Добірка наукової літератури з теми "Inner Solar System"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Inner Solar System".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Inner Solar System":

1

Slater, Tim. "Inner solar system concepts." Physics Teacher 38, no. 5 (May 2000): 264–65. http://dx.doi.org/10.1119/1.880527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Greenstreet, Sarah. "Asteroids in the inner solar system." Physics Today 74, no. 7 (July 1, 2021): 42–47. http://dx.doi.org/10.1063/pt.3.4794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sylvan, Richard, Narayanan M. Komerath, Kirk Woellert, Mark Homnick, and Joseph E. Palaia. "The Emerging Inner Solar System Economy." World Futures Review 1, no. 2 (April 2009): 23–38. http://dx.doi.org/10.1177/194675670900100206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Donahue, T. M., T. I. Gombosi, and B. R. Sandel. "Cometesimals in the inner Solar System." Nature 330, no. 6148 (December 1987): 548–50. http://dx.doi.org/10.1038/330548a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mann, Ingrid, Edmond Murad, and Andrzej Czechowski. "Nanoparticles in the inner solar system." Planetary and Space Science 55, no. 9 (June 2007): 1000–1009. http://dx.doi.org/10.1016/j.pss.2006.11.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alexander, Conel M. O'D. "The origin of inner Solar System water." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2094 (April 17, 2017): 20150384. http://dx.doi.org/10.1098/rsta.2015.0384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2–4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt (‘classical’ model) or in the outer Solar System (5–15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3–7 AU in the Grand Tack model) and possibly close to where they are found today. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
7

Trinquier, Anne, Jean‐Louis Birck, and Claude J. Allegre. "Widespread54Cr Heterogeneity in the Inner Solar System." Astrophysical Journal 655, no. 2 (February 2007): 1179–85. http://dx.doi.org/10.1086/510360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hall, D. T., and D. E. Shemansky. "No cometesimals in the inner Solar System." Nature 335, no. 6189 (September 1988): 417–19. http://dx.doi.org/10.1038/335417a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Milgrom, Mordehai. "MOND effects in the inner Solar system." Monthly Notices of the Royal Astronomical Society 399, no. 1 (October 11, 2009): 474–86. http://dx.doi.org/10.1111/j.1365-2966.2009.15302.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chambers, John E. "Planetary accretion in the inner Solar System." Earth and Planetary Science Letters 223, no. 3-4 (July 2004): 241–52. http://dx.doi.org/10.1016/j.epsl.2004.04.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Inner Solar System":

1

Armytage, Rosalind M. G. "The silicon isotopic composition of inner Solar System materials." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:9034aab2-aadd-4dcb-b3e3-64d4d7c2f029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study uses high precision silicon isotopic measurements to understand events that occurred during the earliest stages of formation of the terrestrial planets. The isotopic compositions of diverse materials such as chondrites, lunar rocks and asteroidal basalts can shed light on the homogeneity of the solar nebula, metal-silicate differentiation on planetary bodies, and terrestrial moon formation. Limited variation in the Si isotopic composition of meteorites is evidence for a relatively homogeneous inner solar system with respect to silicon isotopes. The Si isotopic composition of bulk silicate Earth (BSE) is, however, heavier than meteorites. This points to an event unique to Earth that fractionated Si isotopes, such as core formation at terrestrial conditions. The Δ30SiBSE-meteorite value from this study indicates that the Earth’s core contains 8.7 (+8.1/−6.2) wt% Si. No systematic δ30Si differences were found between any of the lunar lithologies analysed, implying a Si isotopic homogeneity of the sampled lunar source regions. The lunar average, δ30Si = −0.29±0.08permil (2σSD), is identical to the recent value of Savage et al. (2010) for BSE of δ30Si = −0.29 ± 0.08permil (2σSD). The best explanation of the data is that Si isotopes must have homogenised in the aftermath of the Moon-forming impact with no subsequent fractionation in the proto-lunar disk. The Si isotopic composition of olivine within lunar basalts was found to be the same or heavier than δ30Si(pyroxene). This is not consistent with terrestrial data where δ30Si(pyroxene) is always lighter than δ30Si(olivine). Crystallisation history cannot explain the data, and the slow diffusion rates of Si rule out cooling rates as a cause. Therefore, it appears that inter-mineral fractionation of Si isotopes occurs differently on the Moon. The δ30Si of chondrules picked from Allende spanned a range of ~0.6permil, a factor of two greater than the bulk meteorite range. There is no evidence for the variable δ30Si of the chondrules being the result of post-formation alteration and there is no convincing evidence for precursor heterogeneity being the primary cause. It is likely that Si isotopic composition of chondrules is the result of evaporation and reequilibration with the evaporated phase.
2

Tabachnik, Serge A. "The stability of minor bodies in the inner solar system." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sarafian, Adam Robert 1986. "Water and volatile element accretion to the inner planets." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references.
This thesis investigates the timing and source(s) of water and volatile elements to the inner solar system by studying the basaltic meteorites angrites and eucrites. In chapters 2 and 3, I present the results from angrite meteorites. Chapter 2 examines the water and volatile element content of the angrite parent body and I suggest that some water and other volatile elements accreted to inner solar system bodies by ~2 Myr after the start of the solar system. Chapter 3 examines the D/H of this water and I suggest it is derived from carbonaceous chondrites. Chapter 4, 5, 6, and 7 addresses eucrite meteorites. Chapter 4 expands on existing models to explain geochemical trends observed in eucrites. In Chapter 5, I examine the water and F content of the eucrite parent body, 4 Vesta. In chapter 6, I determine the source of water for 4 Vesta and determine that carbonaceous chondrites delivered water to this body. Chapter 7 discusses degassing on 4 Vesta while it was forming.
by Adam Robert Sarafian.
Ph. D.
4

JeongAhn, (Chung) Youngmin. "Orbital Distribution of Minor Planets in the Inner Solar System and their Impact Fluxes on the Earth, the Moon and Mars." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/579034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The planet crossing asteroids in the inner solar system have strongly chaotic orbits and the distributions of their angular elements (longitude of ascending node, Ω; argument of perihelion, ω; and longitude of perihelion, ϖ) are often regarded as uniform random. In the last decade, the known population of these minor planets has increased by more than a factor of four, providing a sufficiently large dataset for statistical analysis of their distribution. By choosing the observationally complete set of bright objects, we quantified the level of intrinsic non-uniformities of the angular elements for the following dynamical subgroups of Near Earth Objects (NEOs) and Mars Crossing Objects (MCOs): three subgroups of NEOs (Atens, Apollos, and Amors) and two inclination subgroups of MCOs (high and low inclination MCOs, with the boundary at inclination of 15°). Using the methods of angular statistics, we found several statistically significant departures from uniform random angular distributions. We were able to link most of them with the effects of secular planetary perturbations. The distribution of the longitude of ascending node, Ω, for NEOs is slightly enhanced near the ascending node of Jupiter due to the secularly forced inclination vector. Apollos and high inclination MCOs have axial enhancement of ω due to secular dynamics associated with inclination-eccentricity-ω coupling; these enhancements show opposite trends in these two subgroups. The ϖ distributions of Amors and of MCOs are peaked towards the secularly forced eccentricity vector, close to the ϖ value of Jupiter. These non-uniform distributions of the angular elements may affect the asteroidal impact fluxes on the planets. We developed a new approach that accounts for the non-uniform angular elements of planet crossing asteroids to investigate the impact flux and its seasonal variation on the Earth, the Moon, and Mars. The calculation for this study was achieved by generating many clones of the observationally complete subset of bright planet-crossing objects, measuring the Minimum Orbit Intersection Distance (MOID) between the planet and the clones, and making use of the classical formulation of Wetherill (1967) for the collision probability of two objects on independent Keplerian orbits. We developed a novel method to calculate the collision probability for near-tangential encounters; this resolves a singularity in the Wetherill formulation. The impact flux of NEOs on the Earth-Moon system is found to be not affected significantly by the non-uniform distribution of angular elements of NEOs. The impact flux on Mars, however, is found to be reduced by a factor of about 2 compared to the flux that would obtain from the assumption of uniform random distributions of the angular elements of MCOs. Moreover, the impact flux on Mars has a strong seasonal variation, with a peak when the planet is near aphelion. We found that the amplitude of this seasonal variation is a factor of 4-5 times smaller compared to what would be obtained with a uniform random distribution of the angular elements of MCOs. We calculate that the aphelion impact flux on Mars is about three times larger than its perihelion impact flux. We also calculate the current Mars/Moon impact flux ratio as 2.9-5.0 for kilometer size projectiles.
5

Orgel, Csilla [Verfasser]. "Early Bombardment History of the Inner Solar System and Links to Future Human and Robotic Exploration Missions to the Moon / Csilla Orgel." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/121990483X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Deligny, Cécile. "Origine des éléments volatils et chronologie de leur accrétion au sein du Système Solaire interne : Apport de l'analyse in-situ des achondrites." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les éléments volatils comme l’hydrogène et l’azote contrôlent l'évolution des corps planétaires et de leurs atmosphères, et sont des éléments essentiels au développement de la vie sur Terre. Néanmoins, l'origine des éléments volatils et la chronologie de leur accrétion par les planètes telluriques formées au sein du système solaire interne restent un sujet de débat et de controverse en sciences planétaires. Pour répondre à ces questions, les rapports isotopiques de l'hydrogène (D/H) et de l'azote (15N/14N) sont des outils puissants pour tracer l'origine (solaire, chondritique ou cométaire) des éléments volatils piégés par les planètes telluriques. Pour contraindre l’origine(s) des éléments volatils piégés par les planètes rocheuses, nous avons donc mesuré les teneurs et les compositions isotopiques de l’hydrogène et de l’azote par microsonde ionique (LGSIMS) dans des achondrites (angrites, météorites maritennes et aubrites) qui proviennent d’astéroïdes différenciés ou de planètes qui sont considérés s’être formés dans le système solaire interne. Ces météorites conservent un enregistrement des étapes initiales de la formation de leurs corps parents et peuvent imposer des contraintes quant à l’évolution précoce des éléments volatils planétaires. L'analyse in-situ par SIMS est une technique quasi-non-destructive, qui permet de mesurer la teneur et la composition isotopique des éléments volatils de différentes phases dans des échantillons terrestres, extraterrestres et synthétiques. Le développement récent du protocole d'analyse de l'azote dans les échantillons silicatés par sonde ionique nous permet de caractériser des objets de la taille d’une dizaine de microns, tels que des inclusions vitreuses. Au cours de cette thèse, les éléments volatils ont été mesurés dans des inclusions magmatiques piégées dans des minéraux et dans les verres interstitiels. Bien que l’analyse de l’azote dans des aubrites n’a pas pu aboutir, les analyses réalisées sur des météorites martiennes et des angrites ont permis de mettre en évidence la présence de quantité importante d’eau et d’azote au sein de ces météorites et de leurs corps parent. En particulier, l’étude des angrites et plus précisément de la météorite D’Orbigny nous a permis de mettre en évidence la présence d’eau et d’azote ayant des compositions isotopiques similaires à celles des météorites primitives formées dans le système solaire externe (i.e., chondrites carbonées de type CM). Ces résultats impliquent que ces éléments volatils étaient présents ~4 millions d’années après la formation des CAIs (i.e., premiers solides à se former dans le système solaire) dans le système solaire interne et ont pu être piégés par les planètes telluriques lors de leur formation. De plus, l’analyses des météorites martiennes et plus particulièrement de Chassigny a révélé la présence d’azote ayant une composition isotopique enrichie en 15N comparée aux chondrites à enstatite et aux diamants terr estres qui sont supposés représenter la valeur la plus primitive de l’azote sur Terre
Volatile elements such as hydrogen and nitrogen control the evolution of planetary bodies and their atmospheres, and are essential elements for the development of life on Earth. Nevertheless, the origin of volatile elements and the timing of their accretion by terrestrial planets formed in the inner solar system remains a subject of debate and controversy in planetary science. To answer these questions, the isotopic ratios of hydrogen (D/H) and nitrogen (15N/14N) are powerful tools to trace the origin (solar, chondritic or cometary) of volatile elements trapped in planetary bodies. Therefore, to constrain the source(s) of volatile elements trapped in rocky planets, we analyzed hydrogen and nitrogen contents and isotopic compositions by ion microprobe (LGSIMS) in achondrites that originate from asteroids or from planets that are assumed to have formed in the inner solar system. These meteorites preserve a record of the initial stages of the formation of their parent bodies and can constrain the early evolution of planetary volatile elements. In-situ analysis by SIMS is a quasi-non-destructive technique, which permits to measure the abundance and the isotopic composition of volatile elements of different phases in terrestrial, extraterrestrial and synthetic samples. The recent development of the protocol of nitrogen analysis in silicate samples by ion probe allows us to target tens of micron- sized objects (i.e., glassy melt inclusions). Volatile elements were measured in melt inclusions trapped in minerals and in interstitial glasses. Although the analysis of nitrogen in aubrites was unsuccessful, the analysis performed on Martian meteorites and angrites revealed the presence of a large amount of water and nitrogen within these meteorites. In particular, the study of angrites and more precisely the meteorite D'Orbigny allowed us to highlight the presence of water and nitrogen having isotopic composition similar to those of the primitive meteorites formed in the outer solar system (i.e., CM-like carbonaceous chondrites). These results imply that these volatile elements must have been present in the inner solar system within the first ~4 Ma after CAI formation (i.e., the first solids to form in the solar system) and may have been trapped by the terrestrial planets during their formation. Furthermore, the analysis of Martian meteorites and more particularly of Chassigny revealed the presence of nitrogen with an isotopic composition enriched in 15N compared to enstatite chondrites and terrestrial diamonds which are believed to record the most primitive value of nitrogen on Earth
7

Kronebrant, Mattias. "Cost comparison of solar home systems and PV micro-grid : The influence of inter-class diversity." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nearly one fifth of the global population lacks access to electricity and electricity access is essential for economic growth and human well-being. SHSs and micro-grids both have the possibility of increasing the electricity access in developing countries. The decision to choose either SHSs or micro-grids for rural electrification is a complex task that must consider both the technological factors that separate these two systems and the non-technological factors. Separate times of peak load between households (inter-class diversity) has shown to be one major advantage for the use of micro-grids. Studies have shown that the diversity factor present in micro-grids can scale down the necessary capacity of PV modules and energy storage of up to 80%, in comparison to stand-alone systems (e.g. SHSs). These reductions are nevertheless based on assumed diversity factors, not using real load profiles and the necessary capacities are calculated using intuitive methods (known to be inexact). From interviews in a rural community of Nicaragua, the author generated load profiles and determined the diversity factor of the community. The load profiles were generated with a specially designed software to formulate realistic load profiles for off-grid consumers in rural areas. These load profiles were later used in the software HOMER where the diversity’s influence on required capacity and NPC were determined by comparing SHSs to a PV based micro-grid. The study showed that the required capacity and NPC of the inverter and charge controller are clearly decreased as an influence of inter-class diversity. The required PV and battery capacity are also decreased when a micro-grid is utilized, but these reductions are most likely a result from the limited nominal power per component considered in HOMER.
Nästan en femtedel av världens befolkning saknar tillgång till elektricitet. Nicaragua är ett av de länder där en stor del av befolkningen saknar eltillgång och det gäller speciellt hushållen på landsbygden. Utbyggnader av elnätet till dessa områden är ofta låg-prioriterade på grund av höga kostnader för att tillgodose ett många gånger lågt energi och effektbehov. En alternativ lösning för att ge dessa hushåll tillgång till elektricitet är att använda off-grid system, system frikopplade från det nationella elnätet. Två vanligt förekommande off-grid system är solar home systems (SHSs) och micro-grids. Det faktum att flera hushåll ofta använder sin toppeffekt vid olika tillfällen (sammanlagring av effekt) har visat sig vara till stor fördel för micro-grids. Tidigare studier har visat att sammanlagringsfaktorn i ett micro-grid kan reducera nödvändig kapacitet av solceller och energilager upp till 80%, i jämförelse med enskilda system (t.ex. SHSs). Dessa studier bygger dock på antagna sammanlagringsfaktorer, overkliga lastprofiler och nödvändig kapacitet beräknas med intuitiva metoder. Med data från intervjuer i ett landsbygdssamhälle i Nicaragua skapas lastprofiler och en sammanlagringsfaktor beräknas för samhället. Lastprofilerna skapas i en programvara utvecklad för att formulera realistiska lastprofiler för off-grid konsumenter i landsbygdsområden. Lastprofilerna används senare i programvaran HOMER där sammanlagringens påverkan på nödvändig kapacitet och kostnad undersöks genom en jämförelse mellan SHSs och ett solcellsdrivet micro-grid. Studien visar att nödvändig kapacitet och nuvärdeskostnad för växelriktare och laddningsregulator tydligt minskar till följd av sammanlagring. Nödvändig kapacitet på solceller och batterier minskar också när ett micro-grid används. Dock beror detta med stor sannolikhet inte på sammanlagring utan är ett resultat från de begränsade märkeffekter på komponenter som användes i HOMER.
8

Baeza, Bravo Leonardo Ismael. "Oxygen isotope systematics of ordinary chondrite chondrules: insights into the inner solar system planetary reservoir." Master's thesis, 2018. http://hdl.handle.net/1885/155670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chondrules are fundamental objects from which important insights in the conditions of the solar protoplanetary disk can be inferred. In this regard, oxygen isotope composition of chondrules have played a key role tracking the physicochemical environment under which their formation occurred. It has been proposed that chondrite asteroids accreted specific chondrule groups or ‘chondrule populations’ in terms of oxygen isotopes but this hypothesis has never been statistically assessed. Systematic in situ measurements of oxygen isotope composition of chondrule olivine from ordinary chondrites (H, L, and LL groups) by SHRIMP-SI and a robust statistical evaluation allowed us to conclude for the first time that the different ordinary chondrite parent bodies sampled the same main population of chondrules in their accretion location. This population is characterised by a mean of Δ17O = 0.74 ± 0.10‰ (σ95%) with a variability of 0.53‰ (σ95%). Ordinary chondrite chondrules were then formed in the same gaseous oxygen isotope reservoir or region of the protoplanetary disk. This population is formed by chondrules with different chemical composition (Type I and Type II) indicating that their formation region was chemically differentiated and form a chemical continuum rather than two separated classes. Our results together with literature data lead us to propose an oxygen isotope gradient of the protoplanetary disk ambient gas under which these and other astrophysical objects (e.g. refractory inclusions) were formed, 16O-richer closer to the Sun and 16O-poorer at longer radial distances. Ultimately, we suggest a change in the paradigm related to the oxygen isotope reservoirs of the solar system, particularly the so-called planetary reservoir. It is proposed that the gaseous oxygen isotope planetary reservoir is a discrete reservoir enriched in SiOgas molecules and other rock-forming elements present since the earliest stages of the solar system evolution possibly reflecting the average oxygen isotope composition of the primordial dust of the solar nebula. The mean composition of the planetary reservoir is δ18O = 4.64 ± 0.15‰ (σ95%) and δ17O = 3.03 ± 0.10‰ (σ95%), with variabilities of 0.97‰ and 0.52‰ (σ95%), respectively.
9

Altobelli, Nicolas [Verfasser]. "Monitoring of the interstellar dust stream in the inner solar system using data of different spacecraft / [presented by Nicolas Altobelli]." 2004. http://d-nb.info/971779333/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cottle, Louis E. "Urban regeneration: Urban renewal through eco-systemic design." Diss., 2003. http://hdl.handle.net/2263/30058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The systemic relationship between the human entity and its environment, under the constraint of its function, were used as the perfect example to design and create the systemic relationship of an urban regenerative building with its economical, environmental and social context in the Inner City of Pretoria.
Dissertation (MArch (Prof))--University of Pretoria, 2005.
Architecture
unrestricted

Книги з теми "Inner Solar System":

1

Badescu, Viorel, and Kris Zacny, eds. Inner Solar System. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19569-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Smyth, Steve. The inner solar system. London: Educational Television Company, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Milone, E. F. Solar system astrophysics: Background science and the inner solar system. New York: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gregersen, Erik. The inner solar system: The sun, Mercury, Venus, Earth, and Mars. New York, NY: Britannica Educational Pub. in association with Rosen Educational Services, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Erik, Gregersen, ed. The inner solar system: The sun, Mercury, Venus, Earth, and Mars. New York, NY: Britannica Educational Pub. in association with Rosen Educational Services, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

National Research Council (U.S.). Committee on Planetary and Lunar Exploration. 1990 update to Strategy for exploration of the inner planets. Washington, D.C: National Academy Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Assembly, COSPAR Scientific. The subauroral ionosphere, plasmasphere, ring current and inner magnetosphere system: Proceedings of the D0.5 symposium of COSPAR Scientific Commission D which was held during the thirty-first COSPAR scientific assembly, Birmingham, U.K., 14-21 July 1996. Kidlington, Oxford: Published for the Committee on Space Research [by] Pergamon, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

The Inner Solar System. Chicago: Britannica Educational Publishing, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gregersen, Erik, and Nicholas Faulkner. Inner Planets. Rosen Publishing Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gregersen, Erik, and Nicholas Faulkner. Inner Planets. Rosen Publishing Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Inner Solar System":

1

Connors, Martin. "Inner Space." In Invisible Solar System, 98–133. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003451433-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Forget, Francois, and Tilman Spohn. "Solar System, Inner." In Encyclopedia of Astrobiology, 1535. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Forget, François, and Tilman Spohn. "Solar System, Inner." In Encyclopedia of Astrobiology, 2289. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Forget, François, and Tilman Spohn. "Solar System, Inner." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1464-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Forget, François, and Tilman Spohn. "Solar System, Inner." In Encyclopedia of Astrobiology, 2789–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marvin Herndon, J. "Inner Planets: Origins, Interiors, Commonality and Differences." In Inner Solar System, 1–27. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19569-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fraser, Simon D. "Power System Options for Venus Exploration Missions: Past, Present and Future." In Inner Solar System, 237–49. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19569-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bolonkin, Alexander A. "Production of Energy for Venus by Electron Wind Generator." In Inner Solar System, 251–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19569-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Girish, T. E., and S. Aranya. "Photovoltaic Power Resources on Mercury and Venus." In Inner Solar System, 267–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19569-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bolonkin, Alexander A. "Flight Apparatuses and Balloons in Venus Atmosphere." In Inner Solar System, 275–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19569-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Inner Solar System":

1

Kaula, William M. "Dynamics of volatile delivery from outer to inner solar system." In Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ercol, C. "MESSENGER Heritage: High Temperature Technologies for Inner Solar System Spacecraft." In AIAA SPACE 2007 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-6188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Macellari, Michele, Raffaele Russo, and Luigi Schirone. "Technology Options for Space Missions in the Inner Solar System." In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schneider, Jonas, Christoph Burkhardt, and Thorsten Kleine. "Origin of Strontium-84 homogeneity in the inner Solar System." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.19668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zolotov, Mikhail. "Very Organic-Rich Bodies in the Inner and Outer Solar System." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.3232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Altobelli, Nicolas. "In-Situ Monitoring of Interstellar Dust in the Inner Solar System." In THE SPECTRAL ENERGY DISTRIBUTIONS OF GAS-RICH GALAXIES: Confronting Models with Data; International Workshop. AIP, 2005. http://dx.doi.org/10.1063/1.1913926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Terre´s-Pen˜a, H., and P. Quinto-Diez. "Applications of Numerical Simulation of Solar Cooker Type Box With Multi-Step Inner Reflector." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It is shown a mathematical model of a solar box cooker with multi-step inner reflector and the numerical results for two applications has been analyzed. These applications are 1. Numerical simulation of operation of solar box cooker with multi-step inner reflector in Tanta, Egypt and 2. Numerical simulation of solar box cooker with multi-step inner reflector for 10 hours of operation. In the case 1, is analyzed a solar box cooker constructed and evaluated in Tanta, Egypt [1]. The experimental results that was obtained are compared with the numerical results that was obtained for the mathematical model. The case 2, is an evaluation of numerical results that was obtained for the operation of 10 hours for solar box cooker constructed in the Laboratorio de Ingenieri´a Te´rmica e Hidra´ulica Aplicada (LABINTHAP) in Me´xico City. [4] The solar box cooker is integrated by a covert that was made with double glass, this is use with two purposes, reduce the loss heat convection with outer and to generated the greenhouse effect with inner of cooker. In the inner of cooker there are a mirrors arrangement in inclined position (inner reflectors) placed in angles of 30°, 45° and 75°, these helped to reflex the solar rays in direction to the cook recipient. The recipient also received the solar rays in the upper part (lid). The mathematical model that was obtained from energetic analysis, is formed for five differential equations system no linear and the fourth Runge-Kutta method is used to resolve it. The numerical solution of the equations system is obtained with a computational software in C++. This work is a contribution to the application of numerical methods and computational for development of the solar energy used in thermal conversion equipments. The use of these techniques to solve the mathematical model is important to contribute in the evaluation and design of solar box cookers with multi-step inner reflector.
8

Tartaglia, Angelo, David Lucchesi, Matteo Luca Ruggiero, and Pavol Valko. "LAGRANGE: An experiment for testing general relativity in the inner solar system." In 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2017. http://dx.doi.org/10.1109/metroaerospace.2017.7999548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Young, Roy, and Edward Montgomery. "Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-5260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Filiberto, Justin, and Francis McCubbin. "COMPARING THE VOLATILE CONTENTS OF BASALTIC ROCKS THROUGH THE INNER SOLAR SYSTEM." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-378498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Inner Solar System":

1

Chaparro, Rodrigo, Maria Netto, Patricio Mansilla, and Daniel Magallon. Energy Savings Insurance: Advances and Opportunities for Funding Small- and Medium-Sized Energy Efficiency and Distributed Generation Projects in Chile. Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0002947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Energy Savings Insurance Program seeks to promote investment in energy efficiency and distributed generation in Latin America, primarily through small- and medium-sized enterprises (SMEs). It focuses on developing an innovative scheme of guaranteed energy performance that mitigates project risk and generates investor confidence (ESI Model). The Inter-American Development Bank (IDB) facilitates the development of the ESI Program in alliance with the National Development Banks (NDBs). The ESI Model includes a contract for the supply, installation, and maintenance of equipment for generating a stipulated amount of energy or energy savings over a specific time period; validation by an independent body; insurance coverage that backs the savings or the guaranteed energy generation; and project financing. This paper describes the main attributes of the ESI Model (the contract, the insurance, validation and financing), evaluates market potential and the most attractive technologies, and identifies the priority sectors for implementing projects in Chile. The most promising economic sectors were found to be the hospitality industry, food processing industry, grape growing/wine production, and the fishing industry, and the technologies of electric motors, boilers, air conditioning systems and photovoltaic solar generation. In each of these sectors, estimates were made of financing requirements as well as CO2 emission reductions that could be achieved.

До бібліографії