Добірка наукової літератури з теми "Integrodifferentail Equations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Integrodifferentail Equations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Integrodifferentail Equations"

1

Jargess Abdul Wahid Abdulla, Et al. "Stability Analysis of First Order Integro-Differential Equations With the Successive Approximation Method." Advances in Nonlinear Variational Inequalities 26, no. 2 (July 1, 2023): 46–53. http://dx.doi.org/10.52783/anvi.v26.i2.262.

Повний текст джерела
Анотація:
The Ulam stability theory provides a framework to provide the stability of functional equations, including integrodifferential equations. This manuscript focuses on the Ulam-stability analysis of the first-order integrodifferential equation. First-order integrodifferential equations combine differential and integral terms, making their analysis challenging and intriguing. The Ulam-stability concept investigates the behaviour of solutions under perturbations in the equation's inputs or initial conditions. It offers valuable insights into the long-term behaviour and robustness of the solutions in the presence of minor disturbances. The results obtained in this study contribute to the understanding of stability properties of first-order integrodifferential equations and provide a foundation for further research in this area. The Ulam stability analysis offers valuable insights into the behaviour of these equations, aiding in their application to diverse domains, including physics, engineering, and mathematical modeling.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fitzgibbon, William E. "Asymptotic stability for a class of integrodifferential equations." Czechoslovak Mathematical Journal 38, no. 4 (1988): 618–22. http://dx.doi.org/10.21136/cmj.1988.102258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bahuguna, D., and L. E. Garey. "Uniqueness of solutions to integrodifferential and functional integrodifferential equations." Journal of Applied Mathematics and Stochastic Analysis 12, no. 3 (January 1, 1999): 253–60. http://dx.doi.org/10.1155/s1048953399000234.

Повний текст джерела
Анотація:
In this paper we study a class of integrodifferential and functional integro-differential equations with infinite delay. These problems are reformulated as abstract integrodifferential and functional integrodifferential equations. We use Nagumo type conditions to establish the uniqueness of solutions to these abstract equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kiventidis, Thomas. "Positive solutions of integrodifferential and difference equations with unbounded delay." Glasgow Mathematical Journal 35, no. 1 (January 1993): 105–13. http://dx.doi.org/10.1017/s0017089500009629.

Повний текст джерела
Анотація:
AbstractWe establish a necessary and sufficient condition for the existence of a positive solution of the integrodifferential equationwhere nis an increasing real-valued function on the interval [0, α); that is, if and only if the characteristic equationadmits a positive root.Consider the difference equation , where is a sequence of non-negative numbers. We prove this has positive solution if and only if the characteristic equation admits a root in (0, 1). For general results on integrodifferential equations we refer to the book by Burton [1] and the survey article by Corduneanu and Lakshmikantham [2]. Existence of a positive solution and oscillations in integrodifferential equations or in systems of integrodifferential equations recently have been investigated by Ladas, Philos and Sficas [5], Györi and Ladas [4], Philos and Sficas [12], Philos [9], [10], [11].Recently, there has been some interest in the existence or the non-existence of positive solutions or the oscillation behavior of some difference equations. See Ladas, Philos and Sficas [6], [7].The purpose of this paper is to investigate the positive solutions of integrodifferential equations (Section 1) and difference equations (Section 2) with unbounded delay. We obtain also some results for integrodifferential and difference inequalities.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bahuguna, D. "Integrodifferential equations with analytic semigroups." Journal of Applied Mathematics and Stochastic Analysis 16, no. 2 (January 1, 2003): 177–89. http://dx.doi.org/10.1155/s1048953303000133.

Повний текст джерела
Анотація:
In this paper we study a class of integrodifferential equations considered in an arbitrary Banach space. Using the theory of analytic semigroups we establish the existence, uniqueness, regularity and continuation of solutions to these integrodifferential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vlasov, V. V., and N. A. Rautian. "Investigation of Integrodifferential Equations by Methods of Spectral Theory." Contemporary Mathematics. Fundamental Directions 67, no. 2 (December 15, 2021): 255–84. http://dx.doi.org/10.22363/2413-3639-2021-67-2-255-284.

Повний текст джерела
Анотація:
This paper provides a survey of results devoted to the study of integrodifferential equations with unbounded operator coefficients in a Hilbert space. These equations are operator models of integrodifferential partial differential equations arising in numerous applications: in the theory of viscoelasticity, in the theory of heat propagation in media with memory (Gurtin-Pipkin equations), and averaging theory. The most interesting and profound results of the survey are devoted to the spectral analysis of operator functions that are symbols of the integrodifferential equations under study.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shabestari, R. Mastani, R. Ezzati, and T. Allahviranloo. "Solving Fuzzy Volterra Integrodifferential Equations of Fractional Order by Bernoulli Wavelet Method." Advances in Fuzzy Systems 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/5603560.

Повний текст джерела
Анотація:
A matrix method called the Bernoulli wavelet method is presented for numerically solving the fuzzy fractional integrodifferential equations. Using the collocation points, this method transforms the fuzzy fractional integrodifferential equation to a matrix equation which corresponds to a system of nonlinear algebraic equations with unknown coefficients. To illustrate the method, it is applied to certain fuzzy fractional integrodifferential equations, and the results are compared.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Feng. "Sherman-Morrison-Woodbury Formula for Linear Integrodifferential Equations." Mathematical Problems in Engineering 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/9418730.

Повний текст джерела
Анотація:
The well-known Sherman-Morrison-Woodbury formula is a powerful device for calculating the inverse of a square matrix. The paper finds that the Sherman-Morrison-Woodbury formula can be extended to the linear integrodifferential equation, which results in an unified scheme to decompose the linear integrodifferential equation into sets of differential equations and one integral equation. Two examples are presented to illustrate the Sherman-Morrison-Woodbury formula for the linear integrodifferential equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coville, Jérôme. "Monotonicity in integrodifferential equations." Comptes Rendus Mathematique 337, no. 7 (October 2003): 445–50. http://dx.doi.org/10.1016/j.crma.2003.07.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Heard, M. L., and S. M. Rankin. "Nonlinear Volterra Integrodifferential Equations." Journal of Mathematical Analysis and Applications 188, no. 2 (December 1994): 569–89. http://dx.doi.org/10.1006/jmaa.1994.1446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Integrodifferentail Equations"

1

Elghandouri, Mohammed. "Approximate Controllability for some Nonlocal Integrodifferential Equations in Banach Spaces." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS189.

Повний текст джерела
Анотація:
La théorie du contrôle, domaine interdisciplinaire, étudie le comportement des systèmes dynamiques dans le but de réguler leur fonctionnement. La théorie du contrôle mathématique, un sous-domaine spécialisé, se concentre sur l'utilisation de méthodes mathématiques pour analyser ces comportements et concevoir des contrôleurs. Cela implique l'application d'équations différentielles, d'algèbre linéaire, d'optimisation et d'outils mathématiques variés pour modéliser, réguler et comprendre le comportement des systèmes dynamiques. Ces systèmes trouvent de vastes applications dans des domaines tels que la robotique, l'automatisation, l'aérospatiale, le génie électrique, les systèmes mécaniques, la biologie et les sciences sociales. Leur description nécessite souvent des modèles complexes tels que des équations aux dérivées partielles, des équations différentielles fonctionnelles et d'autres modèles de dimension infinie, rendant leur analyse essentielle, mais complexe pour la recherche. L'application de la théorie du contrôle pour analyser et réguler le comportement de ces systèmes a récemment attiré une attention significative. Cette thèse se concentre sur l'étude de la contrôlabilité approchée de certains systèmes dynamiques de dimension infinie décrits par des équations intégrodifférentielles. Structurée en trois chapitres, la thèse examine spécifiquement la contrôlabilité approchée des équations d'évolution intégrodifférentielles avec des conditions non locales. Le premier chapitre présente des outils fondamentaux, notamment la théorie des opérateurs résolvants, les applications multi-valuées, l'application de dualité, la théorie du contrôle mathématique et d'autres concepts essentiels à l'établissement des résultats. Le deuxième chapitre se concentre précisément sur la contrôlabilité approchée des équations d'évolution intégrodifférentielles semi-linéaires avec des conditions non locales de la forme w(0)=w0+g(w). En supposant que la partie linéaire soit nulle et approximativement contrôlable, la théorie des opérateurs résolvants est utilisée pour présenter les résultats principaux. Le troisième chapitre se concentre sur l'investigation de l'existence de solutions faibles et de la contrôlabilité approchée des systèmes d'évolution intégrodifférentielles avec des conditions non locales prenant des valeurs multiples w(0) appartient w0+g(w). Des conditions suffisantes pour l'existence et la contrôlabilité approchée sont établies à l'aide de la théorie des opérateurs résolvants. Un critère général de contrôlabilité de Kalman est introduit pour étudier la contrôlabilité approchée dans les cas linéaires. Des exemples illustratifs sont fournis tout au long de ces chapitres pour appuyer nos résultats
Control theory is an interdisciplinary field that addresses the behavior of dynamical systems with the primary goal of managing their output. A specialized subset of this is mathematical control theory, which focuses on utilizing mathematical methods to analyze system behavior and design controllers. This involves applying differential equations, linear algebra, optimization, and various mathematical tools to comprehend, model, and regulate system behavior. These systems have extensive applications across robotics, automation, aerospace, electrical engineering, mechanical systems, robotics, biological and social systems, among others. Described by complex models such as partial differential equations, functional differential equations, and other infinite-dimensional models, these systems pose intricate challenges, rendering the analysis of their behavior a pivotal and intricate area of research. In recent years, the application of control theory to analyze and regulate the behavior of these systems has attracted significant attention. This thesis aims to investigate the approximate controllability of certain infinite-dimensional dynamical systems described by integrodifferential equations. The thesis is structured into three chapters, each addressing the problem of achieving approximate controllability in integrodifferential evolution equations equipped with nonlocal conditions. The first chapter introduces fundamental tools critical to establishing our main findings, including the theory of resolvent operators, multi-valued maps, duality mapping, mathematical control theory, and other essential concepts. Chapter 2 specifically focuses on the approximate controllability of semilinear integrodifferential evolution equations with nonlocal conditions of the form w(0)=w0+g(w). Here, assuming the linear part is precisely null and approximately controllable, we employ resolvent operator theory to present our main results. Chapter 3 centers on investigating the existence of mild solutions and the approximate controllability of integrodifferential evolution systems with multi-valued nonlocal conditions (w(0) belongs w0+g(w)). By using resolvent operator theory, we establish sufficient conditions for both existence and controllability. Introducing a general Kalman controllability criterion, we examine approximate controllability in linear cases and subsequently demonstrate it in nonlinear cases. Throughout these chapters, we provide illustrative examples to support our main findings
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chiang, Shihchung. "Numerical solutions for a class of singular integrodifferential equations." Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-06062008-151231/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oka, Hirokazu. "Studies on volterra integrodifferential equations and nonlinear ergodic theorems /." Electronic version of summary, 1995. http://www.wul.waseda.ac.jp/gakui/gaiyo/2225.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Leverentz, Andrew. "An Integrodifferential Equation Modeling 1-D Swarming Behavior." Scholarship @ Claremont, 2008. https://scholarship.claremont.edu/hmc_theses/208.

Повний текст джерела
Анотація:
We explore the behavior of an integrodifferential equation used to model one-dimensional biological swarms. In this model, we assume the motion of the swarm is determined by pairwise interactions, which in a continuous setting corresponds to a convolution of the swarm density with a pairwise interaction kernel. For a large class of interaction kernels, we derive conditions that lead to solutions which spread, blow up, or reach a steady state. For a smaller class of interaction kernels, we are able to make more quantitative predictions. In the spreading case, we predict the approximate shape and scaling of a similarity profile, as well as the approximate behavior at the endpoints of the swarm (via solutions to a traveling wave problem). In the blow up case, we derive an upper bound for the time to blow up. In the steady state case, we use previous results to predict the equilibrium swarm density. We support our predictions with numerical simulations. We also consider an extension of the original model which incorporates external forces. By analyzing and simulating particular cases, we determine that the addition of an external force can qualitatively change the behavior of the system.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Didas, Stephan [Verfasser], and Joachim [Akademischer Betreuer] Weickert. "Denoising and enhancement of digital images : variational methods, integrodifferential equations, and wavelets / Stephan Didas. Betreuer: Joachim Weickert." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2011. http://d-nb.info/105105673X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Redwane, Hicham. "Solutions normalisées de problèmes paraboliques et elliptiques non linéaires." Rouen, 1997. http://www.theses.fr/1997ROUES059.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude de problèmes elliptiques ou paraboliques non linéaires qui sont, d'une façon générale, mal posés dans le cadre des solutions faibles (c'est-à-dire des solutions au sens des distributions). Pour surmonter cette difficulté, on va s'intéresser à une autre classe de solutions : les solutions renormalisées. Cette notion a été introduite par R. -J. Di Perna et P. -L. Lions pour l'étude des équations de Boltzmann, et les équations du premier ordre.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coulibaly, Ibrahim. "Contributions à l'analyse numérique des méthodes quasi-Monte Carlo." Phd thesis, Université Joseph Fourier (Grenoble), 1997. http://tel.archives-ouvertes.fr/tel-00004933.

Повний текст джерела
Анотація:
Les méthodes de type quasi-Monte Carlo sont des versions déterministes des méthodes de Monte Carlo. Les nombres aléatoires sont remplacés par des nombres déterministes qui forment des ensembles ou des suites à faible discrepance, ayant une meilleure distribution uniforme. L'erreur d'une méthode quasi-Monte Carlo dépend de la discrepance de la suite utilisée, la discrepance étant une mesure de la déviation par rapport à la distribution uniforme. Dans un premier temps nous nous intéressons à la résolution par des méthodes quasi-Monte Carlo d'équations différentielles pour lesquelles il y a peu de régularité en temps. Ces méthodes consistent à formuler le problème avec un terme intégral pour effectuer ensuite une quadrature quasi-Monte Carlo. Ensuite des méthodes particulaires quasi-Monte Carlo sont proposées pour résoudre les équations cinétiques suivantes : l'équation de Boltzmann linéaire et le modèle de Kac. Enfin, nous nous intéressons à la résolution de l'équation de la diffusion à l'aide de méthodes particulaires utilisant des marches quasi-aléatoires. Ces méthodes comportent trois étapes : un schéma d'Euler en temps, une approximation particulaire et une quadrature quasi-Monte Carlo à l'aide de réseaux-$(0,m,s)$. A chaque pas de temps les particules sont réparties par paquets dans le cas des problèmes multi-dimensionnels ou triées si le problème est uni-dimensionnel. Ceci permet de démontrer la convergence. Les tests numériques montrent pour les méthodes de type quasi-Monte Carlo de meilleurs résultats que ceux fournis par les méthodes de type Monte Carlo.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Archalousová, Olga. "Singulární počáteční úloha pro obyčejné diferenciální a integrodiferenciální rovnice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-233525.

Повний текст джерела
Анотація:
The thesis deals with qualitative properties of solutions of singular initial value problems for ordinary differential and integrodifferential equations which occur in the theory of linear and nonlinear electrical circuits and the theory of therminionic currents. The research is concentrated especially on questions of existence and uniqueness of solutions, asymptotic estimates of solutions and modications of Adomian decomposition method for singular initial problems. Solution algoritms are derived for scalar differential equations of Lane-Emden type using Taylor series and modication of the Adomian decomposition method. For certain classes of nonlinear of integrodifferential equations asymptotic expansions of solutions are constructed in a neighbourhood of a singular point. By means of the combination of Wazewski's topological method and Schauder xed-point theorem there are proved asymptotic estimates of solutions in a region which is homeomorphic to a cone having vertex coinciding with the initial point. Using Banach xed-point theorem the uniqueness of a solution of the singular initial value problem is proved for systems of integrodifferential equations of Volterra and Fredholm type including implicit systems. Moreover, conditions of continuous dependence of a solution on a parameter are determined. Obtained results are presented in illustrative examples.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nkuna, John Solly. "Structure of hypernuclei studied with the integrodifferential equations approach." Diss., 2012. http://hdl.handle.net/10500/8828.

Повний текст джерела
Анотація:
A two-dimensional integrodi erential equation resulting from the use of potential harmonics expansion in the many-body Schr odinger equation is used to study ground-state properties of selected few-body nuclear systems. The equation takes into account twobody correlations in the system and is applicable to few- and many-body systems. The formulation of the equation involves the use of the Jacobi coordinates to de ne relevant global coordinates as well as the elimination of center-of-mass dependence. The form of the equation does not depend on the size of the system. Therefore, only the interaction potential is required as input. Di erent nucleon-nucleon potentials and hyperon-nucleon potentials are employed to construct the Hamiltonian of the systems. The results obtained are in good agreement with those obtained using other methods.
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Approximation theorems for linear integrodifferential equations in Banach spaces." Tulane University, 1991.

Знайти повний текст джерела
Анотація:
We consider the Cauchy problem(UNFORMATTED TABLE OR EQUATION FOLLOWS)$$\eqalign{u\sp\prime(t)&= \int\sbsp{0}{t}\ K(t - s)Au(s)ds,\quad t\geq 0\cr u(0)&= f,\cr}\leqno(P)$$(TABLE/EQUATION ENDS)and we are interested in continuous dependence of solutions $u(t) = U(t)f$ on A and K, where $\{U(t)\}\sb{t\geq 0}$ is the resolvent family for (P) Given a family of operators $\{A\sb{n}\}$ and a family of scalar kernels $\{ K\sb{n}\}$, we study the family of Cauchy problems(UNFORMATTED TABLE OR EQUATION FOLLOWS)$$\eqalign{u\sbsp{n}{\prime}(t)&= \int\sbsp{0}{t}\ K\sb{n}(t - s)A\sb{n}u\sb{n}(s)ds,\quad t\geq 0\cr u\sb{n}(0)&= f\sb{n}.\cr}\leqno(Pn)$$(TABLE/EQUATION ENDS)We show that under certain stability conditions for $\{ A\sb{n}\}$ and $\{ K\sb{n}\},$ if $A\sb{n} \to A\sb{o}$ and if $K\sb{n} \to K\sb{o},$ in a certain sense, then $u\sb{n}(t) \to u\sb{o}(t).$ Our result is a partial extension of the Trotter-Neveu-Kato theorem to integro-differential equations
acase@tulane.edu
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Integrodifferentail Equations"

1

Kostin, G. V. Integrodifferential relations in linear elasticity. Berlin: De Gruyter, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsimin, Shih, ed. Finite element methods for integrodifferential equations. Singapore: World Scientific, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

P, Agarwal Ravi, O'Regan Donal, and Hammerlin G. 1928-, eds. Integral and integrodifferential equations: Theory, methods, and applications. Amsterdam: Gordon and Breach Science Publishers, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

O'Regan, Donal. Existence theory for nonlinear integral and integrodifferential equations. Dordrecht: Kluwer Academic Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

O’Regan, Donal, and Maria Meehan. Existence Theory for Nonlinear Integral and Integrodifferential Equations. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4992-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Giuseppe, Da Prato, Iannelli Mimmo, Consiglio nazionale delle ricerche (Italy), and Istituto trentino di cultura, eds. Volterra integrodifferential equations in Banach spaces and applications. Harlow, Essex, England: Longman Scientific & Technical, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

O'Regan, Donal. Existence Theory for Nonlinear Integral and Integrodifferential Equations. Dordrecht: Springer Netherlands, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Foltyńska, Izabela. Oscillatory solutions to systems of nonlinear integrodifferential equations with deviating arguments. Poznań: Wydawn. Politechniki Poznańskiej, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

O'Regan, Donal, and Ravi P. Agarwal. Integral and Integrodifferential Equations. Taylor & Francis Group, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

O'Regan, Donal, and Ravi P. Agarwal. Integral and Integrodifferential Equations. Taylor & Francis Group, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Integrodifferentail Equations"

1

Madenci, Erdogan, Atila Barut, and Mehmet Dorduncu. "Integrodifferential Equations." In Peridynamic Differential Operator for Numerical Analysis, 187–208. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02647-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ibragimov, N. H., W. F. Ames, R. L. Anderson, V. A. Dorodnitsyn, E. V. Ferapontov, R. K. Gazizov, N. H. Ibragimov, and S. R. Svirshchevskii. "Integrodifferential Equations." In CRC Handbook of Lie Group Analysis of Differential Equations, Volume I, 332–46. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419808-19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Agarwal, Ravi P., Donal O’Regan, and Patricia J. Y. Wong. "First Order Integrodifferential Equations." In Positive Solutions of Differential, Difference and Integral Equations, 386–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9171-3_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zemyan, Stephen M. "Differential and Integrodifferential Equations." In The Classical Theory of Integral Equations, 183–209. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8349-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pachpatte, B. G. "Parabolic-Type Integrodifferential Equations." In Multidimensional Integral Equations and Inequalities, 143–89. Paris: Atlantis Press, 2011. http://dx.doi.org/10.2991/978-94-91216-17-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Okrasinski, Wojciech. "Uniqueness Problems for Some Classes of Nonlinear Volterra Equations." In Integral and Integrodifferential Equations, 259–68. London: CRC Press, 2000. http://dx.doi.org/10.1201/9781482287462-19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Xinzhi. "Periodic Boundary Value Problems for First-Order Impulsive Integro-Differential Equations in Abstract Spaces." In Integral and Integrodifferential Equations, 185–200. London: CRC Press, 2000. http://dx.doi.org/10.1201/9781482287462-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pao, C. V. "Dynamics of a Volterra—Lotka Competition Model with Diffusion and Time Delays." In Integral and Integrodifferential Equations, 269–78. London: CRC Press, 2000. http://dx.doi.org/10.1201/9781482287462-20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guenther, R. B., and J. W. Lee. "Boundary Value Problems for a Class of Integro-differential Equations and Applications." In Integral and Integrodifferential Equations, 101–16. London: CRC Press, 2000. http://dx.doi.org/10.1201/9781482287462-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Papageorgiou, Nikolaos S., and Nikolaos Yannakakis. "Hammerstein Integral Inclusions in Banach Spaces." In Integral and Integrodifferential Equations, 279–94. London: CRC Press, 2000. http://dx.doi.org/10.1201/9781482287462-21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Integrodifferentail Equations"

1

IZSÁK, F. "VOLTERRA INTEGRODIFFERENTIAL EQUATIONS WITH INFINITE DELAY." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cavaterra, Cecilia. "Automatic control problems for integrodifferential parabolic equations." In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Davidovich, M. V., and Yu V. Stephuk. "Integral and integrodifferential equations for quasiperiodic structures." In 2008 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2008. http://dx.doi.org/10.1109/apede.2008.4720162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Didas, S., G. Steidl, and J. Weickert. "Discrete multiscale wavelet shrinkage and integrodifferential equations." In Photonics Europe, edited by Peter Schelkens, Touradj Ebrahimi, Gabriel Cristóbal, and Frédéric Truchetet. SPIE, 2008. http://dx.doi.org/10.1117/12.782472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chalishajar, D. N., and R. Ramesh. "Controllability for impulsive fuzzy neutral functional integrodifferential equations." In RENEWABLE ENERGY SOURCES AND TECHNOLOGIES. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5127472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Davidovich, M. "Integral and integrodifferential equations for unbounded pseudoperiodic structures." In 2008 International Conference on Mathematical Methods in Electromagnetic Theory (MEET). IEEE, 2008. http://dx.doi.org/10.1109/mmet.2008.4580990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kwun, Young Chel, Mi Ju Kim, Jong Seo Park, and Jin Han Park. "Continuously Initial Observability for the Semilinear Fuzzy Integrodifferential Equations." In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2008. http://dx.doi.org/10.1109/fskd.2008.510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Zhonghua, and Xia Guo. "Asymptotic Behavior of Solutions for a Class of Integrodifferential Equations." In 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2015. http://dx.doi.org/10.1109/ihmsc.2015.263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Bo. "Construction of Liapunov functionals for linear Volterra integrodifferential equations and stability of delay systems." In The 6'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 1999. http://dx.doi.org/10.14232/ejqtde.1999.5.30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lu, Chou-li, Xiao-qiu Song, and Li-li Zhou. "Weighted Pseudo Almost Automorphic Solution to a Class of Integrodifferential Equations." In information Services (ICICIS). IEEE, 2011. http://dx.doi.org/10.1109/icicis.2011.42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії