Добірка наукової літератури з теми "Intelligence artificielle – Apprentissage profond"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Intelligence artificielle – Apprentissage profond".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Intelligence artificielle – Apprentissage profond"
Caccamo, Emmanuelle, and Fabien Richert. "Les procédés algorithmiques au prisme des approches sémiotiques." Cygne noir, no. 7 (June 1, 2022): 1–16. http://dx.doi.org/10.7202/1089327ar.
Повний текст джерелаLeCun, Yann. "L’apprentissage profond, une révolution en intelligence artificielle." La lettre du Collège de France, no. 41 (November 1, 2016): 13. http://dx.doi.org/10.4000/lettre-cdf.3227.
Повний текст джерелаBonardel, G., A. Dupont, P. Decazes, M. Queneau, R. Modzelewski, J. Coulot, N. Le Calvez, and S. Hapdey. "Évaluation clinique de SubtlePET®, un algorithme de débruitage développé par intelligence artificielle basée sur l’apprentissage profond." Médecine Nucléaire 45, no. 4 (July 2021): 193. http://dx.doi.org/10.1016/j.mednuc.2021.06.042.
Повний текст джерелаLebrun, Tom. "Pour une typologie des œuvres littéraires générées par intelligence artificielle." Balisages, no. 1 (February 24, 2020). http://dx.doi.org/10.35562/balisages.304.
Повний текст джерелаДисертації з теми "Intelligence artificielle – Apprentissage profond"
Vialatte, Jean-Charles. "Convolution et apprentissage profond sur graphes." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0118/document.
Повний текст джерелаConvolutional neural networks have proven to be the deep learning model that performs best on regularly structured datasets like images or sounds. However, they cannot be applied on datasets with an irregular structure (e.g. sensor networks, citation networks, MRIs). In this thesis, we develop an algebraic theory of convolutions on irregular domains. We construct a family of convolutions that are based on group actions (or, more generally, groupoid actions) that acts on the vertex domain and that have properties that depend on the edges. With the help of these convolutions, we propose extensions of convolutional neural netowrks to graph domains. Our researches lead us to propose a generic formulation of the propagation between layers, that we call the neural contraction. From this formulation, we derive many novel neural network models that can be applied on irregular domains. Through benchmarks and experiments, we show that they attain state-of-the-art performances, and beat them in some cases
Mollaret, Sébastien. "Artificial intelligence algorithms in quantitative finance." Thesis, Paris Est, 2021. http://www.theses.fr/2021PESC2002.
Повний текст джерелаArtificial intelligence has become more and more popular in quantitative finance given the increase of computer capacities as well as the complexity of models and has led to many financial applications. In the thesis, we have explored three different applications to solve financial derivatives challenges, from model selection, to model calibration and pricing. In Part I, we focus on a regime-switching model to price equity derivatives. The model parameters are estimated using the Expectation-Maximization (EM) algorithm and a local volatility component is added to fit vanilla option prices using the particle method. In Part II, we then use deep neural networks to calibrate a stochastic volatility model, where the volatility is modelled as the exponential of an Ornstein-Uhlenbeck process, by approximating the mapping between model parameters and corresponding implied volatilities offline. Once the expensive approximation has been performed offline, the calibration reduces to a standard & fast optimization problem.In Part III, we finally use deep neural networks to price American option on large baskets to solve the curse of the dimensionality. Different methods are studied with a Longstaff-Schwartz approach, where we approximate the continuation values, and a stochastic control approach, where we solve the pricing partial differential equation by reformulating the problem as a stochastic control problem using the non-linear Feynman-Kac formula
Carrara, Nicolas. "Reinforcement learning for dialogue systems optimization with user adaptation." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I071/document.
Повний текст джерелаThe most powerful artificial intelligence systems are now based on learned statistical models. In order to build efficient models, these systems must collect a huge amount of data on their environment. Personal assistants, smart-homes, voice-servers and other dialogue applications are no exceptions to this statement. A specificity of those systems is that they are designed to interact with humans, and as a consequence, their training data has to be collected from interactions with these humans. As the number of interactions with a single person is often too scarce to train a proper model, the usual approach to maximise the amount of data consists in mixing data collected with different users into a single corpus. However, one limitation of this approach is that, by construction, the trained models are only efficient with an "average" human and do not include any sort of adaptation; this lack of adaptation makes the service unusable for some specific group of persons and leads to a restricted customers base and inclusiveness problems. This thesis proposes solutions to construct Dialogue Systems that are robust to this problem by combining Transfer Learning and Reinforcement Learning. It explores two main ideas: The first idea of this thesis consists in incorporating adaptation in the very first dialogues with a new user. To that extend, we use the knowledge gathered with previous users. But how to scale such systems with a growing database of user interactions? The first proposed approach involves clustering of Dialogue Systems (tailored for their respective user) based on their behaviours. We demonstrated through handcrafted and real user-models experiments how this method improves the dialogue quality for new and unknown users. The second approach extends the Deep Q-learning algorithm with a continuous transfer process.The second idea states that before using a dedicated Dialogue System, the first interactions with a user should be handled carefully by a safe Dialogue System common to all users. The underlying approach is divided in two steps. The first step consists in learning a safe strategy through Reinforcement Learning. To that extent, we introduced a budgeted Reinforcement Learning framework for continuous state space and the underlying extensions of classic Reinforcement Learning algorithms. In particular, the safe version of the Fitted-Q algorithm has been validated, in term of safety and efficiency, on a dialogue system tasks and an autonomous driving problem. The second step consists in using those safe strategies when facing new users; this method is an extension of the classic ε-greedy algorithm
Levy, Abitbol Jacobo. "Computational detection of socioeconomic inequalities." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN001.
Повний текст джерелаMachine and deep learning advances have come to permeate modern sciences and have unlocked the study of numerous issues many deemed intractable. Social sciences have accordingly not been exempted from benefiting from these advances, as neural language model have been extensively used to analyze social and linguistic based phenomena such as the quantification of semantic change or the detection of the ideological bias of news articles, while convolutional neural networks have been used in urban settings to explore the dynamics of urban change by determining which characteristics predict neighborhood improvement or by examining how the perception of safety affects the liveliness of neighborhoods. In light of this fact, this dissertation argues that one particular social phenomenon, socioeconomic inequalities, can be gainfully studied by means of the above. We set out to collect and combine large datasets enabling 1) the study of the spatial, temporal, linguistic and network dependencies of socioeconomic inequalities and 2) the inference of socioeconomic status (SES) from these multimodal signals. This task is one worthy of study as previous research endeavors have come short of providing a complete picture on how these multiple factors are intertwined with individual socioeconomic status and how the former can fuel better inference methodologies for the latter. The study of these questions is important, as much is still unclear about the root causes of SES inequalities and the deployment of ML/DL solutions to pinpoint them is still very much in its infancy
Tamaazousti, Youssef. "Vers l’universalité des représentations visuelle et multimodales." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC038/document.
Повний текст джерелаBecause of its key societal, economic and cultural stakes, Artificial Intelligence (AI) is a hot topic. One of its main goal, is to develop systems that facilitates the daily life of humans, with applications such as household robots, industrial robots, autonomous vehicle and much more. The rise of AI is highly due to the emergence of tools based on deep neural-networks which make it possible to simultaneously learn, the representation of the data (which were traditionally hand-crafted), and the task to solve (traditionally learned with statistical models). This resulted from the conjunction of theoretical advances, the growing computational capacity as well as the availability of many annotated data. A long standing goal of AI is to design machines inspired humans, capable of perceiving the world, interacting with humans, in an evolutionary way. We categorize, in this Thesis, the works around AI, in the two following learning-approaches: (i) Specialization: learn representations from few specific tasks with the goal to be able to carry out very specific tasks (specialized in a certain field) with a very good level of performance; (ii) Universality: learn representations from several general tasks with the goal to perform as many tasks as possible in different contexts. While specialization was extensively explored by the deep-learning community, only a few implicit attempts were made towards universality. Thus, the goal of this Thesis is to explicitly address the problem of improving universality with deep-learning methods, for image and text data. We have addressed this topic of universality in two different forms: through the implementation of methods to improve universality (“universalizing methods”); and through the establishment of a protocol to quantify its universality. Concerning universalizing methods, we proposed three technical contributions: (i) in a context of large semantic representations, we proposed a method to reduce redundancy between the detectors through, an adaptive thresholding and the relations between concepts; (ii) in the context of neural-network representations, we proposed an approach that increases the number of detectors without increasing the amount of annotated data; (iii) in a context of multimodal representations, we proposed a method to preserve the semantics of unimodal representations in multimodal ones. Regarding the quantification of universality, we proposed to evaluate universalizing methods in a Transferlearning scheme. Indeed, this technical scheme is relevant to assess the universal ability of representations. This also led us to propose a new framework as well as new quantitative evaluation criteria for universalizing methods
Wallis, David. "A study of machine learning and deep learning methods and their application to medical imaging." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST057.
Повний текст джерелаWe first use Convolutional Neural Networks (CNNs) to automate mediastinal lymph node detection using FDG-PET/CT scans. We build a fully automated model to go directly from whole-body FDG-PET/CT scans to node localisation. The results show a comparable performance to an experienced physician. In the second half of the thesis we experimentally test the performance, interpretability, and stability of radiomic and CNN models on three datasets (2D brain MRI scans, 3D CT lung scans, 3D FDG-PET/CT mediastinal scans). We compare how the models improve as more data is available and examine whether there are patterns common to the different problems. We question whether current methods for model interpretation are satisfactory. We also investigate how precise segmentation affects the performance of the models. We first use Convolutional Neural Networks (CNNs) to automate mediastinal lymph node detection using FDG-PET/CT scans. We build a fully automated model to go directly from whole-body FDG-PET/CT scans to node localisation. The results show a comparable performance to an experienced physician. In the second half of the thesis we experimentally test the performance, interpretability, and stability of radiomic and CNN models on three datasets (2D brain MRI scans, 3D CT lung scans, 3D FDG-PET/CT mediastinal scans). We compare how the models improve as more data is available and examine whether there are patterns common to the different problems. We question whether current methods for model interpretation are satisfactory. We also investigate how precise segmentation affects the performance of the models
Pierrard, Régis. "Explainable Classification and Annotation through Relation Learning and Reasoning." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST008.
Повний текст джерелаWith the recent successes of deep learning and the growing interactions between humans and AIs, explainability issues have risen. Indeed, it is difficult to understand the behaviour of deep neural networks and thus such opaque models are not suited for high-stake applications. In this thesis, we propose an approach for performing classification or annotation and providing explanations. It is based on a transparent model, whose reasoning is clear, and on interpretable fuzzy relations that enable to express the vagueness of natural language.Instead of learning on training instances that are annotated with relations, we propose to rely on a set of relations that was set beforehand. We present two heuristics that make the process of evaluating relations faster. Then, the most relevant relations can be extracted using a new fuzzy frequent itemset mining algorithm. These relations enable to build rules, for classification, and constraints, for annotation. Since the strengths of our approach are the transparency of the model and the interpretability of the relations, an explanation in natural language can be generated.We present experiments on images and time series that show the genericity of the approach. In particular, the application to explainable organ annotation was received positively by a set of participants that judges the explanations consistent and convincing
Etienne, Caroline. "Apprentissage profond appliqué à la reconnaissance des émotions dans la voix." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS517.
Повний текст джерелаThis thesis deals with the application of artificial intelligence to the automatic classification of audio sequences according to the emotional state of the customer during a commercial phone call. The goal is to improve on existing data preprocessing and machine learning models, and to suggest a model that is as efficient as possible on the reference IEMOCAP audio dataset. We draw from previous work on deep neural networks for automatic speech recognition, and extend it to the speech emotion recognition task. We are therefore interested in End-to-End neural architectures to perform the classification task including an autonomous extraction of acoustic features from the audio signal. Traditionally, the audio signal is preprocessed using paralinguistic features, as part of an expert approach. We choose a naive approach for data preprocessing that does not rely on specialized paralinguistic knowledge, and compare it with the expert approach. In this approach, the raw audio signal is transformed into a time-frequency spectrogram by using a short-term Fourier transform. In order to apply a neural network to a prediction task, a number of aspects need to be considered. On the one hand, the best possible hyperparameters must be identified. On the other hand, biases present in the database should be minimized (non-discrimination), for example by adding data and taking into account the characteristics of the chosen dataset. We study these aspects in order to develop an End-to-End neural architecture that combines convolutional layers specialized in the modeling of visual information with recurrent layers specialized in the modeling of temporal information. We propose a deep supervised learning model, competitive with the current state-of-the-art when trained on the IEMOCAP dataset, justifying its use for the rest of the experiments. This classification model consists of a four-layer convolutional neural networks and a bidirectional long short-term memory recurrent neural network (BLSTM). Our model is evaluated on two English audio databases proposed by the scientific community: IEMOCAP and MSP-IMPROV. A first contribution is to show that, with a deep neural network, we obtain high performances on IEMOCAP, and that the results are promising on MSP-IMPROV. Another contribution of this thesis is a comparative study of the output values of the layers of the convolutional module and the recurrent module according to the data preprocessing method used: spectrograms (naive approach) or paralinguistic indices (expert approach). We analyze the data according to their emotion class using the Euclidean distance, a deterministic proximity measure. We try to understand the characteristics of the emotional information extracted autonomously by the network. The idea is to contribute to research focused on the understanding of deep neural networks used in speech emotion recognition and to bring more transparency and explainability to these systems, whose decision-making mechanism is still largely misunderstood
Duran, Audrey. "Intelligence artificielle pour la caractérisation du cancer de la prostate par agressivité en IRM multiparamétrique." Thesis, Lyon, 2022. http://theses.insa-lyon.fr/publication/2022LYSEI008/these.pdf.
Повний текст джерелаProstate cancer (PCa) is the most frequently diagnosed cancer in men in more than half the countries in the world and the fifth leading cause of cancer death among men in 2020. Diagnosis of PCa includes multiparametric magnetic resonance imaging acquisition (mp-MRI) - which combines T2 weighted (T2-w), diffusion weighted imaging (DWI) and dynamic contrast enhanced (DCE) sequences - prior to any biopsy. The joint analysis of these multimodal images is time demanding and challenging, especially when individual MR sequences yield conflicting findings. In addition, the sensitivity of MRI is low for less aggressive cancers and inter-reader reproducibility remains moderate at best. Moreover, visual analysis does not currently allow to determine the cancer aggressiveness, characterized by the Gleason score (GS). This is why computer-aided diagnosis (CAD) systems based on statistical learning models have been proposed in recent years, to assist radiologists in their diagnostic task, but the vast majority of these models focus on the binary detection of clinically significant (CS) lesions. The objective of this thesis is to develop a CAD system to detect and segment PCa on mp-MRI images but also to characterize their aggressiveness, by predicting the associated GS. In a first part, we present a supervised CAD system to segment PCa by aggressiveness from T2-w and ADC maps. This end-to-end multi-class neural network jointly segments the prostate gland and cancer lesions with GS group grading. The model was trained and validated with a 5-fold cross-validation on a heterogeneous series of 219 MRI exams acquired on three different scanners prior prostatectomy. Regarding the automatic GS group grading, Cohen’s quadratic weighted kappa coefficient (κ) is 0.418 ± 0.138, which is the best reported lesion-wise kappa for GS segmentation to our knowledge. The model has also encouraging generalization capacities on the PROSTATEx-2 public dataset. In a second part, we focus on a weakly supervised model that allows the inclusion of partly annotated data, where the lesions are identified by points only, for a consequent saving of time and the inclusion of biopsy-based databases. Regarding the automatic GS group grading on our private dataset, we show that we can approach performance achieved with the baseline fully supervised model while considering 6% of annotated voxels only for training. In the last part, we study the contribution of DCE MRI, a sequence often omitted as input to deep models, for the detection and characterization of PCa. We evaluate several ways to encode the perfusion from the DCE MRI information in a U-Net like architecture. Parametric maps derived from DCE MR exams are shown to positively impact segmentation and grading performance of PCa lesions
Carvalho, Micael. "Deep representation spaces." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS292.
Повний текст джерелаIn recent years, Deep Learning techniques have swept the state-of-the-art of many applications of Machine Learning, becoming the new standard approach for them. The architectures issued from these techniques have been used for transfer learning, which extended the power of deep models to tasks that did not have enough data to fully train them from scratch. This thesis' subject of study is the representation spaces created by deep architectures. First, we study properties inherent to them, with particular interest in dimensionality redundancy and precision of their features. Our findings reveal a strong degree of robustness, pointing the path to simple and powerful compression schemes. Then, we focus on refining these representations. We choose to adopt a cross-modal multi-task problem, and design a loss function capable of taking advantage of data coming from multiple modalities, while also taking into account different tasks associated to the same dataset. In order to correctly balance these losses, we also we develop a new sampling scheme that only takes into account examples contributing to the learning phase, i.e. those having a positive loss. Finally, we test our approach in a large-scale dataset of cooking recipes and associated pictures. Our method achieves a 5-fold improvement over the state-of-the-art, and we show that the multi-task aspect of our approach promotes a semantically meaningful organization of the representation space, allowing it to perform subtasks never seen during training, like ingredient exclusion and selection. The results we present in this thesis open many possibilities, including feature compression for remote applications, robust multi-modal and multi-task learning, and feature space refinement. For the cooking application, in particular, many of our findings are directly applicable in a real-world context, especially for the detection of allergens, finding alternative recipes due to dietary restrictions, and menu planning
Книги з теми "Intelligence artificielle – Apprentissage profond"
Oscar, Firschein, ed. Intelligence: The eye, the brain, and the computer. Reading, Mass: Addison-Wesley, 1987.
Знайти повний текст джерелаNigel, Ford. How machines think: A general introduction to artificial intelligence ; illustrated in prolog. Chichester [West Sussex]: Wiley, 1987.
Знайти повний текст джерелаThinking machines: The evolution of artificial intelligence. Oxford, UK: B. Blackwell, 1987.
Знайти повний текст джерелаHow to build a person: A prolegomenon. Cambridge, Mass: MIT Press, 1989.
Знайти повний текст джерелаHutchinson, Alan. Algorithmic learning. Oxford: Clarendon Press, 1994.
Знайти повний текст джерелаMade-up minds: A constructivist approach to artificial intelligence. Cambridge, Mass: MIT Press, 1991.
Знайти повний текст джерелаProlog programming for artificial intelligence. Wokingham, England: Addison-Wesley, 1986.
Знайти повний текст джерелаIvan, Bratko. Prolog programming for artificial intelligence. 2nd ed. Wokingham, England: Addison-Wesley Pub. Co, 1990.
Знайти повний текст джерелаProlog programming for artificial intelligence. 4th ed. Harlow, England: Addison-Wesley, 2011.
Знайти повний текст джерелаProlog programming for artificial intelligence. 2nd ed. Wokingham, England: Addison-Wesley Pub. Co., 1990.
Знайти повний текст джерелаЧастини книг з теми "Intelligence artificielle – Apprentissage profond"
Bastien, Claude. "Apprentissage : modèles et représentation." In Intelligence naturelle, intelligence artificielle, 257–68. Presses Universitaires de France, 1993. http://dx.doi.org/10.3917/puf.lenyj.1993.01.0257.
Повний текст джерелаGanascia, Jean-Gabriel. "Approches du morcelage en apprentissage symbolique." In Intelligence naturelle, intelligence artificielle, 207–30. Presses Universitaires de France, 1993. http://dx.doi.org/10.3917/puf.lenyj.1993.01.0207.
Повний текст джерелаТези доповідей конференцій з теми "Intelligence artificielle – Apprentissage profond"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Повний текст джерела