal University of Santa Maria and in a system of water main for a central pivot installed in the Mayã Farm, in the city of São Sepé - RS. The work consists in the evaluation of a proportional measurer of volume (or outflow) and of the posterior application for the estimate of the volume of water fed for the system of bombardment to an expository of a system of irrigation of the type central pivot. The proportional measurer presents easiness about the construction and installation in the field. The results allowed concluding that the proportional measurer was capable to estimate the outflow of the central pivot irrigation system. The proportional measurer can be installed and operated in a simple way, and its components are of easy acquisition and low cost and maintenance. Such characteristics assume great importance in the current days becoming viable the implantation of systems of measurement in all the existing systems of irrigation in the agricultural way.
O presente trabalho teve por objetivo desenvolver um processo simples, de baixo custo e suficientemente preciso para a sua utilização em sistemas de irrigação. O medidor consiste de uma canalização secundária provida de um hidrômetro de baixa vazão instalada em paralelo com uma singularidade capaz de provocar uma diferença de pressão entre os pontos extremos do dispositivo. A pressão diferencial induz ao escoamento parcial da água através da canalização secundária sendo medida pelo hidrômetro. O trabalho foi desenvolvido no laboratório de Hidráulica, Irrigação e Drenagem do Departamento de Engenharia Rural da Universidade Federal de Santa Maria e em um sistema de bombeamento para adução de água para um pivô central na instalado na Fazenda Mayã, município de São Sepé RS. O trabalho consta da avaliação de um medidor de volume (ou de vazão) proporcional e da posterior aplicação para a estimativa do volume de água alimentado pelo sistema de bombeamento a uma adutora de um sistema de irrigação do tipo pivô central. O medidor proporcional apresenta facilidade quanto à sua construção e instalação no campo. Os resultados obtidos permitiram concluir que o medidor proporcional foi capaz de estimar com precisão a vazão da adutora de alimentação de um sistema de irrigação do tipo pivô central. O medidor proporcional pode ser instalado e operado de modo simples, sendo que seus componentes são de fácil aquisição e de baixo custo e manutenção. Tais características assumem grande importância nos dias atuais contribuindo para a implantação de sistemas de medição em todos os sistemas de irrigação existentes no meio rural.
Gonçalves, Fabricio Mota. "Evapotranspiração e coeficientes de cultivo (KC) da cana-de-açúcar irrigada por gotejamento subsuperficial." reponame:Repositório Institucional da UFC, 2010. http://www.repositorio.ufc.br/handle/riufc/18596.
Повний текст джерелаSubmitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-06-21T18:44:18Z No. of bitstreams: 1 2010_dis_fmgoncalves.pdf: 3909193 bytes, checksum: b818df330f21fcd52b71e61d84782c03 (MD5)
Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-07-21T20:13:45Z (GMT) No. of bitstreams: 1 2010_dis_fmgoncalves.pdf: 3909193 bytes, checksum: b818df330f21fcd52b71e61d84782c03 (MD5)
Made available in DSpace on 2016-07-21T20:13:45Z (GMT). No. of bitstreams: 1 2010_dis_fmgoncalves.pdf: 3909193 bytes, checksum: b818df330f21fcd52b71e61d84782c03 (MD5) Previous issue date: 2010
Sugar cane is one of the crops with the highest level of water consumption, with a high evapotranspiration demand throughout most of its cycle. Knowledge of the sugar cane water demand, the time that irrigation should be applied, and how to irrigate the crop are becoming increasingly important for the sustainable development of irrigated sugar cane cultivation, especially in areas of low water availability, as it is the case in northea stern Brazil. The experiment was carried out at the Curu Experimental Field (property of the Embrapa Tropical Agroindustry), located in the Curu-Paraipaba Irrig ation Project, city of Paraipaba-CE (3 ° 29 '20''S, 39 ° 9' 45''W and elevation 30m), in order to determine the evapotrans piration and crop coefficients (Kc) of sugarcane (Saccharum L. officinarium), subsurface drip-irrigated. It was used the SP 6949 sugar cane variety, planted in a spacing of 1.8 m between double rows and 0.4 m between rows within the double row. As to t he irrigation, we used one lateral water line for each double row, buried at a depth of 0.15 m, w ith self-compensating drip emitters, with a flow rate of 1 L h-1, spaced 0.5 m on the water line. The crop was irrigated daily and there were three fertigations per week. The irrigation de pth was periodically adjusted, keeping the soil water potential between -8 kPa to -20 kPa. The crop evapotranspiration (ETc) was determined using a wei ghing lysimeter with a surface area of 2.25 m 2. The reference evapotranspiration (ETo) was estimated by the FAO Penman-Monteith method. The durations of the phenological stages of cane sugar were estimated through analysis of soil cover, with the use of digital images. Durations of 31, 49, 237 and 118 days were observed, respectively for initial, crop development, mid-season and late season stages. The yields achieved within and outside the lysimeter were respectively 144.4 and 108.8 t ha -1 . The total ETc observed during the cycle of the sugar cane was 1074.1 m m, with maximum values of 6.6 mm d-1 during the mid-season stage. Observed Kc values for initial, mid-season and late season stages were respectively 0.23, 1 .03 and 0.50. In the crop development stage, the relationship between Kc and the (crop) soil cover was represented with good accuracy by a negative quadratic model.
A cana-de-açúcar é uma das culturas com maior consumo de água, apresentando uma alta demanda evapotranspirativa ao longo da maior parte do seu ciclo. O conhecimento das necessidades hídricas da cana-de-açúcar, do momento de aplicação da água requerida pela mesma e a forma de aplicação torna-se cada vez mais importante para o desenvolvimento sustentável da sua produção irrigada, principalmente em regiões de pouca disponibilidade hídrica, como é o caso da região Nordeste do Brasil. O experimento foi conduzido no Campo Experimental do Curu, pertencente à Embrapa Agroindústria Tropical localizado no Perímetro Irrigado Curu-Paraipaba, município de Paraipaba-CE (3° 29’ 20’’ S, 39° 9’ 45’’ W e altitude de 30 m), com o objetivo de determinar a evapotranspiração e os coeficientes de cultivo (Kc) da cana-de-açúcar (Saccharum officinarium L.), irrigada por gotejamento subsuperficial. Utilizou-se a variedade de cana SP 6949, plantada no espaçamento de 1,8 m entre fileiras duplas e 0,4 m entre linhas dentro da fileira dupla. Na irrigação utilizou-se uma linha lateral para cada fileira dupla, enterrada na profundidade de 0,15 m, com gotejadores autocompensantes, com vazão de 1 L h-1, espaçados de 0,5 m na linha. A cultura foi irrigada com freqüência diária e foram realizadas três fertirrigações por semana. A lâmina de irrigação foi ajustada periodicamente, mantendo-se o potencial de água no solo entre -8 kPa e -20 kPa. A evapotranspiração da cultura (ETc) foi determinada utilizando-se um lisímetro de pesagem com área superficial de 2,25 m2. A evapotranspiração de referência (ETo) foi estimada pelo método FAO Penman-Monteith. As durações das fases fenológicas da cana-de-açúcar foram estimadas por meio da análise da cobertura do solo pela cultura, determinada com o uso de imagens digitais. Foram observadas durações de 31, 49, 237 e 118 dias, para as fases inicial, de desenvolvimento, intermediária e final, respectivamente. A produtividade alcançada dentro e fora do lisímetro foi de 144,4 e 108,8 t ha-1, respectivamente. A ETc total observada durante o ciclo da cana-de-açúcar foi de 1.074,1 mm, com valores máximos da ordem de 6,6 mm d-1 durante a fase intermediária. Foram observados valores de Kc iguais a 0,23, 1,03 e 0,50, para as fases inicial, intermediária e final, respectivamente. Na fase de desenvolvimento vegetativo a relação entre o Kc e a cobertura do solo pela cultura foi representada com bastante exatidão por um modelo quadrático negativo.
Dari, Jacopo. "Towards a better understanding of the Anthropogenic Impact on the Hydrological Cycle: Detecting and Estimating Irrigation through Remote Sensing Soil Moisture." Doctoral thesis, 2021. http://hdl.handle.net/2158/1235490.
Повний текст джерелаDent, Jared. "A salad bowl, salt and not a drop to drink: recipe for disaster? Three essays on the economic value of agricultural land in a changing environment." Phd thesis, 2014. http://hdl.handle.net/1885/99100.
Повний текст джерелаTsai, Hsin-yu, and 蔡欣妤. "Application of System Dynamics modeling to Estimate Agricultural Irrigation system." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/8ezu6u.
Повний текст джерела國立中央大學
土木工程研究所
97
This research investigated the influence of irrigation water requirement with the change of irrigation operation including channel supply and wire supply. Taoyuan Channel #2 Feeder was selected as study area. The irrigation resource included Shihmen reservoir, Nankan stream and Puxin stream. The agriculture irrigation system model was established by Vinsim model and irrigation water supply data in 2008 was applied. The simulation was divided into five cases. In case 1 to 4, the water supply from the reservoir was reduced in different patterns, up to 0 mm, while in Case 5 the supply from the river weir was changed. Case1 to Case 4 was to investigate the adjusted irrigation water volume which depended on operation methods. Case 5 was to simulate when half of water was supplement by weir gradually. The result showed that the total irrigation water volume decreased to 266mm and 366mm, which depended on paddy storage depth. The rice paddy with weir water supply only could maintain corps survival. The water supply operation which based on the height of ridge could save 200mm of irrigation water. This approach shows high feasibility on operation. Case5 simulation result indicated that the corps still maintained survival in downstream irrigation area. This study applied Vinsim model to evaluate the impact of irrigation water supply from two sources on the number 2 Feeder rice paddy in Tao-Yuan county, Taiwan. The rice paddy was divided into three zones, A, B and C respectively. These water supply sources originated from the Shimen reservoir via the number 2 Feeder canal and a river weir. Rainfall, evaporation and irrigation supply data from these two sources for 2008 were used to simulate in this study. The water supply from the sources were changed in to 5 cases, The results showed that for case 1 and 2, two zones A, B of rice paddy can satisfy crop growth demand, but for cases 3 and 4, zone B can not satisfy about 10 days of August. In case 5, the water supply from the river weir was reduced 50%. From the application of model it was found out that only these areas d1, d2, d3 and Shalun of Zone C satisfy crop growth demand.
Weng, Hao-en, and 翁浩恩. "A Non-GIS Based Spatial Decision Support System for Regional Irrigation Water Demand Estimate." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/61325847657331274741.
Повний текст джерела國立臺灣大學
生物環境系統工程學研究所
100
To efficiently manage the limited water supply resources is an important issue in Taiwan. The planning and management of agricultural water use is very important due to its large share (more than 70%) of the total water consumption. There are a lot of spatially related information, such as soil, crop weather and canal system, involved in the agricultural water management practices. Geographic Information System (GIS) was used to manage these spatial data and implement the Spatial Decision Support System (SDSS) for effectively manage the agricultural water use. The traditional GIS based SDSS is less flexible and portable and much difficult to implement or modify in different irrigation command areas or to adapt to the environmental change due to factors like global climate change. A non-GIS Excel-based DSS is proposed in this study to make the traditional SDSS more efficient, flexible and portable. Although the proposed system is not based on GIS, the necessary spatial characteristics for effective planning and management decisions are preserved. The system also provide user interface which makes scenario setup and simulation easy, therefore user can obtain necessary information for decision and realize the irrigation demand variation mechanism through changing the parameter of irrigation demand estimation and scenario situation. This proposed system is more portable and may be transplanted to different irrigation command area with less efforts. The command area of Taoyuan and Shimen irrigation associations and the Pai-Ho reservoir irrigation command area used as pilot study areas. The results show that this proposed system concept can provide fast and convenient regional irrigation water demand estimation to each Irrigation Associations in Taiwan. The system may also be extended to include the allocation model for supply and demand management, economic oriented analysis for better efficiency in planning and management of the limited water resources.
Книги з теми "Irrigation Estimates"
Huston, James R. Estimating for landscape & irrigation contractors. Denver, Colo: Smith Huston, 1994.
Знайти повний текст джерелаG, James Larry, Washington State University. Cooperative Extension., and United States. Dept. of Agriculture., eds. Irrigation requirements for Washington: Estimates and methodology. Pullman, Wash: Cooperative Extension, College of Agriculture & Home Economics, Washington State University, 1988.
Знайти повний текст джерелаHuston, James R. How to price landscape & irrigation projects. Denver, Colo: Smith Huston, 2003.
Знайти повний текст джерелаOwen-Joyce, Sandra J. Estimates of consumptive use and ground-water return flow using water budgets in Palo Verde Valley, California. Tucson, Ariz: Dept. of the Interior, U.S. Geological Survey, 1987.
Знайти повний текст джерелаOwen-Joyce, Sandra J. Estimates of consumptive use and ground-water return flow using water budgets in Parker Valley, Arizona and California, 1981-84. Tucson, Ariz: Dept. of the Interior, U.S. Geological Survey, 1988.
Знайти повний текст джерелаMaupin, Molly A. Agricultural land-use classification using Landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka Counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming. Boise, Idaho: U.S. Geological Survey, 1997.
Знайти повний текст джерелаMaupin, Molly A. Agricultural land-use classification using Landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka Counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming. Boise, Idaho: U.S. Geological Survey, 1997.
Знайти повний текст джерелаMaupin, Molly A. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming. Boise, Idaho: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Знайти повний текст джерелаMaupin, Molly A. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka Counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming. Boise, Idaho: U.S. Geological Survey, 1997.
Знайти повний текст джерелаMaupin, Molly A. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka Counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming. Boise, Idaho: U.S. Geological Survey, 1997.
Знайти повний текст джерелаЧастини книг з теми "Irrigation Estimates"
Martin, Timothy C., Richard G. Allen, Larry E. Brazil, J. Philip Burkhalter, and Jason S. Polly. "Evapotranspiration Estimates from Remote Sensing for Irrigation Water Management." In Satellite-based Applications on Climate Change, 195–216. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5872-8_13.
Повний текст джерелаMikkelsen, Robert L., and Terry L. Roberts. "Inputs: Potassium Sources for Agricultural Systems." In Improving Potassium Recommendations for Agricultural Crops, 47–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59197-7_2.
Повний текст джерелаDoval, Akanksha, and Priya Jadhav. "Development of Framework to Estimate Crop-wise, Region-wise Electricity Usage for Irrigation." In Advances in Energy Research, Vol. 1, 471–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_46.
Повний текст джерелаChichaibelu, Bezawit Beyene, Maksud Bekchanov, Joachim von Braun, and Maximo Torero. "The Global Cost of Reaching a World Without Hunger: Investment Costs and Policy Action Opportunities." In Science and Innovations for Food Systems Transformation, 625–60. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15703-5_34.
Повний текст джерелаMeselaw, Tewodrose D., Fasikaw A. Zimale, Seifu A. Tilahun, and Petra Schmitter. "Application of in Situ Thermal Imaging to Estimate Crop Water Stress and Crop Water Requirements for Wheat in Koga Irrigation Scheme, Ethiopia." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 144–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93712-6_10.
Повний текст джерела"Regional Estimates of Evapotranspiration." In Evaporation, Evapotranspiration, and Irrigation Water Requirements, 415–24. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784414057.ch12.
Повний текст джерела"Estimates of Irrigation Water Requirements and Streamflow Depletion." In Evaporation, Evapotranspiration, and Irrigation Water Requirements, 435–56. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784414057.ch14.
Повний текст джерелаRibeiro Mendes, Willians, Fábio Meneghetti U. Araújo, and Salah Er-Raki. "Integrating Remote Sensing Data into Fuzzy Control System for Variable Rate Irrigation Estimates." In Irrigation - Water Productivity and Operation, Sustainability and Climate Change. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.87023.
Повний текст джерелаAlley, William M., and Rosemarie Alley. "Beyond Rain." In High and Dry. Yale University Press, 2017. http://dx.doi.org/10.12987/yale/9780300220384.003.0001.
Повний текст джерелаAkroush, Samia Nadeem, Boubaker Dhehibi, and Aden Aw-Hassan. "Agricultural Growth Accounting and Total Factor Productivity in Jordan." In Environmental and Agricultural Informatics, 1709–23. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9621-9.ch079.
Повний текст джерелаТези доповідей конференцій з теми "Irrigation Estimates"
Sangster, Nadine, Aneil Ramkhalawan, Aatma Maharajh, Jorrel Bisnath, Edward Cumberbatch, Ronnie Bickramdass, David Edwards, and Prakash Persad. "SMART IRRIGATION ESTIMATOR." In International Conference on Emerging Trends in Engineering & Technology (IConETech-2020). Faculty of Engineering, The University of the West Indies, St. Augustine, 2020. http://dx.doi.org/10.47412/fsnx6661.
Повний текст джерелаChadi Georges Sayde, Lorraine Khoury, Alix Gitelman, and Marshall English. "Optimizing Estimates of Soil Moisture for Irrigation Scheduling." In 2008 Providence, Rhode Island, June 29 - July 2, 2008. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2008. http://dx.doi.org/10.13031/2013.25158.
Повний текст джерелаMarek, Thomas, Steve Amosson, Leon New, Fran Bretz, B. A. Stewart, and John Sweeten. "Irrigation Water Demand Estimates for the Texas Panhandle (Region A)." In Watershed Management and Operations Management Conferences 2000. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40499(2000)124.
Повний текст джерелаWalter C Bausch, Thomas J Trout, and Gerald W Buchleiter. "Evapotranspiration Estimates for Deficit Irrigated Corn." In 5th National Decennial Irrigation Conference Proceedings, 5-8 December 2010, Phoenix Convention Center, Phoenix, Arizona USA. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.35865.
Повний текст джерелаEnglish, Marshall, Chadi Sayde, Alix Gitelman, and Laureine El Khoury. "A Feedback System to Optimize Crop Water Use Estimates in Irrigation Scheduling." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)104.
Повний текст джерелаMadugundu, R., K. A. Al-Gaadi, and E. Tola. "67. Remote sensing estimates of crop water use for improved irrigation water management." In 13th European Conference on Precision Agriculture. The Netherlands: Wageningen Academic Publishers, 2021. http://dx.doi.org/10.3920/978-90-8686-916-9_67.
Повний текст джерелаGrubert, Emily A., and Michael E. Webber. "Water, Energy, and Land Use Planning on Maui Island, Hawaii: Estimating Surface Water Supply." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54332.
Повний текст джерелаRamos, J. G., J. A. Kay, C. R. Cratchley, M. A. Casterad, J. Herrero, R. López, A. Martínez-Cob, and R. Domínguez. "Crop management in a district within the Ebro River Basin using remote sensing techniques to estimate and map irrigation volumes." In SUSTAINABLE IRRIGATION 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/si060351.
Повний текст джерелаWang, Dingbao, and Ximing Cai. "Estimate Irrigation Water Use by Data Assimilation." In World Environmental and Water Resources Congress 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40856(200)271.
Повний текст джерела"A Method to Estimate Residential Irrigation from Potable Meter Data." In 2015 ASABE / IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation - A Tribute to the Career of Terry Howell, Sr. Conference Proceedings. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/irrig.20152145379.
Повний текст джерелаЗвіти організацій з теми "Irrigation Estimates"
Williams, Alison, Heidi Fuchs, and Camilla Dunham Whitehead. Estimates of Savings Achievable from Irrigation Controller. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1129575.
Повний текст джерелаWiggins, Steve, Marco Carreras, and Amrita Saha. Returns to Commercialisation: Gross Margins of Commercial Crops Grown by Smallholders in Sub-Saharan Africa. Institute of Development Studies (IDS), March 2022. http://dx.doi.org/10.19088/apra.2022.013.
Повний текст джерелаBravo-Ureta, Boris E., Eric Njuki, Ana Claudia Palacios, and Lina Salazar. Agricultural Productivity in El Salvador: A Preliminary Analysis. Inter-American Development Bank, February 2022. http://dx.doi.org/10.18235/0004020.
Повний текст джерелаMiyamoto, Seiichi, and Rami Keren. Improving Efficiency of Reclamation of Sodium-Affected Soils. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7570569.bard.
Повний текст джерелаHrozencik, R. Aaron, Nicholas Potter, and Steven Wallander. A National Estimate of Irrigation Canal Lining and Piping Water Conservation. Cambridge, MA: National Bureau of Economic Research, June 2022. http://dx.doi.org/10.3386/w30123.
Повний текст джерелаTanny, Josef, Gabriel Katul, Shabtai Cohen, and Meir Teitel. Application of Turbulent Transport Techniques for Quantifying Whole Canopy Evapotranspiration in Large Agricultural Structures: Measurement and Theory. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7592121.bard.
Повний текст джерелаMurphy, C. E. An Estimate of the History of Tritium Inventory in Wood Following Irrigation with Tritiated Water. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/782039.
Повний текст джерелаCowell, Chandler, Michael P. Gallaher, Justin Larson, and Aaron Schwartz. The Potential for SolarPowered Groundwater Irrigation in Sub-Saharan Africa: An Exploratory Analysis. RTI Press, November 2022. http://dx.doi.org/10.3768/rtipress.2022.op.0079.2211.
Повний текст джерелаTanny, Josef, Gabriel Katul, Shabtai Cohen, and Meir Teitel. Micrometeorological methods for inferring whole canopy evapotranspiration in large agricultural structures: measurements and modeling. United States Department of Agriculture, October 2015. http://dx.doi.org/10.32747/2015.7594402.bard.
Повний текст джерелаFreitas, Carlos Otávio, Felipe de F. Silva, and Mateus C. R. Neves. A Stochastic Frontier Approach Applied to Farms to Selected Andean Countries. Inter-American Development Bank, September 2021. http://dx.doi.org/10.18235/0003660.
Повний текст джерела