Добірка наукової літератури з теми "Instability and transition"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Instability and transition".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Instability and transition"

1

Morkovin, Mark V. "Instability and Transition." International Journal of Heat and Fluid Flow 12, no. 4 (December 1991): 384. http://dx.doi.org/10.1016/0142-727x(91)90029-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Men, Hongyuan, Xinliang Li, and Hongwei Liu. "Direct numerical simulations of hypersonic boundary layer transition over a hypersonic transition research vehicle model lifting body at different angles of attack." Physics of Fluids 35, no. 4 (April 2023): 044111. http://dx.doi.org/10.1063/5.0146651.

Повний текст джерела
Анотація:
This paper performs direct numerical simulations of hypersonic boundary layer transition over a Hypersonic Transition Research Vehicle (HyTRV) model lifting body designed by the China Aerodynamic Research and Development Center. Transitions are simulated at four angles of attack: 0°, 3°, 5°, and 7°. The free-stream Mach number is 6, and the unit Reynolds number is 107 m−1. Four distinct transitional regions are identified: the shoulder cross-flow and vortex region and the shoulder vortex region on the leeward side, the windward vortex region and the windward cross-flow region on the windward side. As the angle of attack increases, the transition locations on the leeward side generally move forward and the transition ranges expand, while the transition locations generally move backward and the transition ranges decrease on the windward side. Moreover, the shoulder vortex region moves toward the centerline of the leeward side. At large angles of attack (5° and 7°), the streamwise vortex on the shoulder cross-flow and vortex region will enable the transition region to be divided into the cross-flow instability region on both sides and the streamwise vortex instability region in the middle. In addition, the streamwise vortex also leads to a significant increase in cross-flow instability in their upper region, which can generate a new streamwise vortex instability region between the two transition regions on the leeward side. Furthermore, since the decrease in the intensity and the range for the cross-flow on the windward side, the windward cross-flow region tends to become narrow and ultimately disappears.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marshall, Victor W., Philippa J. Clarke, and Peri J. Ballantyne. "Instability in the Retirement Transition." Research on Aging 23, no. 4 (July 2001): 379–409. http://dx.doi.org/10.1177/0164027501234001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dagaut, J., M. E. Negretti, G. Balarac, and C. Brun. "Linear to turbulent Görtler instability transition." Physics of Fluids 33, no. 1 (January 1, 2021): 014102. http://dx.doi.org/10.1063/5.0033944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, S. Y., and J. M. Wang. "Microwave Instability across the Transition Energy." IEEE Transactions on Nuclear Science 32, no. 5 (October 1985): 2323–25. http://dx.doi.org/10.1109/tns.1985.4333900.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

COOK, ANDREW W., WILLIAM CABOT, and PAUL L. MILLER. "The mixing transition in RayleighTaylor instability." Journal of Fluid Mechanics 511 (July 25, 2004): 333–62. http://dx.doi.org/10.1017/s0022112004009681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bayly, B. J., S. A. Orszag, and T. Herbert. "Instability Mechanisms in Shear-Flow Transition." Annual Review of Fluid Mechanics 20, no. 1 (January 1988): 359–91. http://dx.doi.org/10.1146/annurev.fl.20.010188.002043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

CHAURASIA, HEMANT K., and MARK C. THOMPSON. "Three-dimensional instabilities in the boundary-layer flow over a long rectangular plate." Journal of Fluid Mechanics 681 (June 16, 2011): 411–33. http://dx.doi.org/10.1017/jfm.2011.205.

Повний текст джерела
Анотація:
A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Granatosky, Michael C., Caleb M. Bryce, Jandy Hanna, Aidan Fitzsimons, Myra F. Laird, Kelsey Stilson, Christine E. Wall, and Callum F. Ross. "Inter-stride variability triggers gait transitions in mammals and birds." Proceedings of the Royal Society B: Biological Sciences 285, no. 1893 (December 12, 2018): 20181766. http://dx.doi.org/10.1098/rspb.2018.1766.

Повний текст джерела
Анотація:
Speed-related gait transitions occur in many animals, but it remains unclear what factors trigger gait changes. While the most widely accepted function of gait transitions is that they reduce locomotor costs, there is no obvious metabolic trigger signalling animals when to switch gaits. An alternative approach suggests that gait transitions serve to reduce locomotor instability. While there is evidence supporting this in humans, similar research has not been conducted in other species. This study explores energetics and stride variability during the walk–run transition in mammals and birds. Across nine species, energy savings do not predict the occurrence of a gait transition. Instead, our findings suggest that animals trigger gait transitions to maintain high locomotor rhythmicity and reduce unstable states. Metabolic efficiency is an important benefit of gait transitions, but the reduction in dynamic instability may be the proximate trigger determining when those transitions occur.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kobayashi, Ryoji. "Review: Laminar-to-Turbulent Transition of Three-Dimensional Boundary Layers on Rotating Bodies." Journal of Fluids Engineering 116, no. 2 (June 1, 1994): 200–211. http://dx.doi.org/10.1115/1.2910255.

Повний текст джерела
Анотація:
The laminar-turbulent transition of three-dimensional boundary layers is critically reviewed for some typical axisymmetric bodies rotating in still fluid or in axial flow. The flow structures of the transition regions are visualized. The transition phenomena are driven by the compound of the Tollmien-Schlichting instability, the crossflow instability, and the centrifugal instability. Experimental evidence is provided relating the critical and transition Reynolds numbers, defined in terms of the local velocity and the boundary layer momentum thickness, to the local rotational speed ratio, defined as the ratio of the circumferential speed to the free-stream velocity at the outer edge of the boundary layer, for the rotating disk, the rotating cone, the rotating sphere and other rotating axisymmetric bodies. It is shown that the cross-sectional structure of spiral vortices appearing in the transition regions and the flow pattern of the following secondary instability in the case of the crossflow instability are clearly different than those in the case of the centrifugal instability.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Instability and transition"

1

Zhao, Yongling. "Instability and Transition of Natural Convection Boundary Layers." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13126.

Повний текст джерела
Анотація:
The present work is concerned with the instability and transition of vertical natural convection boundary layers, which are investigated by numerical simulations and particle image velocimetry (PIV) experiments. Two-dimensional direct stability analyses are firstly implemented to study the instability characteristics of the boundary layers, and three-dimensional direct numerical simulations are then conducted to investigate the transitions of the boundary layers. Two broad categories of transitions, that is, the natural transition and the controlled transition, are investigated in this thesis. For the investigation of the controlled transitions, the K-type and H-type transitions are examined respectively. Furthermore, a PIV measurement of the flow characteristics of the boundary layers under natural transition and a preliminary PIV experiment of the K-type transition are conducted to provide qualitative and quantitative evidences for validating the numerical results.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Picella, Francesco. "Retarder la transition vers la turbulence en imitant les feuilles de lotus." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0014/document.

Повний текст джерела
Анотація:
​ Nombreuses stratégies de contrôle ont été récemment proposées par la communauté scientifique afin depouvoir réduire la traînée dans les écoulements pariétaux. Entre autres, les Surfaces Superhydrophobes (SHS) ontmontré leurs capacités de pouvoir réduire considérablement le frottement pariétal d’un écoulement liquide grâce à laprésence de microbulles de gaz piégées dans les nano-rugosités de la surface. Dans des conditions géométrique etthermodynamique données pour lesquelles la transition de mouillage est évitée (condition pour laquelle normalementla taille des rugosités qui caractérise la SHS est de plusieurs ordres de grandeur plus petite que l'échellecaractéristique de l'écoulement principal), on peut atteindre ce qu’on appelle ‘l'effet Lotus’, pour lequel l'écoulementglisse à la paroi, avec une vitesse différente de zéro.. Dans ce cadre, nous nous sommes proposés d’étudier, à l’aidede simulations numériques l’influence des SHS sur la transition laminaire-turbulent dans un écoulement de canal.Pour cela, nous avons réalisé une série de simulations numériques directes (DNS), allant de l'état laminaire au casturbulent pleinement développé, en traitant la plupart de scénarios de transition connu en littérature. Des analyses destabilité locale et globale ont aussi été réalisées afin de déterminer l’influence de ces surfaces sur la première phasedu processus de transition. Bien que la procédure de déclenchement de la transition contrôlée (type K, H, C,...) soitbien décrite dans la littérature, cela n’est pas le cas pour les transitions naturelles. À cette fin, une nouvelle méthode aété développée pour déclencher puis étudier la transition naturelle dans des écoulements de type canal. Cette méthodeest basée sur des mécanismes de réceptivité de l'écoulement (resolvent global) permettant de construire un forçagevolumique spécifique. Plusieurs approches pour modéliser les SHS ont été utilisées, de complexités croissantes, touten tenant en compte des caractéristiques physiques de ces surfaces. Dans un premier temps, une condition deglissement homogène a été utilisée et son influence analysée. Chaque rugosité a été ensuite discrétisée spatialement,d’abord avec une alternance de condition limite sur une surface plate, ensuite en tenant compte de la dynamique del’interface gaz-liquide par une méthode Lagrangienne-Eulerienne Arbitraire (ALE). Nous avons montré que les SHSpermettent d’efficacement retarder les transitions contrôlées mais qu’en revanche elles ont peu d’influence sur lestransitions naturelles (développant des stries de vitesse). En effet, ce comportement dérive de l'équilibre entre deuxeffets contradictoires. D’un côté, le glissement pariétal nuit au développement des structures cohérentes de typehairpin ​ , en altérant le processus de ​ vortex stretching-tilting ​ . D’autre part, le mouvement de l’interface gaz-liquideinteragit avec les structures cohérentes de l'écoulement, en produisant des vitesses normales à la paroi favorisantdavantage le processus de ​ sweep-ejection et entraînant le développement de structures en forme d’arche. Nous avonsmontré que les interfaces gaz-liquide statiques retardent la transition de façon analogue à une condition aux limiteshomogène (si l’hétérogénéité pariétale est petite). En revanche la prise en compte de leur dynamique limite le retardde la transition, montrant l’importance du modèle de SHS dans les écoulements transitionnels
Many passive control strategies have been recently proposed for reducing drag in wall-bounded shearflows. Among them, underwater SuperHydrophobic Surfaces (SHS) have proven to be capable of dramaticallyreducing the skin friction of a liquid flowing on top of them, due to the presence of gas bubbles trapped within thesurface nano-sculptures. In specific geometrical and thermodynamical conditions for which wetting transition isavoided (in particular, when the roughness elements characterizing the SHS are several orders of magnitude smallerthan the overlying flow), the so-called ’Lotus effect’ is achieved, for which the flow appears to slip on the surfacewith a non zero velocity. In this framework, we propose to study, by means of numerical simulations, the influence ofSHS on laminar-turbulent transition in a channel flow. To do so we have performed a series of direct numericalsimulations (DNS), from the laminar to the fully turbulent state, covering the majority of transition scenarios knownin the literature, as well as local and global stability analysis so to determine the influence of SHS onto the initialstages of the process. While the conditions for observing controlled K-type transition in a temporal channel flow arewell defined, this is not the case for uncontrolled ones. To this end, a novel theoretical numerical framework has beendeveloped so to enable the observation of natural transition in wall-bounded flows. This method, similarly to theFree-Stream-Turbulence framework available for the boundary layer flow, is capable of triggering uncontrolledtransition t​ hrough flow receptivity to a purpose-built forcing. Different surface modellings for the superhydrophobicsurfaces are tested. First, homogeneous slip conditions are used. Then, the spatial heterogeneity of the SHS has beenconsidered by modelling it as a flat surface with alternating slip no-slip boundary conditions. Finally, the dynamics ofeach microscopic liquid-gas free-surface has been taken into account by means of a fully coupled fluid-structuresolver, using an Arbitrary Lagrangian Eulerian formulation. We show that while SHS are ineffective in controllingtransition in noisy environment​ , they can strongly delay transition to turbulence for the K-type scenario​ . Thisbehaviour results from the balance of two opposing effects. On one hand slippery surfaces inhibit the development ofcharacteristic hairpin vortices by altering the vortex stretching-tilting process. On the other hand, the movement ofthe gas-liquid free-surfaces interacts with the overlying coherent structures, producing wall-normal velocities thatenhance the sweep-ejection process, leading to a rapid formation of hairpin-like head vortices. Thus, whenconsidering flat interfaces transition time is strongly increased, while taking into account the interface dynamicsinduces smaller changes with respect to the no-slip case, indicating the need for an appropriate modelling of SHS fortransition delay purposes
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Patel, Sanjay. "Computational modelling of instability and transition using high-resolution methods." Thesis, Cranfield University, 2007. http://hdl.handle.net/1826/3235.

Повний текст джерела
Анотація:
This thesis concerns the numerical investigation of suddenly expanded flows featuring separation, instabilities and transition, in the context of Implicit Large Eddy Simulation (ILES). The study of separated flows through suddenly expanded geometries is a classic yet complex area of research. These types of flows feature instabilities which may lead to bifurcation. Non-linear bifurcation is of great importance when considering hydrodynamic stability and the mechanism of laminar to turbulent flow transition. A detailed numerical investigation of various high-resolution methods and their ability to correctly predict the flow through a suddenly expanded and contracted geometry demonstrates that the choice of the particular numerical method employed can lead to an incorrect solution of the flow. The key di erence between the various highresolution methods employed is in the calculation of the nonlinear wave-speed dependent term. It is shown that the nonlinearity of this term provides an asymmetric dissipation to the flow which triggers symmetry-breaking bifurcation in a fully symmetric computational set-up. High-resolution simulations of three-dimensional flow through a plane suddenly expanded channel at low Reynolds numbers show that this type of flow is characterised by a symmetric separation of the fluid which is nominally two-dimensional in the spanwise direction. Increasing the Reynolds number reveals a symmetry-breaking bifurcation of the fluid flow which becomes three-dimensional as Reynolds number is further increased. Simulations confirm that it is this threedimensional disturbance which leads to the onset of time-dependent flow characterised by the periodic shedding of vortices from the upstream recirculation zones. Preconditioning techniques which aim to alleviate sti ness in the calculation of the advective fluxes for low Reynolds number flows are shown to be unsuitable for flows featuring instabilities. The added dissipation to the flow causes the prediction of an incorrect stable solution or to an improper estimation of the size of the separation bubbles. Simulations of a synthetic jet issuing into quiescent air using various slope limiters manage to capture the flow physics relatively well. Limiters are used to avoid a scheme from being oscillatory and provide non-linear dissipation in the region of excessively large gradients. The various limiters di er with regards to the amount of dissipation they provide to the flow, hence the solution obtained is dependent on the limiter used.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yoshimura, Kazuyuki. "Mode instability and chaoticity transition in one-dimensional anharmonic lattices." Kyoto University, 1997. http://hdl.handle.net/2433/202314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Robey, H. F. Liepmann H. W. Liepmann H. W. "The nature of oblique instability waves in boundary layer transition /." Diss., Pasadena, Calif. : California Institute of Technology, 1986. http://resolver.caltech.edu/CaltechETD:etd-05242007-150746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Savin, Deborah Jane. "Linear and nonlinear aspects of interactive boundary layer transition." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hagan, J. "Nonlinear instabilities and transition to turbulence in magnetohydrodynamic channel flow." Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/cc5976b0-419c-4944-a2ff-3af446a03d05/1.

Повний текст джерела
Анотація:
The present study is concerned with the stability of a flow of viscous conducting liquid driven by a pressure gradient between two parallel walls in the presence of a transverse magnetic field, which is investigated using a Chebyshev collocation method. This magnetohydrodynamic counterpart of the classic plane Poiseuille flow is generally known as Hartmann flow. Although the magnetic field has a strong stabilizing effect, the turbulence is known to set in this flow similarly to its hydrodynamic counterpart well below the threshold predicted by the linear stability theory. Such a nonlinear transition to turbulence is thought to be mediated by unstable equilibrium flow states which may exist in addition to the base flow. Firstly, the weakly nonlinear stability analysis carried out in this study shows that Hartmann flow is subcritically unstable to small finite-amplitude disturbances regardless of the magnetic field strength. Secondly, two-dimensional nonlinear travelling wave states are found to exist in Hartmann flow at substantially subcritical Reynolds numbers starting from Ren = 2939 without the magnetic field and from Ren ∼ 6.50 × 103Ha in a sufficiently strong magnetic field defined by the Hartmann number Ha. Although the latter value is by a factor of seven lower than the linear stability threshold Rel ∼ 4.83×104Ha and by almost a factor of two lower than the value predicted by the mean-field (monoharmonic) approximation, it is still more than an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow. Three-dimensional disturbances are expected to bifurcate from these two-dimensional travelling waves or infinity and to extend to significantly lower Reynolds numbers. The by-product of this study are two developments of numerical techniques for linear and weakly nonlinear stability analysis. Firstly, a simple technique for avoiding spurious eigenvalues is developed for the solution of the Orr-Sommerfeld equation. Secondly, an efficient numerical method for evaluating Landau coefficients which describe small amplitude states in the vicinity of the linear stability threshold is introduced. The method differs from the standard approach by applying the solvability condition to the discretised rather than the continuous problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hosseini, Seyed Mohammad. "Stability and transition of three-dimensional boundary layers." Licentiate thesis, KTH, Stabilitet, Transition, Kontroll, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123175.

Повний текст джерела
Анотація:
A focus has been put on the stability characteristics of different flow types existing on air vehicles. Flow passing over wings and different junctions on an aircraft face numerous local features, ranging from different pressure gradients, to interacting boundary layers. Primarily, stability characteristics of flow over a wing subject to negative pressure gradient is studied. The current numerical study conforms to an experimental study conducted by Saric and coworkers, in their Arizona State University wind tunnel experiments. Within that framework, a passive control mechanism has been tested to delay transition of flow from laminar to turbulence. The same control approach has been studied here, in addition to underling mechanisms playing major roles in flow transition, such as nonlinear effects and secondary instabilities. Another common three-dimensional flow feature arises as a result of streamlines passing through a junction, the so called corner-flow. For instance, this flow can be formed in the junction between the wing and fuselage on a plane. A series of direct numerical simulations using linear Navier-Stokes equations have been performed to determine the optimal initial perturbation. Optimal refers to a perturbation which can gain the maximum energy from the flow over a period of time. Power iterations between direct and adjoint Navier- Stokes equations determine the optimal initial perturbation. In other words this method seeks to determine the worst case scenario in terms of perturbation growth. Determining the optimal initial condition can help improve the design of such surfaces in addition to possible control mechanisms.

QC 20130604


RECEPT
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Appelquist, Ellinor. "The rotating-disk boundary-layer flow studied through numerical simulations." Doctoral thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200827.

Повний текст джерела
Анотація:
This thesis deals with the instabilities of the incompressible boundary-layer flow thatis induced by a disk rotating in otherwise still fluid. The results presented include bothwork in the linear and nonlinear regime and are derived from direct numerical sim-ulations (DNS). Comparisons are made both to theoretical and experimental resultsproviding new insights into the transition route to turbulence. The simulation codeNek5000 has been chosen for the DNS using a spectral-element method (SEM) witha high-order discretization, and the results were obtained through large-scale paral-lel simulations. The known similarity solution of the Navier–Stokes equations for therotating-disk flow, also called the von K ́arm ́an rotating-disk flow, is reproduced by theDNS. With the addition of modelled small simulated roughnesses on the disk surface,convective instabilities appear and data from the linear region in the DNS are anal-ysed and compared with experimental and theoretical data, all corresponding verywell. A theoretical analysis is also presented using a local linear-stability approach,where two stability solvers have been developed based on earlier work. Furthermore,the impulse response of the rotating-disk boundary layer is investigated using DNS.The local response is known to be absolutely unstable and the global response, onthe contrary, is stable if the edge of the disk is assumed to be at radius infinity. Herecomparisons with a finite domain using various boundary conditions give a globalbehaviour that can be both linearly stable and unstable, however always nonlinearlyunstable. The global frequency of the flow is found to be determined by the Rey-nolds number at the confinement of the domain, either by the edge (linear case) or bythe turbulence appearance (nonlinear case). Moreover, secondary instabilities on topof the convective instabilities induced by roughness elements were investigated andfound to be globally unstable. This behaviour agrees well with the experimental flowand acts at a smaller radial distance than the primary global instability. The sharpline corresponding to transition to turbulence seen in experiments of the rotating diskcan thus be explained by the secondary global instability. Finally, turbulence datawere compared with experiments and investigated thoroughly.

QC 20170203

Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schmidt, Oliver [Verfasser]. "Numerical investigations of instability and transition in streamwise corner-flows / Oliver Schmidt." München : Verlag Dr. Hut, 2014. http://d-nb.info/1052375626/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Instability and transition"

1

Hussaini, M. Y., and R. G. Voigt, eds. Instability and Transition. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4612-3430-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hussaini, M. Y., and R. G. Voigt, eds. Instability and Transition. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3432-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yousuff, Hussaini M., Voigt Robert G, Institute for Computer Applications in Science and Engineering., and Langley Research Center, eds. Instability and transition. New York: Springer-Verlag, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hussaini, M. Y., A. Kumar, and C. L. Streett, eds. Instability, Transition, and Turbulence. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hussaini, M. Y. Instability, Transition, and Turbulence. New York, NY: Springer New York, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yousuff, Hussaini M., Kumar Ajay, and Streett Craig L, eds. Instability, transition, and turbulence. New York: Springer-Verlag, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yaglom, Akiva M. Hydrodynamic Instability and Transition to Turbulence. Edited by Uriel Frisch. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4237-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yaglom, Akiva M. Hydrodynamic Instability and Transition to Turbulence. Dordrecht: Springer Netherlands, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lost in transition: Youth, work, and instability in postindustrial Japan. Cambridge: Cambridge University Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Morkovin, Mark Vladimir. Recent insights into instability and transition to turbulence in open-flow systems. Hampton, Va: ICASE, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Instability and transition"

1

Stuart, J. T. "Instability and Transition." In Advances in Turbulence, 2–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83045-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schmid, Peter J., and Dan S. Henningson. "Secondary Instability." In Stability and Transition in Shear Flows, 373–99. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0185-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wilkinson, Stephen P. "Group Summary: Experiments." In Instability, Transition, and Turbulence, 3. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Salas, Manuel D. "Group Summary: Advanced Asymptotics — II." In Instability, Transition, and Turbulence, 95. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Berger, Stanley A. "Ellipticity in the Vortex Breakdown Problem." In Instability, Transition, and Turbulence, 96–106. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Malmuth, Norman D. "Inviscid Stability of Hypersonic Strong Interaction Flow Over a Flat Plate." In Instability, Transition, and Turbulence, 107–26. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Grosch, C. E., T. L. Jackson, and A. K. Kapila. "Nonseparable Eigenmodes of the Incompressible Boundary Layer." In Instability, Transition, and Turbulence, 127–36. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bridges, Thomas J. "Spatially-Quasiperiodic States in Shear Flows." In Instability, Transition, and Turbulence, 137–45. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Malik, Mujeeb R. "Group Summary: Advanced Stability." In Instability, Transition, and Turbulence, 149–50. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dhanak, Manhar R. "Effect of Suction on the Stability of Flow on a Rotating Disk." In Instability, Transition, and Turbulence, 151–67. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Instability and transition"

1

aguirre manco, Jhonatan andres, and Marcio Teixeira de Mendonca. "Instability of Binary Subsonic Coaxial Jets." In 12th Spring School on Transition and Turbulence. ABCM, 2020. http://dx.doi.org/10.26678/abcm.eptt2020.ept20-0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reshotko, Eli. "Boundary layer instability, transition and control." In 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

FINLAY, WARREN, JOSEPH KELLER, and JOEL FERZIGER. "Instability and transition in nonaxisymmetric curved channel flow." In 1st National Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Caballina, Ophe´lie, Eric Climent, and Jan Dusˇek. "Instability and Transition of a Plane Bubble Plume." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31451.

Повний текст джерела
Анотація:
When bubbles are continuously released from a located source at the bottom of a fluid layer initially at rest, a plume is produced. The motion of the carrier fluid is initiated and driven by buoyancy of the bubble cloud. In the present study, a detailed analysis of the bubble plume transition is investigated. The continuous phase flow is obtained by direct numerical resolution of Navier-Stokes equations forced by the presence of bubbles. Collective effects induced by the presence of bubbles are modelled by a spatio-temporal distribution of momentum. Time evolution of the dispersed phase is solved by lagrangian tracking of all the bubbles. Focused on the description of plume transition, several configurations (plume widths, fluid viscosity, injection rate) are investigated. During the laminar ascension of the plume, fluid velocity profiles can be non-dimensionalised on a single auto-similar evolution. Dimensional analysis provides a prediction of the limit rising velocity of the plume top. This prediction has been confirmed by our numerical simulations. Furthermore, our first results point out the symmetry breaking induced by plume instability which appears beyond a critical transition height. Various data show that the Grashof number based on injection conditions is the key parameter to predict the transition of the plume. Our results agree very well with recent experimental data. Comparison with experiments on thermal plumes in air shows that the bubble plume is more unstable. This feature should be related to the lack of diffusion in the lagrangian transport of density gradient by the bubble cloud and to the slip velocity between the two phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Savelyev, A. A., E. S. Matyash, A. I. Troshin та M. V. Ustinov. "ACCOUNTING CROSSFLOW INSTABILITY IN γ-SST TRANSITION MODEL". У INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH. Novosibirsk: Издательство Сибирского отделения РАН, 2022. http://dx.doi.org/10.53954/9785604788974_139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ng, K. Y., and J. Norem. "Short-bunch production and microwave instability near transition." In Workshop on instabilities of high intensity hadron beams in rings. AIP, 1999. http://dx.doi.org/10.1063/1.1301887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hatman, Anca, and Ting Wang. "Separated-Flow Transition: Part 3 — Primary Modes and Vortex Dynamics." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-463.

Повний текст джерела
Анотація:
This paper clearly identifies the possible modes of transition in the separated boundary layers and their specific characteristics. This study distinguishes between the short and long bubbles primarily based on the separated flow structure. A hypothetical description of the vortex structure and evolution for each separated-flow transition mode is provided. The present approach in analyzing separated-flow transition is based on the assumption that the transition to turbulence in separated boundary layers is a result of the superposition of the effects of two different types of instability. The first type of instability is the Kelvin-Helmholtz (KH) instability. It occurs and develops in the shear layer at a specific location downstream of the separation point. The concentration of spanwise vorticity grows in time and remains in place through the vortex sheet roll-up mechanism. The roll-up vortex interacts with the wall and induces periodic ejection of near-wall fluid into the separated shear layer. The ejection process takes place at a location identifiable by the maximum displacement of shear layer, xMD. The second type of instability is the (convective) Tollmien-Schlichting (TS) instability. It originates in the boundary layer prior to the separation point and continues to evolve in the separated shear layer. The mechanism for the TS instability also leads to roll-ups, but it involves viscous tuning of the instability waves. Thus, the separated-flow transition is the result of spatially developing, often competing instabilities. The ejection induces the onset of transition for laminar short and long bubble modes of transition and controls the mid-transition point of transitional separation mode. The ejection may be accompanied by vortex shedding. Shedding occurs in the laminar separation - short bubble mode and occasionally in the transitional separation mode; however, it is not present in the laminar separation - long bubble mode of transition.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MALIK, M., and P. BALAKUMAR. "Instability and transition in three-dimensional supersonic boundary layers." In AlAA 4th International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-5049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Morioka, S., F. Joussellin, and H. Monji. "FLOW PATTERN TRANSITION DUE TO INSTABILITY OF VOIDAGE WAVE." In Dynamics of Two-Phase Flows. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/0-8493-9925-4.210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sawada, Hiroyoshi, Kosuke Sekiyama, Tadayoshi Aoyama, Yasuhisa Hasegawa, and Toshio Fukuda. "Locomotion transition scheme with instability evaluation using Bayesian Network." In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010). IEEE, 2010. http://dx.doi.org/10.1109/iros.2010.5650086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Instability and transition"

1

Spong, D., K. Shaing, B. Carreras, L. Charlton, J. Callen, and L. Garcia. Transition from resistive ballooning to neoclassical magnetohydrodynamic pressure-gradient-driven instability. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/6866651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shepherd, Joseph E. Transition Delay in Hypervelocity Boundary Layers By Means of CO2/Acoustic Instability Interaction. Fort Belvoir, VA: Defense Technical Information Center, December 2014. http://dx.doi.org/10.21236/ada619007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Peralta, Pedro, Elizabeth Fortin, Saul Opie, Sudrishti Gautam, Ashish Gopalakrishnan, Jenna Lynch, Yan Chen, and Eric Loomis. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1348981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії