Добірка наукової літератури з теми "Interferometric detector"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interferometric detector".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interferometric detector"
Heurs, M. "Gravitational wave detection using laser interferometry beyond the standard quantum limit." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2120 (April 16, 2018): 20170289. http://dx.doi.org/10.1098/rsta.2017.0289.
Повний текст джерелаMonnier, John D. "Infrared interferometry of circumstellar envelopes." Symposium - International Astronomical Union 191 (1999): 321–30. http://dx.doi.org/10.1017/s0074180900203239.
Повний текст джерелаChou, Chien, Hui-Kang Teng, Chien-Chung Tsai, and Li-Ping Yu. "Balanced detector interferometric ellipsometer." Journal of the Optical Society of America A 23, no. 11 (November 1, 2006): 2871. http://dx.doi.org/10.1364/josaa.23.002871.
Повний текст джерелаRowan, Sheila. "Current and future status of gravitational wave astronomy - gravitational wave facilities." Proceedings of the International Astronomical Union 2, no. 14 (August 2006): 526–27. http://dx.doi.org/10.1017/s1743921307011684.
Повний текст джерелаTrott, Cathryn M., Randall B. Wayth, Jean-Pierre R. Macquart, and Steven J. Tingay. "Source Detection with Interferometric Datasets." Proceedings of the International Astronomical Union 7, S285 (September 2011): 414–16. http://dx.doi.org/10.1017/s1743921312001263.
Повний текст джерелаMazilu, M., P. J. Phillips, and A. Miller. "Interferometric Hetero-Detector Phase Measurement." Optical and Quantum Electronics 36, no. 5 (April 2004): 431–42. http://dx.doi.org/10.1023/b:oqel.0000022997.34800.89.
Повний текст джерелаPrado, A. R. C., F. S. Bortoli, N. S. Magalhaes, R. N. Duarte, C. Frajuca, and R. C. Souza. "Obtaining the sensitivity of a calibrator for interferometric gravitational wave." Journal of Physics: Conference Series 2090, no. 1 (November 1, 2021): 012158. http://dx.doi.org/10.1088/1742-6596/2090/1/012158.
Повний текст джерелаPai, Archana. "Gravitational Waves in an Interferometric Detector." Current Science 112, no. 07 (April 1, 2017): 1353. http://dx.doi.org/10.18520/cs/v112/i07/1353-1360.
Повний текст джерелаPrado, A. R. C., F. S. Bortoli, N. S. Magalhaes, R. N. Duarte, C. Frajuca, and R. C. Souza. "Modelling a mechanical antenna for a calibrator for interferometric gravitational wave detector using finite elements method." Journal of Physics: Conference Series 2090, no. 1 (November 1, 2021): 012157. http://dx.doi.org/10.1088/1742-6596/2090/1/012157.
Повний текст джерелаFritschel, Peter, Nergis Mavalvala, David Shoemaker, Daniel Sigg, Michael Zucker, and Gabriela González. "Alignment of an interferometric gravitational wave detector." Applied Optics 37, no. 28 (October 1, 1998): 6734. http://dx.doi.org/10.1364/ao.37.006734.
Повний текст джерелаДисертації з теми "Interferometric detector"
Casanueva, Diaz Julia. "Control of the gravitational wave interferometric detector Advanced Virgo." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS209/document.
Повний текст джерелаThe first detection of a Gravitational Wave (GW) was done on September 14 th of 2015 by the LIGO-Virgo collaboration with the two LIGO detectors. It was emitted by the merger of a Binary Black Hole, providing the first direct proof of the existence of Black Holes. Advanced Virgo is the upgraded version of the Virgo interferometer and it will join the LIGO detectors in the next months. The passage of a GW on Earth induces a change on the distance between test masses (experiencing only the gravitational interaction) in a differential way. This distance variation is proportional to the amplitude of the GW however the largest displacement observable on Earth will be of the order of 10⁻¹⁹ m/sqrt(Hz). Taking this in account, a Michelson interferometer is the ideal instrument to detect this differential effect. GWs detectors will use suspended mirrors to behave as test masses. The passage of a GW will cause a change on the distance between the mirrors that will spoil the interference condition, allowing some light to leak to the detection photodiode. However, a simple Michelson interferometer does not provide enough sensitivity. For this reason the first generation of detectors added Fabry-Perot cavities in the arms, in order to increase the optical path. A second change was the addition of an extra mirror in order to recycle the light that comes back towards the laser, to increase the effective power, creating a new cavity also known as Power Recycling Cavity (PRC). Its effect is more important when the Michelson is tuned in an optimal way in a dark fringe. All the mirrors of the detector are affected by the seismic noise and so their distance is continuously changing. It is necessary to control the longitudinal and angular position of the cavities in order to keep them at resonance. During my thesis I have studied the control of Advanced Virgo using simulation and during the commissioning itself. First of all I have simulated the control strategy used in Virgo using modal simulations. The aim was to check if the same strategy could be applied to Advanced Virgo or if it needs adaptation. In Advanced Virgo the Fabry-Perot cavities have a higher finesse, which arises new dynamical problems and requires a special control strategy that I have modified to match the commissioning needs. Regarding the PRC, we have studied the impact of its stability on the performance of the interferometer. As it is very close from the instability region, the electrical field inside will be very sensitive to alignment and matching of the laser beam. We have checked using simulations its impact on the longitudinal controls, which can become unstable, and a solution has been validated. Then I have used this information during the commissioning of the Advanced Virgo detector. In this thesis the details of the commissioning of the longitudinal and angular control of the interferometer will be presented. It includes the frequency stabilization, which has a key role in the control of the interferometer, since it is the dominant noise
Nishizawa, Atsushi, Seiji Kawamura, Tomotada Akutsu, Koji Arai, Kazuhiro Yamamoto, Daisuke Tatsumi, Erina Nishida, et al. "Laser-interferometric detectors for gravitational wave backgrounds at 100 MHz: Detector design and sensitivity." American Physical Society, 2008. http://hdl.handle.net/2237/11308.
Повний текст джерелаTripp, Everett. "Interferometric Optical Readout System for a MEMS Infrared Imaging Detector." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/222.
Повний текст джерелаRegehr, Martin W. Drever Ronald W. P. Drever Ronald W. P. Yariv Amnon Raab Frederick J. "Signal extraction and control for an interferometric gravitational wave detector /." Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-10192007-092215.
Повний текст джерелаGossler, Stefan. "The suspension systems of the interferometric gravitational-wave detector GEO 600." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972116710.
Повний текст джерелаKerr, G. A. "Experimental developments towards a long-baseline laser interferometric gravitational radiation detector." Thesis, University of Glasgow, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378181.
Повний текст джерелаTröbs, Michael. "Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974983705.
Повний текст джерелаHughes, Roy John. "The application of array detector technology to interferometric spectroscopy : design, analysis and development." Thesis, Queensland University of Technology, 1994.
Знайти повний текст джерелаGras, Slawomir M. "Opto-acoustic interactions in high power interferometric gravitational wave detectors." University of Western Australia. School of Physics, 2009. http://theses.library.uwa.edu.au/adt-WU2010.0093.
Повний текст джерелаBADARACCO, FRANCESCA. "Newtonian Noise studies in 2nd and 3rd generation gravitational-wave interferometric detectors." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/16065.
Повний текст джерелаКниги з теми "Interferometric detector"
Casanueva Diaz, Julia. Control of the Gravitational Wave Interferometric Detector Advanced Virgo. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2.
Повний текст джерелаEric, Udd, Tatam Ralph P, Society of Photo-optical Instrumentation Engineers. Poland Chapter., Politechnika Warszawska, and Foundation for Promotion and Development of Optical Techniques (Poland), eds. Interferometric fiber sensing: Interferometry '94, 16-20 May, 1994, Warsaw, Poland. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1994.
Знайти повний текст джерелаFundamentals of interferometric gravitational wave detectors. Singapore: World Scientific, 1994.
Знайти повний текст джерелаNguyen, Cam. Theory, analysis and design of RF interferometric sensors. New York: Springer, 2012.
Знайти повний текст джерелаCenter, NASA Glenn Research, ed. Damage detection using holography and interferometry. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Знайти повний текст джерелаDecker, Arthur J. Damage detection using holography and interferometry. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Знайти повний текст джерелаGilbreath, G. Charmaine, and Chadwick T. Hawley. Active and passive signatures: 8-9 April 2010, Orlando, Florida, United States. Bellingham, Wash: SPIE, 2010.
Знайти повний текст джерелаGilbreath, G. Charmaine, and Chadwick T. Hawley. Active and passive signatures III: 25-26 April 2012, Baltimore, Maryland, United States. Bellingham, Washington: SPIE, 2012.
Знайти повний текст джерелаGilbreath, G. Charmaine, and Chadwick T. Hawley. Active and passive signatures II: 27-28 April 2011, Orlando, Florida, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.
Знайти повний текст джерелаCho, Y. C. Fiber-optic interferometric sensors for measurements of pressure fluctuations: Experimental evaluation. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Знайти повний текст джерелаЧастини книг з теми "Interferometric detector"
Giazotto, A., and S. Braccini. "VIRGO: An Interferometric Detector of Gravitational Waves." In Recent Developments in General Relativity, Genoa 2000, 111–19. Milano: Springer Milan, 2002. http://dx.doi.org/10.1007/978-88-470-2101-3_8.
Повний текст джерелаAndersen, Michael I., and Anton Norup Sørensen. "An Interferometric Method for Measurement of the Detector MTF." In Optical Detectors for Astronomy, 187–90. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5262-4_28.
Повний текст джерелаCasanueva Diaz, Julia. "Introduction." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 1–5. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_1.
Повний текст джерелаCasanueva Diaz, Julia. "Gravitational Waves." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 7–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_2.
Повний текст джерелаCasanueva Diaz, Julia. "Ground Based Gravitational Wave Detectors." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 15–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_3.
Повний текст джерелаCasanueva Diaz, Julia. "Advanced Virgo." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 27–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_4.
Повний текст джерелаCasanueva Diaz, Julia. "Fabry-Perot Cavities in Advanced Virgo." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 37–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_5.
Повний текст джерелаCasanueva Diaz, Julia. "Power Recycled Interferometer." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 85–134. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_6.
Повний текст джерелаCasanueva Diaz, Julia. "Advanced Virgo Commissioning." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 135–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_7.
Повний текст джерелаCasanueva Diaz, Julia. "Conclusion." In Control of the Gravitational Wave Interferometric Detector Advanced Virgo, 199–202. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96014-2_8.
Повний текст джерелаТези доповідей конференцій з теми "Interferometric detector"
Hodges, Steven E., Mark T. Kern, and Kwangjai Park. "An Interferometric Thermal Detector." In SPIE 1989 Technical Symposium on Aerospace Sensing, edited by Eustace L. Dereniak and Robert E. Sampson. SPIE, 1989. http://dx.doi.org/10.1117/12.960661.
Повний текст джерелаMIO, NOIKATSU. "INTERFEROMETRIC GRAVITATIONAL WAVE DETECTOR IN JAPAN." In Proceedings of the 7th International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776716_0053.
Повний текст джерелаRobertson, N. A. "GEO 600 - A Laser Interferometric Gravitational Wave Detector." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cfd3.
Повний текст джерелаDykaar, Doug R. "Generation of Pulsed High Power Far Infrared Radiation." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.mc15.
Повний текст джерелаCrouzier, A., F. Malbet, F. Hénault, A. Léger, C. Cara, J. M. Le Duigou, O. Preis, et al. "The latest results from DICE (Detector Interferometric Calibration Experiment)." In SPIE Astronomical Telescopes + Instrumentation, edited by Howard A. MacEwen, Giovanni G. Fazio, Makenzie Lystrup, Natalie Batalha, Nicholas Siegler, and Edward C. Tong. SPIE, 2016. http://dx.doi.org/10.1117/12.2234304.
Повний текст джерелаBarone, Fabrizio, Umberto Bernini, M. Conti, Luciano DiFiore, Leopoldo Milano, G. Russo, Paolo Russo, Alberto Del Guerra, and Mauro Gambaccini. "Test of a fiber optic interferometric x-ray detector." In Fibers '92, edited by Eric Udd and Ramon P. DePaula. SPIE, 1993. http://dx.doi.org/10.1117/12.141274.
Повний текст джерелаLarrategui, Martin Tangari, Jonathan D. Ellis, and Thomas G. Brown. "Non-null interferometric surface figure testing beyond the detector pixel MTF cutoff spatial frequency limit." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jw5a.90.
Повний текст джерелаRÜDIGER, ALBRECHT. "GEO 600 – A SHORT-ARM LASER-INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTOR." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702999_0046.
Повний текст джерелаAcernese, F., P. Amico, M. Alshourbagy, F. Antonucci, S. Aoudia, P. Astone, S. Avino, et al. "Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector." In 2007 15th IEEE-NPSS Real-Time Conference. IEEE, 2007. http://dx.doi.org/10.1109/rtc.2007.4382842.
Повний текст джерелаStephenson, Gary V., and Glen A. Robertson. "Lessons for Energy Resonance HFGW Detector Designs from Mass Resonance and Interferometric LFGW Detectors." In SPACE, PROPULSION & ENERGY SCIENCES INTERNATIONAL FORUM: SPESIF-2009. AIP, 2009. http://dx.doi.org/10.1063/1.3115562.
Повний текст джерелаЗвіти організацій з теми "Interferometric detector"
Eichel, P. H., D. C. Ghiglia, and C. V. Jr Jakowatz. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/211364.
Повний текст джерелаDudley, J. P., and S. V. Samsonov. SAR interferometry with the RADARSAT Constellation Mission. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329396.
Повний текст джерелаDimopoulos, Savas, Peter W. Graham, Jason M. Hogan, Mark A. Kasevich, and Surjeet Rajendran. Gravitational Wave Detection with Atom Interferometry. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/922600.
Повний текст джерелаFiedler, Curtis J. The Interferometric Detection of Ultrafast Pulses of Laser Generated Ultrasound. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/ada312079.
Повний текст джерелаSorensen, K. W. Coherent change detection and interferometric ISAR measurements in the folded compact range. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/400087.
Повний текст джерелаYocky, David. Source Physics Experiment: Rock Valley Interferometric Synthetic Aperture RADAR Earthquake Detection Study. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821315.
Повний текст джерелаDudley, J. P., and S. V. Samsonov. Système de traitement automatisé du gouvernement canadien pour la détection des variations et l'analyse des déformations du sol à partir des données de radar à synthèse d'ouverture de RADARSAT-2 et de la mission de la Constellation RADARSAT : description et guide de l'utilisateur. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329134.
Повний текст джерелаLukowski, T. I., and F. Charbonneau. Synthetic Aperture Radar and Search and Rescue: detection of crashed aircraft using imagery and interferometric methods. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219846.
Повний текст джерелаLibby, S., V. Sonnad, S. Kreek, K. Brady, M. Matthews, B. Dubetsky, A. Vitouchkine, and B. Young. Feasibility Study of a Passive, Standoff Detector of High Density Masses with a Gravity Gradiometer Based on Atom Interferometry. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1068278.
Повний текст джерелаVogel, Sven, та Erik Watkins. Neutron Imaging Using Grating Interferometry: Exploiting phase contrast and dark-field imaging for <1μm feature detection in bulk materials. Office of Scientific and Technical Information (OSTI), вересень 2020. http://dx.doi.org/10.2172/1669072.
Повний текст джерела