Добірка наукової літератури з теми "Intelligent methods of diagnosis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Intelligent methods of diagnosis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Intelligent methods of diagnosis"
Wang, Huaqing, Peng Chen, and Shuming Wang. "Intelligent diagnosis methods for plant machinery." Frontiers of Mechanical Engineering in China 5, no. 1 (November 25, 2009): 118–24. http://dx.doi.org/10.1007/s11465-009-0084-z.
Повний текст джерелаShi, Rong Bo, Zhi Ping Guo, and Zhi Yong Song. "Research Based on State Monitoring of CNC Machine Tools Intelligent Security System." Applied Mechanics and Materials 427-429 (September 2013): 1328–32. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.1328.
Повний текст джерелаHu, Hao, and Ying Min Yan. "Fault Diagnosis Technology of Equipment System." Applied Mechanics and Materials 380-384 (August 2013): 1003–8. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.1003.
Повний текст джерелаHuang, Xiaoge, Yiyi Zhang, Jiefeng Liu, Hanbo Zheng, and Ke Wang. "A Novel Fault Diagnosis System on Polymer Insulation of Power Transformers Based on 3-stage GA–SA–SVM OFC Selection and ABC–SVM Classifier." Polymers 10, no. 10 (October 3, 2018): 1096. http://dx.doi.org/10.3390/polym10101096.
Повний текст джерелаTakács, Orsolya, and Annamária R. Várkonyi-Kóczy. "Anytime Soft Computing Methods for Intelligent Measurement, Diagnosis and Control." IFAC Proceedings Volumes 33, no. 28 (October 2000): 159–64. http://dx.doi.org/10.1016/s1474-6670(17)36827-1.
Повний текст джерелаGlumov, V. M., V. Yu Rutkovskii, and V. M. Sukhanov. "Methods of intelligent diagnosis for control of flexible moving craft." Automation and Remote Control 67, no. 12 (December 2006): 1863–77. http://dx.doi.org/10.1134/s0005117906120010.
Повний текст джерелаTang, Shengnan, Shouqi Yuan, and Yong Zhu. "Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery." IEEE Access 8 (2020): 9335–46. http://dx.doi.org/10.1109/access.2019.2963092.
Повний текст джерелаHuang, Yo-Ping, Chao-Ying Huang, and Shen-Ing Liu. "Hybrid intelligent methods for arrhythmia detection and geriatric depression diagnosis." Applied Soft Computing 14 (January 2014): 38–46. http://dx.doi.org/10.1016/j.asoc.2013.09.021.
Повний текст джерелаChen, Zhan Peng, Zhuo Wang, Li Min Jia, and Guo Qiang Cai. "Analysis and Comparison of Locomotive Traction Motor Intelligent Fault Diagnosis Methods." Applied Mechanics and Materials 97-98 (September 2011): 994–1002. http://dx.doi.org/10.4028/www.scientific.net/amm.97-98.994.
Повний текст джерелаBello, Opeyemi, Javier Holzmann, Tanveer Yaqoob, and Catalin Teodoriu. "Application Of Artificial Intelligence Methods In Drilling System Design And Operations: A Review Of The State Of The Art." Journal of Artificial Intelligence and Soft Computing Research 5, no. 2 (April 1, 2015): 121–39. http://dx.doi.org/10.1515/jaiscr-2015-0024.
Повний текст джерелаДисертації з теми "Intelligent methods of diagnosis"
Liu, Haoran. "Statistical and intelligent methods for default diagnosis and loacalization in a continuous tubular reactor." Phd thesis, INSA de Rouen, 2009. http://tel.archives-ouvertes.fr/tel-00560886.
Повний текст джерелаGuo, Ran. "Intelligent method for collecting vital signals in versatile distributed e-home healthcare." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691807.
Повний текст джерелаHerrera, Liana J. Marmol. "Artificial intelligence methods for the diagnosis of myocardial damage in Chagas' disease using electrocardiographic signals." Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314320.
Повний текст джерелаBezha, Minella. "Development of deterioration diagnostic methods for secondary batteries used in industrial applications by means of artificial intelligence." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127438/?lang=0, 2020. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127438/?lang=0.
Повний текст джерелаThe importance of rechargeable batteries nowadays is increasing from the portable electronic devices and solar energy industry up to the development of new EV models. The rechargeable batteries have a crucial role in the storage system, mostly in mobile applications and transportation, because the period of its usage and the flexibility of the function are determined by the battery. Due to the black box approach of the ANN it is possible to connect the complex physical phenomenon with a specific physical meaning expressed with a nonlinear logic between inputs and output. Using specific input data to relate with the desired output, makes possible to create a pattern connection with input and output. This ability helps to estimate in real time the desired outputs, behaviors, phenomes and at the same time it can be used as a real time diagnosis method.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
Pous, i. Sabadí Carles. "Case based reasoning as an extension of fault dictionary methods for linear electronic analog circuits diagnosis." Doctoral thesis, Universitat de Girona, 2004. http://hdl.handle.net/10803/7728.
Повний текст джерелаDurant aquests últims anys, les tècniques d'Intel·ligència Artificial han esdevingut un dels camps de recerca més importants per a la diagnosi de falles. Aquesta tesi desenvolupa dues d'aquestes tècniques per tal de cobrir algunes de les mancances que presenten els diccionaris de falles. La primera proposta es basa en construir un sistema fuzzy com a eina per identificar. Els resultats obtinguts son força bons, ja que s'aconsegueix localitzar la falla en un elevat tant percent dels casos. Per altra banda, el percentatge d'encerts no és prou bo quan a més a més s'intenta esbrinar la desviació.
Com que els diccionaris de falles es poden veure com una aproximació simplificada al Raonament Basat en Casos (CBR), la segona proposta fa una extensió dels diccionaris de falles cap a un sistema CBR. El propòsit no és donar una solució general del problema sinó contribuir amb una nova metodologia. Aquesta consisteix en millorar la diagnosis dels diccionaris de falles mitjançant l'addició i l'adaptació dels nous casos per tal d'esdevenir un sistema de Raonament Basat en Casos. Es descriu l'estructura de la base de casos així com les tasques d'extracció, de reutilització, de revisió i de retenció, fent èmfasi al procés d'aprenentatge.
En el transcurs del text s'utilitzen diversos circuits per mostrar exemples dels mètodes de test descrits, però en particular el filtre biquadràtic és l'utilitzat per provar les metodologies plantejades, ja que és un dels benchmarks proposats en el context dels circuits analògics. Les falles considerades son paramètriques, permanents, independents i simples, encara que la metodologia pot ser fàcilment extrapolable per a la diagnosi de falles múltiples i catastròfiques. El mètode es centra en el test dels components passius, encara que també es podria extendre per a falles en els actius.
Testing circuits is a stage of the production process that is becoming more and more important when a new product is developed. Test and diagnosis techniques for digital circuits have been successfully developed and automated. But, this is not yet the case for analog circuits. Even though there are plenty of methods proposed for diagnosing analog electronic circuits, the most popular are the fault dictionary techniques. In this thesis some of these methods, showing their advantages and drawbacks, are analyzed.
During these last decades automating fault diagnosis using Artificial Intelligence techniques has become an important research field. This thesis develops two of these techniques in order to fill in some gaps in fault dictionaries techniques. The first proposal is to build a fuzzy system as an identification tool. The results obtained are quite good, since the faulty component is located in a high percentage of the given cases. On the other hand, the percentage of successes when determining the component's exact deviation is far from being good.
As fault dictionaries can be seen as a simplified approach to Case-Based Reasoning, the second proposal extends the fault dictionary towards a Case Based Reasoning system. The purpose is
not to give a general solution, but to contribute with a new methodology. This second proposal improves a fault dictionary diagnosis by means of adding and adapting new cases to develop a
Case Based Reasoning system. The case base memory, retrieval, reuse, revise and retain tasks are described. Special attention to the learning process is taken.
Several circuits are used to show examples of the test methods described throughout the text. But, in particular, the biquadratic filter is used to test the proposed methodology because it is
defined as one of the benchmarks in the analog electronic diagnosis domain. The faults considered are parametric, permanent, independent and simple, although the methodology can be extrapolated to catastrophic and multiple fault diagnosis. The method is only focused and tested on passive faulty components, but it can be extended to cover active devices as well.
Behroozinia, Pooya. "Finite Element Analysis of Defects in Cord-Rubber Composites and Hyperelastic Materials." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/87703.
Повний текст джерелаPHD
Juuso, E. (Esko). "Integration of intelligent systems in development of smart adaptive systems:linguistic equation approach." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526202891.
Повний текст джерелаTiivistelmä Viisaat mukautuvat järjestelmät sisältävät kehittyneitä työkaluja epälineaaristen monimuuttujaisten prosessien valvontaan, säätöön, diagnostiikkaan ja johtamiseen. Laajaan menetelmäpohjaan perustuva tiedonrikastus on pohjana älykkäiden järjestelmien yhdistämiselle. Pienille erikoistuneille järjestelmille on monia toteutettavissa olevia ratkaisuja, mutta erittäin monimutkaiset järjestelmät vaativat alan asiantuntemusta ja kompakteja lähestymistapoja perustasolla. Sumeaan logiikkaan pohjautuva lingvististen yhtälöiden (linguistic equation, LE) menetelmä on tehokas ratkaisu näissä ongelma-alueissa. Tämä tutkimus kohdistuu viisaisiin mukautuviin sovelluksiin, jossa useita älykkäitä moduuleja käytetään yhdessä viisaalla tavalla. Kehittyneeseen tilastolliseen analyysiin perustuva epälineaarinen skaalausmenetelmä muodostaa ratkaisun kulmakiven: muuttujien merkitykset soveltuvat säädössä ja diagnostiikassa käytettävien älykkäiden indeksien kehittämiseen. Uudet rajoituksien käsittelymenetelmät yhdessä yleistettyjen normien ja momenttien kanssa mahdollistavat rekursiivisen parametriestimoinnin olosuhteisiin mukautuvassa skaalauksessa. Tunnettuja lineaarisia menetelmiä käytetään staattisessa, dynaamisessa ja tapauspohjaisessa mallintamisessa, jossa kaskadi- ja vuorovaikutusrakenteet laajentavat mallit tarvittaessa monimutkaisiin sovelluksiin. Prosessituntemuksen ja järjestelmien robustisuuden varmistamiseksi parametrit määritellään erikseen skaalausta ja vuorovaikutuksia varten. LE-pohjaiset älykkäät analysaattorit ovat hyödyllisiä monitasoisessa säädössä ja diagnostiikassa: LE-säätöä parannetaan älykkäiden analysaattorien, adaptiivisten ja mallipohjaisten moduulien sekä ylemmän tason säädön avulla. Käyttöaluetta laajennetaan ennalta määrätyllä adaptoinnilla sekä tiettyjen tapahtumien aktivoimilla erityisillä säätötoimenpiteillä. Kunto-, rasitus- ja trendi-indeksejä käytetään olosuhteiden tunnistamiseen. Sama rakenne laajennetaan tuotannon ajoitukseen ja päätöksenteontukeen, jossa inhimillisen vuorovaikutuksen käsittely tekee lingvistisen esityksen yhä tärkeämmäksi. Uutta skaalausmenetelmää tarkastellaan säätö- ja diagnostiikkasovelluksissa sekä vertaillaan lyhyesti sen käyttömahdollisuuksia aikaisemmin toteutetuissa monimuuttujamalleissa. LE-pohjaiset älykkäät analysaattorit ovat keskeisiä integroitaessa moduuleja hybridiratkaisuiksi: sumeat järjestelmät siirtyvät vähitellen ylemmille tasoille ja neuro- ja evoluutiolaskennassa keskitytään järjestelmien viritykseen. Kokonaisjärjestelmää vahvistetaan kehittyneellä tilastollisella analyysilla, signaalinkäsittelyllä, piirteiden erottamisella, luokittelulla ja mekanistisella mallintamisella
Bishop, James. "The Potential of Misdiagnosis of High IQ Youth by Practicing Mental Health Professionals: A Mixed Methods Study." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062851/.
Повний текст джерелаВащенко, Ярослав Васильович. "Удосконалення технології діагностування стану тягового асинхронного електроприводу рухомого складу". Thesis, Український державний університет залізничного транспорту, 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22714.
Повний текст джерелаThesis for a candidate degree by speciality 05.22.09 – Electric transport. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2016. Dissertation is devoted to solving scientific and technical targets improving technology of diagnosing state for traction asynchronous drive electric rolling stock by detecting abnormally dangerous and emergency modes operation and their identification, which allowed to develop methods for early detection and prevention of drive elements failure when it malfunctions occur, as well as minimizing operational costs. The analysis of existing technologies, techniques and methods for diagnosis and protection traction asynchronous drive showed that the most promising in comparison with the existing protection systems of rolling stock, which operate on the principle of control deviations of parameters and prevent the development of emergency modes, there are diagnostics technology provides detection and localization of failures in the early stages. Improved diagnosis technology based on the object model of traction induction motor by using the extended Kalman filter that can detect damage to the stator and rotor windings of traction induction motor, for which proposed to use statistical criteria in real time for assessing its effectiveness To automate the decision approach applied mathematical algorithm simulation based on artificial neural networks for diagnostic feature variable speed oscillation induction motor rotor frequency, with which is possible to exercise effective intellectual automatic fault detection when using simple logical principles is not enough. Developed diagnosis methods are expand existing protection technologies including real technical state of asynchronous traction electric drive and allowing to perform timely malfunctions detection and automatic decision-making to prevent further development of emergency operation, thereby increasing efficiency and reliability traction drive operation.
Ващенко, Ярослав Васильович. "Удосконалення технології діагностування стану тягового асинхронного електроприводу рухомого складу". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22713.
Повний текст джерелаThesis for a candidate degree by speciality 05.22.09 – Electric transport. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2016. Dissertation is devoted to solving scientific and technical targets improving technology of diagnosing state for traction asynchronous drive electric rolling stock by detecting abnormally dangerous and emergency modes operation and their identification, which allowed to develop methods for early detection and prevention of drive elements failure when it malfunctions occur, as well as minimizing operational costs. The analysis of existing technologies, techniques and methods for diagnosis and protection traction asynchronous drive showed that the most promising in comparison with the existing protection systems of rolling stock, which operate on the principle of control deviations of parameters and prevent the development of emergency modes, there are diagnostics technology provides detection and localization of failures in the early stages. Improved diagnosis technology based on the object model of traction induction motor by using the extended Kalman filter that can detect damage to the stator and rotor windings of traction induction motor, for which proposed to use statistical criteria in real time for assessing its effectiveness To automate the decision approach applied mathematical algorithm simulation based on artificial neural networks for diagnostic feature variable speed oscillation induction motor rotor frequency, with which is possible to exercise effective intellectual automatic fault detection when using simple logical principles is not enough. Developed diagnosis methods are expand existing protection technologies including real technical state of asynchronous traction electric drive and allowing to perform timely malfunctions detection and automatic decision-making to prevent further development of emergency operation, thereby increasing efficiency and reliability traction drive operation.
Книги з теми "Intelligent methods of diagnosis"
Wyllis, Bandler, ed. Tracing chains-of-thought: Fuzzy methods in cognitive diagnosis. Heidelberg, [Germany]: Physica-Verlag, 1996.
Знайти повний текст джерелаAldrich, Chris. Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. London: Springer London, 2013.
Знайти повний текст джерелаRaza, Khalid, ed. Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8534-0.
Повний текст джерелаHatzilygeroudis, Ioannis, Vasile Palade, and Jim Prentzas, eds. Advances in Combining Intelligent Methods. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46200-4.
Повний текст джерелаYager, Ronald R., Marek Z. Reformat, and Naif Alajlan, eds. Intelligent Methods for Cyber Warfare. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08624-8.
Повний текст джерелаSegovia, Javier, Piotr S. Szczepaniak, and Marian Niedzwiedzinski, eds. E-Commerce and Intelligent Methods. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1779-9.
Повний текст джерелаHatzilygeroudis, Ioannis, and Jim Prentzas, eds. Combinations of Intelligent Methods and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19618-8.
Повний текст джерелаHatzilygeroudis, Ioannis, Isidoros Perikos, and Foteini Grivokostopoulou, eds. Advances in Integrations of Intelligent Methods. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1918-5.
Повний текст джерелаHatzilygeroudis, Ioannis, and Vasile Palade, eds. Advances in Hybridization of Intelligent Methods. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66790-4.
Повний текст джерелаHatzilygeroudis, Ioannis, and Vasile Palade, eds. Combinations of Intelligent Methods and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36651-2.
Повний текст джерелаЧастини книг з теми "Intelligent methods of diagnosis"
Rigatos, Gerasimos G. "Machine Learning Methods for Industrial Systems Fault Diagnosis." In Modelling and Control for Intelligent Industrial Systems, 313–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17875-7_15.
Повний текст джерелаWang, Jing, Jinglin Zhou, and Xiaolu Chen. "Simulation Platform for Fault Diagnosis." In Intelligent Control and Learning Systems, 45–58. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8044-1_4.
Повний текст джерелаPavithra, D., A. N. Jayanthi, and R. Nidhya. "Comparison of Machine Learning Methods for Effective Autism Diagnosis." In Advances in Intelligent Systems and Computing, 629–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2475-2_58.
Повний текст джерелаKamdar, J. H., J. Jeba Praba, and John J. Georrge. "Artificial Intelligence in Medical Diagnosis: Methods, Algorithms and Applications." In Learning and Analytics in Intelligent Systems, 27–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40850-3_2.
Повний текст джерелаOrczyk, Tomasz, and Piotr Porwik. "Liver Fibrosis Diagnosis Support System Using Machine Learning Methods." In Advances in Intelligent Systems and Computing, 111–21. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2650-5_8.
Повний текст джерелаBelaala, Abir, Labib Sadek Terrissa, Noureddine Zerhouni, and Christine Devalland. "Spitzoid Lesions Diagnosis Based on SMOTE-GA and Stacking Methods." In Advances in Intelligent Systems and Computing, 348–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36664-3_39.
Повний текст джерелаDeng, Zhuofu, Yen-wei Chen, Zhiliang Zhu, Yinuo Li, He Li, and Yi Wang. "Advanced Transmission Methods Applied in Remote Consultation and Diagnosis Platform." In Intelligent Interactive Multimedia Systems and Services, 230–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92231-7_24.
Повний текст джерелаBai, Bing, Feng Wang, and Xiuyuan Peng. "Fault Diagnosis Method of Agricultural Intelligent Equipment." In Lecture Notes in Electrical Engineering, 1915–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0115-6_224.
Повний текст джерелаMelekoğlu, Engin, Ümit Kocabıçak, Muhammed Kürşad Uçar, Mehmet Recep Bozkurt, and Cahit Bilgin. "Machine Learning for the Diagnosis of Chronic Obstructive Pulmonary Disease and Photoplethysmography Signal – Based Minimum Diagnosis Time Detection." In Trends in Data Engineering Methods for Intelligent Systems, 42–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79357-9_6.
Повний текст джерелаBasarslan, M. Sinan, and F. Kayaalp. "Classification Performance Evaluation on Diagnosis of Breast Cancer." In Trends in Data Engineering Methods for Intelligent Systems, 237–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79357-9_24.
Повний текст джерелаТези доповідей конференцій з теми "Intelligent methods of diagnosis"
Odoom, E. Ricky. "Operational Reliability Improvement of Plants Through Intelligent Fault Detection and Diagnosis." In International Joint Power Generation Conference collocated with TurboExpo 2003. ASMEDC, 2003. http://dx.doi.org/10.1115/ijpgc2003-40052.
Повний текст джерелаYann-Chang Huang, Chao-Ming Huang, Huo-Ching Sun, and Yi-Shi Liao. "Fault diagnosis using hybrid artificial intelligent methods." In 2010 5th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2010. http://dx.doi.org/10.1109/iciea.2010.5514760.
Повний текст джерелаFan, Jianchun, Xuehong Zhao, and Laibin Zhan. "A Web-Based Intelligent System for Used-Oil Analysis." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64047.
Повний текст джерелаKe, Zhiwu, Xu Hu, Dawei Teng, and Mo Tao. "Intelligent Fault Diagnosis Method Based on Operating Parameters in Nuclear Power Plant." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66494.
Повний текст джерелаLei, Yaguo, Hongkai Shan, Feng Jia, and Jing Lin. "Reconstruction independent component analysis-based methods for intelligent fault diagnosis." In 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2016. http://dx.doi.org/10.1109/cscwd.2016.7565996.
Повний текст джерелаVeropoulos, K., C. Campbell, and G. Learmonth. "Image processing and neural computing used in the diagnosis of tuberculosis." In IEE Colloquium Intelligent Methods in Healthcare and Medical Applications. IEE, 1998. http://dx.doi.org/10.1049/ic:19981039.
Повний текст джерелаTayyab, Syed Muhammad, Paolo Pennacchi, Steven Chatterton, and Eram Asghar. "Intelligent Defect Diagnosis of Spiral Bevel Gears Under Different Operating Conditions Using ANN and KNN Classifiers." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70016.
Повний текст джерелаTan, Daoliang, Ai He, Xiangxing Kong, and Xi Wang. "Integration of Unknown Input Observers and Classification for Turbofan Engine Diagnosis." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46429.
Повний текст джерелаSingh, Amritpal, and P. Verma. "A review of intelligent diagnostic methods for condition assessment of insulation system in power transformers." In 2008 International Conference on Condition Monitoring and Diagnosis. IEEE, 2008. http://dx.doi.org/10.1109/cmd.2008.4580520.
Повний текст джерелаDatta, A., C. Mavroidis, and M. Hosek. "A Role of Unsupervised Clustering for Intelligent Fault Diagnosis." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43492.
Повний текст джерелаЗвіти організацій з теми "Intelligent methods of diagnosis"
Martinak, R., Anthony E. Kelly, D. Sleeman, J. Moore, and R. D. Ward. Diagnosis and Remediation in the Context of Intelligent Tutoring Systems. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada199024.
Повний текст джерелаMOSKALENKO, O. L., S. YU TERESHCHENKO, and E. V. KASPAROV. INTERNET ADDICTION: DIAGNOSIS CRITERIA AND METHODS. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/978-0-615-67340-0-2.
Повний текст джерелаIzenson, M. G., P. H. Rothe, and G. B. Wallis. Diagnosis of condensation-induced waterhammer: Methods and background. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/6752266.
Повний текст джерелаRinchik, E. M. Workshop on molecular methods for genetic diagnosis. Final technical report. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/501564.
Повний текст джерелаMasrur, M. A., ZhiHang Chen, and Yi L. Murphey. Intelligent Diagnosis of Open and Short Circuit Faults in Electric Drive Inverters For Real-Time Applications. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada513126.
Повний текст джерелаJesneck, Jonathan, and Joseph Lo. Modular Machine Learning Methods for Computer-Aided Diagnosis of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada430017.
Повний текст джерелаFrank, Stephen M., Guanjing Lin, Xin Jin, Rupam Singla, Amanda Farthing, Liang Zhang, and Jessica Granderson. Metrics and Methods to Assess Building Fault Detection and Diagnosis Tools. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1503166.
Повний текст джерелаGiger, Maryellen L. Advanced Methods for the Computer-Aided Diagnosis of Lesions in Digital Mammograms. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada353241.
Повний текст джерелаGiger, Maryellen L. Advanced Methods for the Computer-Aided Diagnosis of Lesions in Digital Mammograms. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada390701.
Повний текст джерелаFlood, Ian, Bryan T. Bewick, and Emmart Rauch. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Based Intelligent Modeling Methods. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada543599.
Повний текст джерела