Добірка наукової літератури з теми "Interface phenomenon"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interface phenomenon".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interface phenomenon"
Agrawal, S. "Bubble dynamics and interface phenomenon." Journal of Engineering and Technology Research 5, no. 3 (March 31, 2013): 42–50. http://dx.doi.org/10.5897/jetr2013.0297.
Повний текст джерелаDai, Jinghang, and Zhiting Tian. "Nanoscale thermal interface rectification in the quantum regime." Applied Physics Letters 122, no. 12 (March 20, 2023): 122204. http://dx.doi.org/10.1063/5.0143038.
Повний текст джерелаROJAS, RENÉ G., RICARDO G. ELÍAS, and MARCEL G. CLERC. "DYNAMICS OF AN INTERFACE CONNECTING A STRIPE PATTERN AND A UNIFORM STATE: AMENDED NEWELL–WHITEHEAD–SEGEL EQUATION." International Journal of Bifurcation and Chaos 19, no. 08 (August 2009): 2801–12. http://dx.doi.org/10.1142/s0218127409024499.
Повний текст джерелаHabert, J., T. Machej, and T. Czeppe. "The phenomenon of wetting at solid/solid interface." Surface Science Letters 151, no. 1 (March 1985): A80. http://dx.doi.org/10.1016/0167-2584(85)90633-4.
Повний текст джерелаHaber, J., T. Machej, and T. Czeppe. "The phenomenon of wetting at solid/solid interface." Surface Science 151, no. 1 (March 1985): 301–10. http://dx.doi.org/10.1016/0039-6028(85)90468-6.
Повний текст джерелаRezaee, Nastaran, John Aunna, and Jamal Naser. "Marangoni Flow Investigation in Foam Fractionation Phenomenon." Fluids 8, no. 7 (July 18, 2023): 209. http://dx.doi.org/10.3390/fluids8070209.
Повний текст джерелаYin, Lan, S. Balaji, and S. Seetharaman. "Effects of Nickel on Interface Morphology during Oxidation of Fe-Cu-Ni Alloys." Defect and Diffusion Forum 297-301 (April 2010): 318–29. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.318.
Повний текст джерелаFujii, Nobutoshi, Shunsuke Furuse, Hirotaka Yoshioka, Naoki Ogawa, Taichi Yamada, Takaaki Hirano, Suguru Saito, Yoshiya Hagimoto, and Hayato Iwamoto. "(Invited) Bonding Strength of Cu-Cu Hybrid Bonding for 3D Integration Process." ECS Transactions 112, no. 3 (September 29, 2023): 3–14. http://dx.doi.org/10.1149/11203.0003ecst.
Повний текст джерелаKorpan, Lidiya. "Cultural Phenomenon Attributes in the Graphic User Interface Design." Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 7. Filosofiya. Sociologiya i socialnye tehnologii, no. 1 (May 2016): 130–36. http://dx.doi.org/10.15688/jvolsu7.2016.1.17.
Повний текст джерелаKushwaha, R. L., and J. Shen. "Numeric Simulation of Friction Phenomenon at Soil-Tool Interface." Tribology Transactions 38, no. 2 (January 1995): 424–30. http://dx.doi.org/10.1080/10402009508983424.
Повний текст джерелаДисертації з теми "Interface phenomenon"
Ramos, Roberto Luiz da Cunha Barroso. "Aeroservoelastic analysis of the blade-sailing phenomenon in the helicopter-ship dynamic interface." Instituto Tecnológico de Aeronáutica, 2007. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=368.
Повний текст джерелаBunting, I. "An ethnographic study of the development interface : knowledge, power, culture and the phenomenon of the development community." Thesis, Swansea University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636175.
Повний текст джерелаSeth, Umesh Kumar. "Message Passing Interface parallelization of a multi-block structured numerical solver. Application to the numerical simulation of various typical Electro-Hydro-Dynamic flows." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2264/document.
Повний текст джерелаSeveral intricately coupled applications of modern industries fall under the multi-disciplinary domain of Electrohydrodynamics (EHD), where the interactions among charged and neutral particles are studied in context of both fluid dynamics and electrostatics together. The charge particles in fluids are generated with various physical mechanisms, and they move under the influence of external electric field and the fluid velocity. Generally, with sufficient electric force magnitudes, momentum transfer occurs from the charged species to the neutral particles also. This coupled system is solved with the Maxwell equations, charge transport equations and Navier-Stokes equations simulated sequentially in a common time loop. The charge transport is solved considering convection, diffusion, source terms and other relevant mechanisms for species. Then, the bulk fluid motion is simulated considering the induced electric force as a source term in the Navier-Stokes equations, thus, coupling the electrostatic system with the fluid. In this thesis, we numerically investigated some EHD phenomena like unipolar injection, conduction phenomenon in weakly conducting liquids and flow control with dielectric barrier discharge (DBD) plasma actuators.Solving such complex physical systems numerically requires high-end computing resources and parallel CFD solvers, as these large EHD models are mathematically stiff and highly time consuming due to the range of time and length scales involved. This thesis contributes towards advancing the capability of numerical simulations carried out within the EFD group at Institut Pprime by developing a high performance parallel solver with advanced EHD models. Being the most popular and specific technology, developed for the distributed memory platforms, Message Passing Interface (MPI) was used to parallelize our multi-block structured EHD solver. In the first part the parallelization of our numerical EHD solver with advanced MPI protocols such as Cartesian topology and Inter-Communicators is undertaken. In particular a specific strategy has been designed and detailed to account for the multi-block structured grids feature of the code. The parallel code has been fully validated through several benchmarks, and scalability tests carried out on up to 1200 cores on our local cluster showed excellent parallel speed-ups with our approach. A trustworthy database containing all these validation tests carried out on multiple cores is provided to assist in future developments. The second part of this thesis deals with the numerical simulations of several typical EHD flows. We have examined three-dimensional electroconvection induced by unipolar injection between two planar-parallel electrodes. Unsteady hexagonal cells were observed in our study. 3D flow phenomenon with electro-convective plumes was also studied in the blade-plane electrode configuration considering both autonomous and non-autonomous injection laws. Conduction mechanism based on the dissociation of neutral molecules of a weakly conductive liquid has been successfully simulated. Our results have been validated with some numerical computations undertaken with the commercial code Comsol. Physical implications of Robin boundary condition and Onsager effect on the charge species were highlighted in electro-conduction in a rectangular channel. Finally, flow control using Dielectric Barrier Discharge plasma actuator has been simulated using the Suzen-Huang model. Impacts of dielectric thickness, gap between the electrodes, frequency and waveform of applied voltage etc. were investigated in terms of their effect on the induced maximum ionic wind velocity and average body force. Flow control simulations with backward facing step showed that a laminar flow separation could be drastically controlled by placing the actuator at the tip of the step with both electrodes perpendicular to each other
Li, Hao. "Approche multi-échelle pour les écoulements polyphasiques en présence de phénomènes interfaciaux." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0081.
Повний текст джерелаInterfacial phenomena as a research domain have attracted focus and resources from areas of industrial and fundamental interests: cosmetics, printing, food industries, and glass productions, etc. What charms the defender most is the phenomena with drops and bubbles - their processes of coalescing, spreading, draining, and bursting - involving non-Newtonian fluids. Multiple experimental methods such as ultra-high-speed DC electrical acquisition system, high-speed camera and high-speed micro-PIV were jointly adopted for the investigation. The first part focused on experimental research on initial contact and spreading (coalescing) of a non-Newtonian drop on a solid (liquid) planar surface. The evolution of the electrical conductance in close relation with the drop spreading (coalescing) width was detected at first microseconds. Spreading (coalescing) behaviors of an opaque dispersion of nanoparticles was examined. Regimes and mechanism behind were revealed via dimensionless scaling. The quantification of flow fields inside a spreading (coalescing) drop was performed. The second part comparatively investigated the lifetime and bursting behavior of a single bubble at different liquid surfaces and through particle-laden liquid surfaces. Bubble cap thickness was quantitatively compared based on the high-speed imaging results. Velocity fields and profiles around bubble cavity were drafted and analyzed. The role of particle layer, together with fluids’ viscoelasticity, was confirmed in the shift for a bubble from a quick rupture death to a slow shrinking disappearance. The last part studied the coalescence of a non-Newtonian drop with its bulk phase through particle-laden air-liquid surfaces. A characteristic evaluation of speed fields within the drop and the bulk was conducted. An electrical signal analysis was carried out to highlight the difference with the coalescence of a drop with particle-free surfaces. The complicate role of particle layer as a barrier and bridge at the same time was confirmed and its relationship with fluid’s viscoelasticity was demonstrated
Bao, Qinye. "Interface Phenomena in Organic Electronics." Doctoral thesis, Linköpings universitet, Ytors Fysik och Kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118922.
Повний текст джерелаVillanueva, Walter. "Diffuse-Interface Simulations of Capillary Phenomena." Doctoral thesis, Stockholm : Kungl. tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4402.
Повний текст джерелаZahedi, Sara. "Numerical Modeling of Fluid Interface Phenomena." Licentiate thesis, Stockholm : Skolan för datavetenskap och kommunikation, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10507.
Повний текст джерелаWheale, Samantha Hilary. "Physicochemical phenomena at the plasma-polymer interface." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4977/.
Повний текст джерелаQuinn, Amy May. "The study of contact phenomena using ultrasound." Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271847.
Повний текст джерелаChiu, Patrick Y. "Computational modeling of atomistic phenomena at the interface." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024892.
Повний текст джерелаКниги з теми "Interface phenomenon"
Blake, J. R., J. M. Boulton-Stone, and N. H. Thomas, eds. Bubble Dynamics and Interface Phenomena. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0938-3.
Повний текст джерелаF, Hewitt G., Mayinger F. 1931-, Riznic J, and International Center for Heat and Mass Transfer., eds. Phase-interface phenomena in multiphase flow. New York: Hemisphere Pub. Corp., 1991.
Знайти повний текст джерелаValerii, Cheshkov, and Natova Margarita, eds. Polymer composite materials: Interface phenomena & processes. Dordrecht: Kluwer Academic Publishers, 2001.
Знайти повний текст джерелаIvanov, Yatchko, Valerii Cheshkov, and Margarita Natova. Polymer Composite Materials — Interface Phenomena & Processes. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-9664-5.
Повний текст джерелаSellers, Harrell Lee, and Joseph Thomas Golab, eds. Theoretical and Computational Approaches to Interface Phenomena. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1319-7.
Повний текст джерелаDosch, Helmut, ed. Critical Phenomena at Surfaces and Interfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0045209.
Повний текст джерелаKryukov, Alexei, Vladimir Levashov, and Yulia Puzina. Non-Equilibrium Phenomena near Vapor-Liquid Interfaces. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00083-1.
Повний текст джерелаNizzoli, Fabrizio, Karl-Heinz Rieder, and Roy F. Willis, eds. Dynamical Phenomena at Surfaces, Interfaces and Superlattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82535-4.
Повний текст джерела1944-, Wandelt K., and Thurgate S. 1952-, eds. Solid-liquid interfaces: Macroscopic phenomena, microscopic understanding. Berlin: Springer, 2003.
Знайти повний текст джерелаD, Beysens, Boccara Nino, Forgács G, and Centre de physique des Houches, eds. Dynamical phenomena at interfaces, surfaces and membranes. Commack, N.Y: Nova Science Publishers, 1993.
Знайти повний текст джерелаЧастини книг з теми "Interface phenomenon"
Tiskin, Daniel. "Intentional Identity as a Transparency Phenomenon." In Pronouns in Embedded Contexts at the Syntax-Semantics Interface, 43–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56706-8_2.
Повний текст джерелаLiu, Yaohui, Zhenming He, Sirong Yu, and Qingchun Li. "Interface Phenomenon between Al2O3/ A1—4.5Cu—Ce Alloy Compositeo①." In MICC 90, 485–90. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3676-1_83.
Повний текст джерелаHubaut, R., A. Rives, O. Lapina, D. Khabilulin, and C. E. Scott. "Synergy Phenomenon in Bulk Ruthenium- Vanadium sulfides : 51V NMR and ESR studies." In Magnetic Resonance in Colloid and Interface Science, 531–36. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0534-0_50.
Повний текст джерелаBamyacı, Elif. "Measuring Animacy Effects on Verb Number Marking: A Semantics-Morphosyntax Interface Phenomenon." In Competing Structures in the Bilingual Mind, 75–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22991-1_5.
Повний текст джерелаBamyacı, Elif. "Measuring Effects of Topicality on Verb Number Marking: A Pragmatics-Morphosyntax Interface Phenomenon." In Competing Structures in the Bilingual Mind, 115–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22991-1_6.
Повний текст джерелаDu, Meifang. "The Research on Fishery Metadata in Bohai Sea Based on Semantic Web." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 234–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_25.
Повний текст джерелаPrud’homme, Roger. "Interface Phenomena." In Flows of Reactive Fluids, 333–64. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4659-2_11.
Повний текст джерелаKondoh, Katsuyoshi, Nozomi Nakanishi, Rei Takei, and Junko Umeda. "Effect of Reacted Layer on Galvanic Corrosion Phenomenon at Interface Between Ti Dispersion and Mg-Al Alloy." In Supplemental Proceedings, 93–100. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062173.ch11.
Повний текст джерелаMiyamae, Takayuki, and Kouki Akaike. "Analysis of Molecular Surface/Interfacial Layer by Sum-Frequency Generation (SFG) Spectroscopy." In Interfacial Phenomena in Adhesion and Adhesive Bonding, 291–360. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4456-9_5.
Повний текст джерелаChierchia, Gennaro, Danny Fox, and Benjamin Spector. "10. Scalar implicature as a grammatical phenomenon." In Semantics - Interfaces, edited by Claudia Maienborn, Klaus Heusinger, and Paul Portner, 325–67. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110589849-010.
Повний текст джерелаТези доповідей конференцій з теми "Interface phenomenon"
Landis, Christopher, Anna Iskhakova, Yoshiyuki Kondo, Koichi Tanimoto, Nam Dinh, and Igor Bolotnov. "Interface Capturing Simulations and Analysis of Boiling Phenomenon in Complex Geometries." In 2024 International Congress on Advances in Nuclear Power Plants (ICAPP), 970–78. Illinois: American Nuclear Society, 2024. http://dx.doi.org/10.13182/t130-44116.
Повний текст джерелаFavretto-Cristini, N., and E. de Bazelaire. "Amplitude scattering phenomenon - is interface wave propagation guilty?" In EAGE/SEG Research Workshop on Reservoir Rocks - Understanding reservoir rock and fluid property distributions - measurement, modelling and applications. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609.201406735.
Повний текст джерелаAbe, Shinnosuke, Tomohiro Kawashima, Masayuki Nagao, Naohiro Hozumi, Yoshinobu Murakami, Naruto Miyakawa, Hiroki Shiota, and Takao Tsurimoto. "Electrical treeing characteristics near multi-layer interface." In 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257487.
Повний текст джерелаZainuddin, H., P. M. Mitchinson, and P. L. Lewin. "Investigation on the surface discharge phenomenon at the oil-pressboard interface." In 2011 IEEE 17th International Conference on Dielectric Liquids (ICDL). IEEE, 2011. http://dx.doi.org/10.1109/icdl.2011.6015439.
Повний текст джерелаSuemori, Kouji, Masahiro Hiramoto, and Masaaki Yokoyama. "Influence of Oxygen on Photocurrent Multiplication Phenomenon at Organic/Metal Interface." In 2002 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2002. http://dx.doi.org/10.7567/ssdm.2002.c-4-3.
Повний текст джерелаLi, Chang-Jiu, Wen-Ya Li, and H. Fukanuma. "Impact Fusion Phenomenon During Cold Spraying of Zinc." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0335.
Повний текст джерелаAldawsari, Faisal, Chitral J. Angammana, and Shesha H. Jayaram. "Influence of interface on the electrical properties of silicone nanocomposites." In 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). IEEE, 2017. http://dx.doi.org/10.1109/ceidp.2017.8257645.
Повний текст джерелаFavretto-Cristini, Nathalie, and Eric de Bazelaire. "The Role Of Interface Waves And Diffracted Waves In The Amplitude Scattering Phenomenon." In 7th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609-pdb.217.454.
Повний текст джерелаLiu, Ke. "Simulating the Approach-retract Phenomenon of AFM in Virtual Environment with Haptic Interface." In CAD'15 London. CAD Solutions LLC, 2015. http://dx.doi.org/10.14733/cadconfp.2015.101-106.
Повний текст джерелаLiu, Ke, and Xiaobo Peng. "Simulating the Approach-retract Phenomenon of AFM in Virtual Environment with Haptic Interface." In CAD'15. CAD Solutions LLC, 2015. http://dx.doi.org/10.14733/cadconfp.2015.89-93.
Повний текст джерелаЗвіти організацій з теми "Interface phenomenon"
Hwang, H. Y. Emergent Phenomena at Oxide Interfaces. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1035095.
Повний текст джерелаFurtak, T. E. Potential modulation of equilibrium and excitation phenomena at the electrolyte-solid interface. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/6250728.
Повний текст джерелаArnoldus, Henk F., and Thomas F. George. Interference Phenomena in Atomic Emission Near an Interface: Pure Classical Effects in Quantum Radiation. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada206700.
Повний текст джерелаGray, Alexander. Final Technical Report - Emergent Phenomena at Mott Interfaces – a Time- and Depth-Resolved Approach. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335705.
Повний текст джерелаFurtak, T. E. Potential modulation of equilibrium and excitation phenomena at the electrolyte-solid interface. [Second harmonic generation; interfacial optical spectroscopy]. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/7204420.
Повний текст джерелаLu, Ping. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159665.
Повний текст джерелаFurtak, T. E. Potential modulation of equilibrium and excitation phenomena at the electrolyte-solid interface. Progress report, October 31, 1991--September 30, 1992. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10182768.
Повний текст джерелаShmulevich, Itzhak, Shrini Upadhyaya, Dror Rubinstein, Zvika Asaf, and Jeffrey P. Mitchell. Developing Simulation Tool for the Prediction of Cohesive Behavior Agricultural Materials Using Discrete Element Modeling. United States Department of Agriculture, October 2011. http://dx.doi.org/10.32747/2011.7697108.bard.
Повний текст джерелаDonner, Sebastian. Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/933140.
Повний текст джерелаPerdigão, Rui A. P. Earth System Dynamic Intelligence with Quantum Technologies: Seeing the “Invisible”, Predicting the “Unpredictable” in a Critically Changing World. Meteoceanics, October 2021. http://dx.doi.org/10.46337/211028.
Повний текст джерела