Добірка наукової літератури з теми "Intrinsic geometry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Intrinsic geometry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Intrinsic geometry"

1

Cattani, Carlo, and Ettore Laserra. "Intrinsic geometry of Lax equation." Journal of Interdisciplinary Mathematics 6, no. 3 (January 2003): 291–99. http://dx.doi.org/10.1080/09720502.2003.10700347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abou Zeid, M., and C. M. Hull. "Intrinsic geometry of D-branes." Physics Letters B 404, no. 3-4 (July 1997): 264–70. http://dx.doi.org/10.1016/s0370-2693(97)00570-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Madore, J., S. Schraml, P. Schupp, and J. Wess. "External fields as intrinsic geometry." European Physical Journal C 18, no. 4 (January 2001): 785–94. http://dx.doi.org/10.1007/s100520100566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cushman, Richard, and Jędrzej Śniatycki. "Intrinsic Geometric Structure of Subcartesian Spaces." Axioms 13, no. 1 (December 22, 2023): 9. http://dx.doi.org/10.3390/axioms13010009.

Повний текст джерела
Анотація:
Every subset S of a Cartesian space Rd, endowed with differential structure C∞(S) generated by restrictions to S of functions in C∞(Rd), has a canonical partition M(S) by manifolds, which are orbits of the family X(S) of all derivations of C∞(S) that generate local one-parameter groups of local diffeomorphisms of S. This partition satisfies the frontier condition, Whitney’s conditions A and B. If M(S) is locally finite, then it satisfies all definitions of stratification of S. This result extends to Hausdorff locally Euclidean differential spaces. The partition M(S) of a subcartesian space S by smooth manifolds provides a measure for the applicability of differential geometric methods to the study of the geometry of S. If all manifolds in M(S) are single points, we cannot expect differential geometry to be an effective tool in the study of S. On the other extreme, if M(S) contains only one manifold M, then the subcartesian space S is a manifold, S=M, and it is a natural domain for differential geometric techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bellucci, Stefano, and Bhupendra Nath Tiwari. "State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory." Advances in High Energy Physics 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/589031.

Повний текст джерела
Анотація:
We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gillespie, Mark, Nicholas Sharp, and Keenan Crane. "Integer coordinates for intrinsic geometry processing." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–13. http://dx.doi.org/10.1145/3478513.3480522.

Повний текст джерела
Анотація:
This paper describes a numerically robust data structure for encoding intrinsic triangulations of polyhedral surfaces. Many applications demand a correspondence between the intrinsic triangulation and the input surface, but existing data structures either rely on floating point values to encode correspondence, or do not support remeshing operations beyond basic edge flips. We instead provide an integer-based data structure that guarantees valid correspondence, even for meshes with near-degenerate elements. Our starting point is the framework of normal coordinates from geometric topology, which we extend to the broader set of operations needed for mesh processing (vertex insertion, edge splits, etc. ). The resulting data structure can be used as a drop-in replacement for earlier schemes, automatically improving reliability across a wide variety of applications. As a stress test, we successfully compute an intrinsic Delaunay refinement and associated subdivision for all manifold meshes in the Thingi10k dataset. In turn, we can compute reliable and highly accurate solutions to partial differential equations even on extremely low-quality meshes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nurowski, Pawel, and David C. Robinson. "Intrinsic geometry of a null hypersurface." Classical and Quantum Gravity 17, no. 19 (September 19, 2000): 4065–84. http://dx.doi.org/10.1088/0264-9381/17/19/308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bachini, Elena, and Mario Putti. "Geometrically intrinsic modeling of shallow water flows." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 6 (October 12, 2020): 2125–57. http://dx.doi.org/10.1051/m2an/2020031.

Повний текст джерела
Анотація:
Shallow water models of geophysical flows must be adapted to geometric characteristics in the presence of a general bottom topography with non-negligible slopes and curvatures, such as a mountain landscape. In this paper we derive an intrinsic shallow water model from the Navier–Stokes equations defined on a local reference frame anchored on the bottom surface. The equations resulting are characterized by non-autonomous flux functions and source terms embodying only the geometric information. We show that the proposed model is rotational invariant, admits a conserved energy, is well-balanced, and it is formally a second order approximation of the Navier–Stokes equations with respect to a geometry-based order parameter. We then derive a numerical discretization by means of a first order upwind Godunov finite volume scheme intrinsically defined on the bottom surface. We study convergence properties of the resulting scheme both theoretically and numerically. Simulations on several synthetic test cases are used to validate the theoretical results as well as more experimental properties of the solver. The results show the importance of taking into full consideration the bottom geometry even for relatively mild and slowly varying curvatures.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Hsueh-Ti Derek, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane. "Surface Simplification using Intrinsic Error Metrics." ACM Transactions on Graphics 42, no. 4 (July 26, 2023): 1–17. http://dx.doi.org/10.1145/3592403.

Повний текст джерела
Анотація:
This paper describes a method for fast simplification of surface meshes. Whereas past methods focus on visual appearance, our goal is to solve equations on the surface. Hence, rather than approximate the extrinsic geometry, we construct a coarse intrinsic triangulation of the input domain. In the spirit of the quadric error metric (QEM) , we perform greedy decimation while agglomerating global information about approximation error. In lieu of extrinsic quadrics, however, we store intrinsic tangent vectors that track how far curvature "drifts" during simplification. This process also yields a bijective map between the fine and coarse mesh, and prolongation operators for both scalar- and vector-valued data. Moreover, we obtain hard guarantees on element quality via intrinsic retriangulation---a feature unique to the intrinsic setting. The overall payoff is a "black box" approach to geometry processing, which decouples mesh resolution from the size of matrices used to solve equations. We show how our method benefits several fundamental tasks, including geometric multigrid, all-pairs geodesic distance, mean curvature flow, geodesic Voronoi diagrams, and the discrete exponential map.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shaik, Sason S. "Intrinsic selectivity and its geometric significance in SN2 reactions." Canadian Journal of Chemistry 64, no. 1 (January 1, 1986): 96–99. http://dx.doi.org/10.1139/v86-016.

Повний текст джерела
Анотація:
An intrinsic selectivity is defined for identity SN2 reactions (X− + RX → XR + X−). This selectivity parameter is shown to yield information about: (a) the average looseness of the TS geometry in a reaction series; and (b) the sensitivity of the reaction series to geometric loosening.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Intrinsic geometry"

1

Tavakkoli, Shahriar. "Shape design using intrinsic geometry." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Taft, Jefferson. "Intrinsic Geometric Flows on Manifolds of Revolution." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/194925.

Повний текст джерела
Анотація:
An intrinsic geometric flow is an evolution of a Riemannian metric by a two-tensor. An extrinsic geometric flow is an evolution of an immersion of a manifold into Euclidean space. An extrinsic flow induces an evolution of a metric because any immersed manifold inherits a Riemannian metric from Euclidean space. In this paper we discuss the inverse problem of specifying an evolution of a metric and then seeking an extrinsic geometric flow which induces the given metric evolution. We limit our discussion to the case of manifolds that are rotationally symmetric and embeddable with codimension one. In this case, we reduce an intrinsic geometric flow to a plane curve evolution. In the specific cases we study, we are able to further simplify the evolution to an evolution of a function of one variable. We provide soliton equations and give proofs that some soliton metrics exist.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Radvar-Esfahlan, Hassan. "Geometrical inspection of flexible parts using intrinsic geometry." Mémoire, École de technologie supérieure, 2010. http://espace.etsmtl.ca/657/1/RADVAR%2DESFAHLAN_Hassan.pdf.

Повний текст джерела
Анотація:
Le probleme du tolerancement des pieces mecaniques est decisif pour I'industrie de pointe. Ses incidences economiques sont importantes pour le secteur manufacturier qui subit des transformations profondes imposees par la globalisation des marches et revolution constante des technologies (CAO, CMM, 3D Scanner, etc.). U est admit aujourd'hui que I'optimisation des performances des produits requiert la prise en compte des variations inherentes aux processus de fabrication, d'ou le controle de la qualite a travers le processus de developpement et de fabrication. Dans le cas des composantes dites 'flexibles' (ou non rigides), par exemple des pieces mecanique a parol minces comme le revetement d'un avion ou d'une auto, I'usage industriel actuel est limite encore a I'utilisation de gabarit de conformite, relativement couteux, qui contraignent la geometric de la piece a un etat qui reflete 1'assemblage. Par la suite, des mesures par contact directe ou par scanner sont effectuees. C'est ainsi I'industrie elimine I'effet des deformations dues a la flexibilite de la piece pour tenter de detecter les defauts dus au procede de fabrication. Le projet propose a pour objectif de faciliter les operations d'inspection dimensionnelle et geometrique des composantes flexibles a partir d'un nuage de points, et ce, sans recours a un gabarit ou des operations secondaires de conformation. Plus specifiquement, nous visons le developpement d'une methodologie qui permettra de localiser et de quantifier les defauts de profil dans le cas des coques minces typique des industries aerospatiales et automobiles. Pour arriver a cet objectif, nous mettons en oeuvre une idee que nous appelons Numerical Inspection Fixture. Nous utilisons les distances geodesiques pour detecter la similarite intrinseque entre une piece a I'etat libre qui inclus les effets de gravite, des contraintes internes et des defauts de fabrication, et la meme piece telle que definie nominalement par un modele CAO. Ce memoire developpe le fondement theorique de cette methode et les algorithmes qu'y sont relies. Nous employons une approche, deja employe dans le domaine de I'imagerie medicale, pour identifier les distances geodesiques minimales (geometric metrique), les statistiques {Multidimensional Scaling - MDS) pour analyser les similarites et dissimilarites entre deux objets, ainsi que la methode d'elements finis (FE) pour aboutir a une approche generate et original pour I'inspection de pieces geometriques non rigides. Deux methodes y sont proposees avec des validations numeriques.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kynigos, Polychronis. "From intrinsic to non-intrinsic geometry : a study of children's understandings in Logo-based microworlds." Thesis, University College London (University of London), 1988. http://discovery.ucl.ac.uk/10020179/.

Повний текст джерела
Анотація:
The aim of the present study was to investigate the potential for children to use the turtle methaphor to develop understandings of intrinsic, euclidean and cartesian geometrical ideas. Four aspects of the problem were investigated. a) the nature of the schema children form when they identify with the turtle in order to change its state on the screen; b) whether it is possible for them to use the schema to gain insights into certain basic geometrical principles of the cartesian geometrical system; c) how they might use the schema to form understandings of euclidean geometry developed inductively from specific experiences; d) the criteria they develop for choosing between intrinsic and euclidean ideas. Ten 11 to 12 year - old children participated in the research, previously having had 40 to 50 hours of experience with Turtle geometry. The research involved three case - studies of pairs of children engaging in cooperative activities, each case - study within a geometrical Logo microworld. The data included hard copies of everything that was said, typed and written. Issues a) and b) were investigated by means of the first case - study which involved three pairs of children and a microworld embedding intrinsic and coordinate ideas. A model of the children's intrinsic schema and a model of the coordinate schema which they formed during the study were devised. The analysis shows that the two schemas remained separate in the children's minds with the exception of a limited number of occasions of context specific links between the two. Issue c) was investigated in the second case - study involving one pair of children and a microworld where the turtle was equipped with distance and turn measuring instruments and a facility to mark positions. The analysis illustrates how a turtle geometric environment of a dynamic mathematical nature was generated by the children, who used their intrinsic schema and predominantly engaged in inductive thinking. The geometrical content available to the children within this environment was extended from intrinsic to both intrinsic and euclidean geometry. Issue d) was investigated by means of the third case - study involving a pair of children and a microworld where the children could choose among circle procedures embedding intrinsic and/or euclidean notions in order to construct figures of circle compositions. The analysis shows that the children employed their turtle schema in using both kinds of notions and did not seem to perceive qualitative differences between them. Their decisions on which type of notion to use were influenced by certain broader aspects of the mathematical situations generated in the study.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Moghtasad-Azar, Khosro. "Surface deformation analysis of dense GPS networks based on intrinsic geometry : deterministic and stochastic aspects." kostenfrei, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sun, Jie. "Intrinsic geometry in screw algebra and derivative Jacobian and their uses in the metamorphic hand." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/intrinsic-geometry-in-screw-algebra-and-derivative-jacobian-and-their-uses-in-the-metamorphic-hand(8ccd2b47-de45-488f-af5d-634343746b57).html.

Повний текст джерела
Анотація:
Line geometry is a foundation of screw algebra in line coordinates that were created by Plücker as ray coordinates taking a line as a ray between two points and axis coordinates taking a line as the intersection of two planes. This Thesis reveals the geometrical meaning and intrinsic relationship between these ray coordinates and axis coordinates, leading to an in-depth understanding of conformability and duality of these two sets of screw coordinates, and their related vector space and dual vector space. Based on the study of screw algebra, the resultant twist of a serial manipulator is presented geometrically by an assembly of unit joint screws with the corresponding velocity amplitudes. This leads to the geometrical interpretation for the resultant twist with its instantaneous screw axis (ISA) that is formulated by a combination of weighted position vectors of joint screws. The screw-based Jacobian is then derived after recognizing the resultant twist of a serial manipulator. The case leads to a revelation for the first time the relationship of a Jacobian matrix acquired by using screw algebra and a derivative Jacobian matrix using differential functions, and to an in-depth investigation of transformation between these two Jacobians. To extend the application of screw algebra and this derivative Jacobian, kinematics analysis of a novel reconfigurable base-integrated parallel mechanism is proposed and its screw-based Jacobian is derived, leading to its equivalent model, the Metamorphic hand with a reconfigurable palm. The method is then applied to the investigation of the Metamorphic Hand, while manipulating an object, based on the product sub-manifolds and the exponential method. Evaluation of the functionality of the Metamorphic hand is further analysed, with the Anthropomorphism Index (AI) and palmar shape modulation as the criteria, evaluating performance enhancement of the Metamorphic hand in comparison to other robotic hands with a fixed palm. The Thesis presents novel discoveries in the intrinsic geometry of screw coordinates and the coherent connection between Jacobian formed by screw algebra and the Jacobian using the derivative method. This intrinsic geometry insight is then used to investigate for the first time the parallel mechanism with a reconfigurable base, paving a way for an in-depth investigation of the Metamorphic hand on its reconfigurability and grasp affordability and for the first time using Anthropomorphic Index to evaluate the Metamorphic hand.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Richard, Laurence. "Towards a Definition of Intrinsic Axes: The Effect of Orthogonality and Symmetry on the Preferred Direction of Spatial Memory." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1310492651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ahmad, Ola. "Stochastic representation and analysis of rough surface topography by random fields and integral geometry - Application to the UHMWPE cup involved in total hip arthroplasty." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00905519.

Повний текст джерела
Анотація:
Surface topography is, generally, composed of many length scales starting from its physical geometry, to its microscopic or atomic scales known by roughness. The spatial and geometrical evolution of the roughness topography of engineering surfaces avail comprehensive understanding, and interpretation of many physical and engineering problems such as friction, and wear mechanisms during the mechanical contact between adjoined surfaces. Obviously, the topography of rough surfaces is of random nature. It is composed of irregular hills/valleys being spatially correlated. The relation between their densities and their geometric properties are the fundamental topics that have been developed, in this research study, using the theory of random fields and the integral geometry.An appropriate random field model of a rough surface has been defined by the most significant parameters, whose changes influence the geometry of its excursion. The excursion sets were quantified by functions known as intrinsic volumes. These functions have many physical interpretations, in practice. It is possible by deriving their analytical formula to estimate the parameters of the random field model being applied on the surface, and for statistical analysis investigation of its excursion sets. These subjects have been essentially considered in this thesis. Firstly, the intrinsic volumes of the excursion sets of a class of mixture models defined by the linear combination of Gaussian and t random fields, then for the skew-t random fields are derived analytically. They have been compared and tested on surfaces generated by simulations. In the second stage, these random fields have been applied to real surfaces measured from the UHMWPE component, involved in application of total hip implant, before and after wear simulation process. The primary results showed that the skew-t random field is more adequate, and flexible for modelling the topographic roughness. Following these arguments, a statistical analysis approach, based on the skew-t random field, is then proposed. It aims at estimating, hierarchically, the significant levels including the real hills/valleys among the uncertain measurements. The evolution of the mean area of the hills/valleys and their levels enabled describing the functional behaviour of the UHMWPE surface over wear time, and indicating the predominant wear mechanisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Spencer, Benjamin. "On-line C-arm intrinsic calibration by means of an accurate method of line detection using the radon transform." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAS044/document.

Повний текст джерела
Анотація:
Les ``C-arm'' sont des systémes de radiologie interventionnelle fréquemment utilisés en salle d'opération ou au lit du patient. Des images 3D des structures anatomiques internes peuvent être calculées à partir de multiples radiographies acquises sur un ``C-arm mobile'' et isocentrique décrivant une trajectoire généralement circulaire autour du patient. Pour cela, la géométrie conique d'acquisition de chaque radiographie doit être précisément connue. Malheureusement, les C-arm se déforment en général au cours de la trajectoire. De plus leur motorisation engendre des oscillations non reproductibles. Ils doivent donc être calibrés au cours de l'acquisition. Ma thèse concerne la calibration intrinsèque d'un C-arm à partir de la détection de la projection du collimateur de la source dans les radiographies.Nous avons développé une méthode de détection de la projection des bords linéaires du collimateur. Elle surpasse les méthodes classiques comme le filtre de Canny sur données simulées ou réelles. La précision que nous obtenons sur l'angle et la position (phi,s) des droites est de l'ordre de: phi{RMS}=+/- 0.0045 degrees et s{RMS}=+/- 1.67 pixels. Nous avons évalué nos méthodes et les avons comparés à des méthodes classiques de calibration dans le cadre de la reconstruction 3D
Mobile isocentric x-ray C-arm systems are an imaging tool used during a variety of interventional and image guided procedures. Three-dimensional images can be produced from multiple projection images of a patient or object as the C-arm rotates around the isocenter provided the C-arm geometry is known. Due to gravity affects and mechanical instabilities the C-arm source and detector geometry undergo significant non-ideal and possibly non reproducible deformation which requires a process of geometric calibration. This research investigates the use of the projection of the slightly closed x-ray tube collimator edges in the image field of view to provide the online intrinsic calibration of C-arm systems.A method of thick straight edge detection has been developed which outperforms the commonly used Canny filter edge detection technique in both simulation and real data investigations. This edge detection technique has exhibited excellent precision in detection of the edge angles and positions, (phi,s), in the presence of simulated C-arm deformation and image noise: phi{RMS} = +/- 0.0045 degrees and s{RMS} = +/- 1.67 pixels. Following this, the C-arm intrinsic calibration, by means of accurate edge detection, has been evaluated in the framework of 3D image reconstruction
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cotsakis, Ryan. "Sur la géométrie des ensembles d'excursion : garanties théoriques et computationnelles." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5007.

Повний текст джерела
Анотація:
L'ensemble d'excursion EX(u) d'un champ aléatoire réel X sur R^d à un niveau de seuil u ∈ R est le sous-ensemble du domaine R^d où X dépasse u. Ainsi, l'ensemble d'excursion est aléatoire, et sa distribution à un niveau fixe u est déterminée par la distribution de X. Étant des sous-ensembles de R^d, les ensembles d'excursions peuvent être étudiés en termes de leurs propriétés géométriques comme moyen d'obtenir des informations partielles sur les propriétés de distribution des champs aléatoires sous-jacents.Cette thèse examine :(a) comment les mesures géométriques d'un ensemble d'excursion peuvent être déduites à partir d'un échantillon discret de l'ensemble d'excursion, et(b) comment ces mesures peuvent être liées aux propriétés distributionnelles du champ aléatoire à partir duquel l'ensemble d'excursion a été obtenu. Chacun de ces points est examiné en détail dans le Chapitre 1, qui fournit un aperçu global des résultats trouvés tout au long du reste de ce manuscrit. Les mesures géométriques que nous étudions (pour les ensembles d'excursion et les sous-ensembles déterministes de R^d) lors de l'adressage du point (a) sont la mesure de la surface de dimension (d−1), le reach, et le rayon de r-convexité. Chacune de ces quantités peut être liée à la régularité de la frontière de l'ensemble, ce qui est souvent difficile à déduire à partir d'échantillons discrets de points.Pour résoudre ce problème, nous apportons les contributions suivantes au domaine de la géométrie computationnelle :- Dans le Chapitre 2, nous identifions le facteur de biais qui correspond aux algorithmes de comptage local pour calculer la mesure de la surface de dimension (d − 1) des ensembles d'excursion sur une grande classe de pavages de R^d. Le facteur de biais dépend uniquement de la dimension d et non de la géométrie précise du pavage.- Dans le Chapitre 3, nous introduisons un algorithme de comptage pseudo-local pour calculer le périmètre des ensembles d'excursion en deux dimensions. L'algorithme proposé est convergent multigrille (multigrid convergent en anglais) et comporte un hyper paramètre réglable pouvant être choisi automatiquement à partir d'informations accessibles.- Dans le Chapitre 4, nous introduisons le β-reach en tant que généralisation du reach, et l'utilisons pour prouver la cohérence d'un estimateur du reach des sous-ensembles fermés de R^d. De même, nous définissons un estimateur cohérent du rayon de r-convexité des sous-ensembles fermés de R^d. De nouvelles relations théoriques sont établies entre le reach et le rayon de r-convexité. Nous étudions également comment ces mesures géométriques des ensembles d'excursion sont liées à la distribution du champ aléatoire.- Dans le Chapitre 5, nous introduisons l'extremal range : une statistique géométrique locale qui caractérise l'étendue spatiale des dépassements de seuil à un niveau fixe u ∈ R. La distribution de l'extremal range est entièrement déterminée par la distribution de l'ensemble d'excursion au niveau u. Nous montrons comment l'extremal range est liée distributionnellement aux volumes intrinsèques de l'ensemble d'excursion. De plus, le comportement limite de l'extremal range aux grands seuils est étudié en relation avec la stabilité des peaks-over-threshold du champ aléatoire sous-jacent. Enfin, la théorie est appliquée à des données climatiques réelles pour mesurer le degré d'indépendance asymptotique présent et sa variation dans l'espace.Des perspectives sur la manière dont ces résultats peuvent être améliorés et étendus sont fournies dans le Chapitre 6
The excursion set EX(u) of a real-valued random field X on R^d at a threshold level u ∈ R is the subset of the domain R^d on which X exceeds u. Thus, the excursion set is random, and its distribution at a fixed level u is determined by the distribution of X. Being subsets of R^d, excursion sets can be studied in terms of their geometrical properties as a means of obtaining partial information about the distributional properties of the underlying random fields.This thesis investigates(a) how the geometric measures of an excursion set can be inferred from a discrete sample of the excursion set, and(b) how these measures can be related back to the distributional properties of the random field from which the excursion set was obtained.Each of these points are examined in detail in Chapter 1, which provides a broad overview of the results found throughout the remainder of this manuscript. The geometric measures that we study (for both excursion sets and deterministic subsets of R^d) when addressing point (a) are the (d − 1)-dimensional surface area measure, the reach, and the radius of r-convexity. Each of these quantities can be related to the smoothness of the boundary of the set, which is often difficult to infer from discrete samples of points. To address this problem, we make the following contributions to the field of computational geometry:• In Chapter 2, we identify the bias factor in using local counting algorithms for computing the (d − 1)-dimensional surface area of excursion sets over a large class of tessellations of R^d. The bias factor is seen to depend only on the dimension d and not on the precise geometry of the tessellation.• In Chapter 3, we introduce a pseudo-local counting algorithm for computing the perimeter of excursion sets in two-dimensions. The proposed algorithm is multigrid convergent, and features a tunable hyperparameter that can be chosen automatically from accessible information.• In Chapter 4, we introduce the β-reach as a generalization of the reach, and use it to prove the consistency of an estimator for the reach of closed subsets of R^d. Similarly, we define a consistent estimator for the radius of r-convexity of closed subsets of R^d. New theoretical relationships are established between the reach and the radius of r-convexity.We also study how these geometric measures of excursion sets relate to the distribution of the random field.• In Chapter 5, we introduce the extremal range: a local, geometric statistic that characterizes the spatial extent of threshold exceedances at a fixed level threshold u ∈ R. The distribution of the extremal range is completely determined by the distribution of the excursion set at the level u. We show how the extremal range is distributionally related to the intrinsic volumes of the excursion set. Moreover, the limiting behavior of the extremal range at large thresholds is studied in relation to the peaks-over-threshold stability of the underlying random field. Finally, the theory is applied to real climate data to measure the degree of asymptotic independence present, and its variation throughout space.Perspectives on how these results may be improved and expanded upon are provided in Chapter 6
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Intrinsic geometry"

1

Todd, Philip H. Intrinsic geometry ofbiological surface growth. Berlin: Springer-Verlag, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Todd, Philip H. Intrinsic Geometry of Biological Surface Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-93320-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chandra, Saurabh, ed. SOCRATES (Vol 3, No 2 (2015): Issue- June). 3rd ed. India: SOCRATES : SCHOLARLY RESEARCH JOURNAL, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Intrinsic geometry of convex surfaces. Boca Raton, Fla: Chapman & Hall/CRC Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Todd, Philip H. Intrinsic Geometry of Biological Surface Growth. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Intrinsic Geometry Of Biological Surface Growth. Springer, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Todd, Philip H. Intrinsic Geometry of Biological Surface Growth. Island Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Intrinsic geometry of biological surface growth. Berlin: Springer-Verlag, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Theory of Complex Finsler Geometry and Geometry of Intrinsic Metrics. World Scientific Publishing Co Pte Ltd, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Theory of Complex Finsler Geometry and Geometry of Intrinsic Metrics. World Scientific Publishing Co Pte Ltd, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Intrinsic geometry"

1

Callahan, James J. "Intrinsic Geometry." In Undergraduate Texts in Mathematics, 257–328. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-6736-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Hongbo, Lina Cao, Nanbin Cao, and Weikun Sun. "Intrinsic Differential Geometry with Geometric Calculus." In Computer Algebra and Geometric Algebra with Applications, 207–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499251_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Araújo, Paulo Ventura. "The Intrinsic Geometry of Surfaces." In Differential Geometry, 83–138. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62384-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Callahan, James J. "Erratum to: Intrinsic Geometry." In Undergraduate Texts in Mathematics, 458–59. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-6736-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Montiel, Sebastián, and Antonio Ros. "Intrinsic geometry of surfaces." In Graduate Studies in Mathematics, 203–74. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/069/07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stroock, Daniel. "Some intrinsic Riemannian geometry." In Mathematical Surveys and Monographs, 165–76. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/surv/074/07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Casey, James. "Intrinsic Geometry of a Surface." In Exploring Curvature, 188–92. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-80274-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wells, Raymond O. "Gauss and Intrinsic Differential Geometry." In Differential and Complex Geometry: Origins, Abstractions and Embeddings, 49–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kühnel, Wolfgang. "The intrinsic geometry of surfaces." In The Student Mathematical Library, 127–88. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/stml/016/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Malkowsky, Eberhard, Ćemal Dolićanin, and Vesna Veličković. "The Intrinsic Geometry of Surfaces." In Differential Geometry and Its Visualization, 245–372. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003370567-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Intrinsic geometry"

1

Yan, Shengchao, Baohe Zhang, Yuan Zhang, Joschka Boedecker, and Wolfram Burgard. "Learning Continuous Control with Geometric Regularity from Robot Intrinsic Symmetry." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 49–55. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sharp, Nicholas, Mark Gillespie, and Keenan Crane. "Geometry processing with intrinsic triangulations." In SIGGRAPH '21: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3450508.3464592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ewert-Krzemieniewski, Stanisław, Fernando Etayo, Mario Fioravanti, and Rafael Santamaría. "On Intrinsic and Induced Linear Connections on Semi-Riemannian Manifolds." In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Simon, Udo, Luc Vrancken, Changping Wang, and Martin Wiehe. "Intrinsic and Extrinsic Geometry of Ovaloids and Rigidity." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tavakkoli, Shahriar, and Sanjay G. Dhande. "Shape Synthesis and Optimization Using Intrinsic Geometry." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0074.

Повний текст джерела
Анотація:
Abstract The present paper outlines a method of shape synthesis using intrinsic geometry to be used for two-dimensional shape optimization problems. It is observed that the shape of a curve can be defined in terms of intrinsic parameters such as the curvature as a function of the arc length. The method of shape synthesis, proposed here, consists of selecting a shape model, defining a set of shape design variables and then evaluating Cartesian coordinates of a curve. A shape model is conceived as a set of continuous piecewise linear segments of the curvature; each segment defined as a function of the arc length. The shape design variables are the values of curvature and/or arc lengths at some of the end-points of the linear segments. The proposed method of shape synthesis and optimization is general in nature. It has been shown how the proposed method can be used to find the optimal shape of a planar Variable Geometry Truss (VGT) manipulator for a pre-specified position and orientation of the end-effector. In conclusion, it can be said that the proposed approach requires fewer design variables as compared to the methods where shape is represented using spline-like functions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ryan, Patrick J. "INTRINSIC PROPERTIES OF REAL HYPERSURFACES IN COMPLEX SPACE FORMS." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

BOI, L. "LOOKING THE WORLD FROM INSIDE: INTRINSIC GEOMETRY OF COMPLEX SYSTEMS." In Proceedings of the 7th International Workshop on Data Analysis in Astronomy “Livio Scarsi and Vito DiGesù”. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814383295_0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Widmann, James M., and Sheri D. Sheppard. "Intrinsic Geometry for Shape Optimal Design With Analysis Model Compatibility." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0137.

Повний текст джерела
Анотація:
Abstract This paper presents a comparison of geometric modeling techniques and their applicability to structural shape optimization. A method of shape definition based on intrinsic geometric quantities is then outlined. Explicit knowledge of curvature and arc length allow for a quantitative assessment of the compatibility of analysis model with the design model when using finite elements to determine structural response quantities. The compatibility condition is formalized by controlling finite element idealization error and is incorporated into the shape optimization model as simple bounds on the curvature design variables. Several examples of shape optimization problems are solved using sequential quadratic programming which proves to be an effective tool for maintaining the geometric equality constraints that arise from intrinsically defined curves.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Y., and Y. s. Hung. "Recovery of Circular Motion Geometry in Spite of Varying Intrinsic Parameters." In 2006 IEEE International Conference on Video and Signal Based Surveillance. IEEE, 2006. http://dx.doi.org/10.1109/avss.2006.97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yudin, Eric, Aaron Wetzler, Matan Sela, and Ron Kimmel. "Improving 3D Facial Action Unit Detection with Intrinsic Normalization." In Proceedings of the 1st International Workshop on DIFFerential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories 2015. British Machine Vision Association, 2015. http://dx.doi.org/10.5244/c.29.diffcv.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії