Добірка наукової літератури з теми "Interacting particles systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interacting particles systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interacting particles systems"
Karmanov, Vladimir A. "Abnormal Bound Systems." Universe 8, no. 2 (February 3, 2022): 95. http://dx.doi.org/10.3390/universe8020095.
Повний текст джерелаAbadi, Noam, and Franco Ruzzenenti. "Complex Networks and Interacting Particle Systems." Entropy 25, no. 11 (October 27, 2023): 1490. http://dx.doi.org/10.3390/e25111490.
Повний текст джерелаSudbury, Aidan. "The survival of various interacting particle systems." Advances in Applied Probability 25, no. 4 (December 1993): 1010–12. http://dx.doi.org/10.2307/1427804.
Повний текст джерелаSudbury, Aidan. "The survival of various interacting particle systems." Advances in Applied Probability 25, no. 04 (December 1993): 1010–12. http://dx.doi.org/10.1017/s0001867800025878.
Повний текст джерелаItoh, Yoshiaki, Colin Mallows, and Larry Shepp. "Explicit sufficient invariants for an interacting particle system." Journal of Applied Probability 35, no. 3 (September 1998): 633–41. http://dx.doi.org/10.1239/jap/1032265211.
Повний текст джерелаItoh, Yoshiaki, Colin Mallows, and Larry Shepp. "Explicit sufficient invariants for an interacting particle system." Journal of Applied Probability 35, no. 03 (September 1998): 633–41. http://dx.doi.org/10.1017/s0021900200016284.
Повний текст джерелаMETZNER, WALTER, and CLAUDIO CASTELLANI. "TWO PARTICLE CORRELATIONS AND ORTHOGONALITY CATASTROPHE IN INTERACTING FERMI SYSTEMS." International Journal of Modern Physics B 09, no. 16 (July 20, 1995): 1959–83. http://dx.doi.org/10.1142/s021797929500080x.
Повний текст джерелаMorvan, A., T. I. Andersen, X. Mi, C. Neill, A. Petukhov, K. Kechedzhi, D. A. Abanin, et al. "Formation of robust bound states of interacting microwave photons." Nature 612, no. 7939 (December 7, 2022): 240–45. http://dx.doi.org/10.1038/s41586-022-05348-y.
Повний текст джерелаSKOROHOD, A. V. "Infinite systems of randomly interacting particles." Random Operators and Stochastic Equations 1, no. 1 (1993): 1–14. http://dx.doi.org/10.1515/rose.1993.1.1.1.
Повний текст джерелаKarwowski, Jacek, and Kamil Szewc. "Quasi-Exactly Solvable Models in Quantum Chemistry." Collection of Czechoslovak Chemical Communications 73, no. 10 (2008): 1372–90. http://dx.doi.org/10.1135/cccc20081372.
Повний текст джерелаДисертації з теми "Interacting particles systems"
Glass, K. "Dynamics of systems of interacting particles." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599435.
Повний текст джерелаFranz, Benjamin. "Recent modelling frameworks for systems of interacting particles." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ac76d159-4cdd-40c9-b378-6ea1faf48aed.
Повний текст джерелаRomanovsky, Igor Alexandrovich. "Novel properties of interacting particles in small low-dimensional systems." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07102006-041659/.
Повний текст джерелаLandman, Uzi, Committee Member ; Yannouleas, Constantine, Committee Member ; Bunimovich, Leonid, Committee Member ; Chou, Mei-Yin, Committee Member ; Pustilnik, Michael, Committee Member.
Jacquot, Stéphanie Mireille. "Large systems of interacting particles : the Marcus-Lushnikov process and the β-Laguerre ensemble". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610327.
Повний текст джерелаGeiger, Benjamin [Verfasser], and Klaus [Akademischer Betreuer] Richter. "From few to many particles: Semiclassical approaches to interacting quantum systems / Benjamin Geiger ; Betreuer: Klaus Richter." Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1215906064/34.
Повний текст джерелаLafleche, Laurent. "Dynamique de systèmes à grand nombre de particules et systèmes dynamiques." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED010.
Повний текст джерелаIn this thesis, we study the behavior of solutions of partial differential equations that arise from the modeling of systems with a large number of particles. The dynamic of all these systems is driven by interaction between the particles and external and internal forces. However, we will consider different scales and travel from the quantum level of atoms to the macroscopic level of stars. We will see that differences emerge from the associated dynamics even though the main properties are conserved. In this journey, we will cross the path of various applications of these equations such as astrophysics, plasma, semi-conductors, biology, economy. This work is divided in three parts.In the first one, we study the semi classical behavior of the quantum Hartree equation and its limit to the kinetic Vlasov equation. Properties such as the propagation of moments and weighted Lebesgue norms and dispersive estimates are quantified uniformly in the Planck constant and used to establish stability estimates in a semiclassical analogue of the Wasserstein distance between the solutions of these two equations.In the second part, we investigate the long time behavior of macroscopic and kinetic models where the collision operatoris linear and has a heavy-tailed local equilibrium, such as the Fokker-Planck operator, the fractional Laplacian with a driftor a Linear Boltzmann operator. This let appear two main techniques, the entropy method and the positivity method.In the third part, we are interested in macroscopic models inspired from the Keller-Segel equation, and we study therange of parameters under which the system collapses, disperses or stabilizes. The first effect is studied using appropriate weights, the second using Wasserstein distances and the third using Lebesgue norms
Gracar, Peter. "Random interacting particle systems." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761028.
Повний текст джерелаDeshayes, Aurélia. "Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168/document.
Повний текст джерелаThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Wang, Hao Carleton University Dissertation Mathematics and Statistics. "Interacting branching particle systems and superprocesses." Ottawa, 1995.
Знайти повний текст джерелаDeshayes, Aurélia. "Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168.
Повний текст джерелаThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Книги з теми "Interacting particles systems"
Kipnis, Claude. Scaling limits of interacting particle systems. New York: Springer, 1999.
Знайти повний текст джерелаSalabura, Piotr. Vector mesons in strongly interacting systems. Kraków: Wydawn. Uniwersytetu Jagiellońskiego, 2003.
Знайти повний текст джерелаLiggett, Thomas M. Interacting particle systems. Berlin: Springer, 2005.
Знайти повний текст джерелаLiggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8542-4.
Повний текст джерелаLiggett, Thomas M. Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b138374.
Повний текст джерелаLiggett, Thomas M. Interacting Particle Systems. New York, NY: Springer New York, 1985.
Знайти повний текст джерела1938-, Arenhövel H., ed. Many body structure of strongly interacting systems: Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy: Societá italiana di fisica, 2006.
Знайти повний текст джерелаKipnis, Claude, and Claudio Landim. Scaling Limits of Interacting Particle Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03752-2.
Повний текст джерелаPapanicolaou, George, ed. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7.
Повний текст джерелаGeorge, Papanicolaou, and University of Minnesota. Institute for Mathematics and its Applications., eds. Hydrodynamic behavior and interacting particle systems. New York: Springer-Verlag, 1987.
Знайти повний текст джерелаЧастини книг з теми "Interacting particles systems"
Liverani, C. "Interacting Particles." In Hard Ball Systems and the Lorentz Gas, 179–216. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04062-1_8.
Повний текст джерелаNolting, Wolfgang, and William D. Brewer. "Systems of Interacting Particles." In Fundamentals of Many-body Physics, 197–311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71931-1_4.
Повний текст джерелаNolting, Wolfgang. "Systems of Interacting Particles." In Theoretical Physics 9, 205–319. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98326-4_4.
Повний текст джерелаCichocki, B. "Interacting Brownian Particles." In Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, 65–71. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_5.
Повний текст джерелаSkorohod, A. V. "Randomly Interacting Systems Of Particles." In Stochastic Equations for Complex Systems, 67–169. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3767-3_2.
Повний текст джерелаGuo, M. Z., and G. Papanicolaou. "Bulk Diffusion for Interacting Brownian Particles." In Statistical Physics and Dynamical Systems, 41–48. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4899-6653-7_3.
Повний текст джерелаMikhailov, Alexander S., and Gerhard Ertl. "Systems with Interacting Particles and Soft Matter." In Chemical Complexity, 159–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57377-9_11.
Повний текст джерелаSpohn, Herbert. "Interacting Brownian Particles: A Study of Dyson’s Model." In Hydrodynamic Behavior and Interacting Particle Systems, 151–79. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_13.
Повний текст джерелаChaikin, P. M., W. D. Dozier, and H. M. Lindsay. "Experiments on Suspensions of Interacting Particles in Fluids." In Hydrodynamic Behavior and Interacting Particle Systems, 13–24. New York, NY: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_2.
Повний текст джерелаSergeev, Y. A. "Nonlinear Concentration Waves in Fluidized Beds of Interacting Particles." In Mobile Particulate Systems, 233–48. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8518-7_15.
Повний текст джерелаТези доповідей конференцій з теми "Interacting particles systems"
Izrailev, F. M. "Regular versus chaotic dynamics in closed systems of interacting Fermi particles." In NUCLEI AND MESOSCOPIC PHYSICS: Workshop on Nuclei and Mesoscopic Physics: WNMP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1996878.
Повний текст джерелаHerrera, Dianela, and Sergio Curilef. "Numerical study of a Vlasov equation for systems with interacting particles." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912388.
Повний текст джерелаKim, Bongsoo, Kyozi Kawasaki, Michio Tokuyama, Irwin Oppenheim, and Hideya Nishiyama. "A FDR-Preserving Field Theory for Interacting Brownian Particles: One-Loop Theory and MCT." In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897790.
Повний текст джерелаCARMONA, J. M., N. MICHEL, J. RICHERT, and P. WAGNER. "NUCLEAR FRAGMENTATION, PHASE TRANSITIONS AND THEIR CHARACTERIZATION IN FINITE SYSTEMS OF INTERACTING PARTICLES." In Proceedings of the Conference “Bologna 2000: Structure of the Nucleus at the Dawn of the Century”. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810939_0023.
Повний текст джерелаBriegel, Hans. "Entanglement in quantum many-body systems far away from thermodynamic equilibrium." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs1.
Повний текст джерелаIzrailev, F. M. "Quantum-Classical Correspondence for Isolated Systems of Interacting Particles: Localization and Ergodicity in Energy Space." In Proceedings of Nobel Symposium 116. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811004_0014.
Повний текст джерелаSzamel, Grzegorz, Michio Tokuyama, Irwin Oppenheim, and Hideya Nishiyama. "Diagrammatic Approach to the Dynamics of Interacting Brownian Particles: Mode-Coupling Theory, Generalized Mode-Coupling Theory, and All That." In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897869.
Повний текст джерелаOzyer, Baris, Ismet Erkmen, and Aydan M. Erkmen. "Catching Continuum Between Preshape and Grasping Based on Fluidics." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24632.
Повний текст джерелаAgarwal, Gaurav, Brian Lattimer, Srinath Ekkad, and Uri Vandsburger. "Grid-Zone Particle Hydrodynamics and Solid Circulation in a Multiple Jet Fluidized Bed." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72066.
Повний текст джерелаNavakas, Robertas, and Algis Džiugys. "A community detection method for network structure analysis of force chains in granular medium in a rotating drum." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.079.
Повний текст джерелаЗвіти організацій з теми "Interacting particles systems"
Pullammanappallil, Pratap, Haim Kalman, and Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Повний текст джерелаVaradhan, S. R. Interacting Particle Systems and Their Scaling Limits. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada308783.
Повний текст джерелаZhang, Xingyu, Matteo Ciantia, Jonathan Knappett, and Anthony Leung. Micromechanical study of potential scale effects in small-scale modelling of sinker tree roots. University of Dundee, December 2021. http://dx.doi.org/10.20933/100001235.
Повний текст джерелаAnisimov, Petr Mikhaylovich. Quantum interaction of a few particle system mediated by photons. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1356103.
Повний текст джерелаPeter J. Mucha. Final Report: Model interacting particle systems for simulation and macroscopic description of particulate suspensions. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/939459.
Повний текст джерелаSviratcheva, K. D., and J. P. Draayer. Realistic Two-body Interactions in Many-nucleon Systems: Correlated Motion beyond Single-particle Behavior. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/885281.
Повний текст джерелаGrabowski, Wojciech. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1244254.
Повний текст джерелаChefetz, Benny, and Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7592117.bard.
Повний текст джерелаChefetz, Benny, and Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709883.bard.
Повний текст джерелаKollias, Pavlos. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions: Final Report. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1374165.
Повний текст джерела