Добірка наукової літератури з теми "Infrared applications"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Infrared applications".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Infrared applications"

1

Horiuchi, Noriaki. "Infrared applications." Nature Photonics 13, no. 6 (May 23, 2019): 376–77. http://dx.doi.org/10.1038/s41566-019-0446-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tianfeng Xue, Tianfeng Xue, Liyan Zhang Liyan Zhang, Lei Wen Lei Wen, Meisong Liao Meisong Liao, and Lili Hu Lili Hu. "Er3+-doped fluorogallate glass for mid-infrared applications." Chinese Optics Letters 13, no. 8 (2015): 081602–81606. http://dx.doi.org/10.3788/col201513.081602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bunaciu, Andrei, Serban Fleschin, and Hassan Aboul-Enein. "Infrared Microspectroscopy Applications - Review." Current Analytical Chemistry 10, no. 1 (October 1, 2013): 132–39. http://dx.doi.org/10.2174/1573411011410010011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moss, David A., Biliana Gasharova, and Yves-Laurent Mathis. "Infrared Applications at ANKA." Synchrotron Radiation News 21, no. 1 (February 7, 2008): 51–59. http://dx.doi.org/10.1080/08940880701863962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Žurauskienė, N., S. Ašmontas, A. Dargys, J. Kundrotas, G. Janssen, E. Goovaerts, Stanislovas Marcinkevičius, Paul M. Koenraad, J. H. Wolter, and R. P. Leon. "Semiconductor Nanostructures for Infrared Applications." Solid State Phenomena 99-100 (July 2004): 99–108. http://dx.doi.org/10.4028/www.scientific.net/ssp.99-100.99.

Повний текст джерела
Анотація:
We present the results of time-resolved photoluminescence (TRPL) and optically detected microwave resonance (ODMR) spectroscopy investigations of semiconductor quantum dots and quantum wells. The ODMR spectra of InAs/GaAs QDs were detected via modulation of the total intensity of the QDs emission induced by 95 GHz microwave excitation and exciton fine structure was studied. Very long life times (up to 10 ns) of photoexcited carriers were observed in this system using TRPL at low temperatures and excitation intensities promising higher responsitivity of such QDs for quantum dot infrared photodetector development. The effects of proton and alpha particles irradiation on carrier dynamics were investigated on different InGaAs/GaAs, InAlAs/AlGaAs and GaAs/AlGaAs QD and QW systems. The obtained results demonstrated that carrier lifetimes in the QDs are much less affected by proton irradiation than that in QWs. A strong influence of irradiation on the PL intensity was observed in multiple QWs after high-energy alpha particles irradiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

AWAZU, Kunio. "Medical Applications of Infrared Lasers." Review of Laser Engineering 28, no. 5 (2000): 291–97. http://dx.doi.org/10.2184/lsj.28.291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mistry, Jamie, and John F. Kennedy. "Near-infrared applications in biotechnology." Carbohydrate Polymers 52, no. 1 (April 2003): 87. http://dx.doi.org/10.1016/s0144-8617(02)00174-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Charache, G. W., J. L. Egley, D. M. Depoy, L. R. Danielson, M. J. Freeman, R. J. Dziendziel, J. F. Moynihan, et al. "Infrared materials for thermophotovoltaic applications." Journal of Electronic Materials 27, no. 9 (September 1998): 1038–42. http://dx.doi.org/10.1007/s11664-998-0160-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barnes, James L. "Infrared microspectroscopy: Theory and applications." Microchemical Journal 42, no. 2 (October 1990): 256. http://dx.doi.org/10.1016/0026-265x(90)90051-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aldrich, D. Scott, and Mark A. Smith. "Pharmaceutical Applications of Infrared Microspectroscopy." Applied Spectroscopy Reviews 34, no. 4 (December 13, 1999): 275–327. http://dx.doi.org/10.1081/asr-100101218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Infrared applications"

1

Bone, Stewart A. "Analytical applications of infrared spectroscopy." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Xianliang. "Infrared Metamaterial Absorbers: Fundamentals and Applications." Thesis, Boston College, 2013. http://hdl.handle.net/2345/3829.

Повний текст джерела
Анотація:
Thesis advisor: Willie J. Padilla
Realization of an ideal electromagnetic absorber has long been a goal of engineers and is highly desired for frequencies above the microwave regime. On the other hand, the desire to control the blackbody radiation has long been a research topic of interest for scientists--one particular theme being the construction of a selective emitter whose thermal radiation is much narrower than that of a blackbody at the same temperature. In this talk, I will present the computational and experimental work that was used to demonstrate infrared metamaterial absorbers and selective thermal emitters. Based on these work, we further demonstrate an electrically tunable infrared metamaterial absorber in the mid-infrared wavelength range. A voltage potential applied between the metallic portion of metamaterial array and the bottom ground plane layer permits adjustment of the distance between them thus altering the electromagnetic response from the array. Our device experimentally demonstrates absorption tunability of 46.2% at two operational wavelengths. Parts of this thesis are based on unpublished and published articles by me in collaboration with others. The dissertation author is the primary researcher and author in these publications. The text of chapter two, chapter five, and chapter seven is, in part, a reprint of manuscript being prepared for publication. The text of chapter three is, in part, a reprint of material as it appears in Physical review letters 104 (20), 207403. The text of chapter four is, in part, a reprint of material as it appears in Physical Review Letters 107 (4), 45901. The text of chapter six is, in part, a reprint of material as it appears in Applied Physics Letters 96, 011906
Thesis (PhD) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kitchin, Matthew Roger. "Theory of semiconductor heterostructures for infrared applications." Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Geyer, Scott Mitchell. "Science and applications of infrared semiconductor nanocrystals." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62053.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2010.
Vita. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 149-158).
In this work we study several applications of semiconductor nanocrystals (NCs) with infrared band gaps. In the first half, we explore the physics of two systems with applications in NC based photovoltaics. The physics of mixed films of CdTe and CdSe NCs is studied in chapter 2 as a model for NC based bulk heterojunction photovoltaics. We demonstrate that the presence of an active electron trap on the CdTe dramatically reduces the electron mobility in mixed films. The trapping state is linked to oxidation of the CdTe NCs. A cadmium oleate treatment is shown to reduced the oxidation rate. In chapter 3, we present a method to switch the carrier type of InAs NCs deposited in a thin film from p-type to n-type by the addition of cadmium. This provides a stable pre-deposition technique to control the NC carrier type and is a step towards pn homojunction based NC devices. We discuss the role that surface passivation and substitution doping may play in determining the carrier type. The second half explores the use of NCs for photodetector applications. Chapter 4 presents our efforts to move from a single pixel, proof of principle PbS NC infrared detector to a large area infrared imaging camera. A method to control the resistivity of the NC film through oxidation and re-treatment with ethanedithiol is presented. This allows for integration of our NC film with existing read out technology. The noise spectrum is shown to be dominated by 1/f noise and the dependence of the noise on the bias and channel length is determined. The detectivity is found to be determined by the carrier lifetime and dark current carrier density. In chapter 5, we demonstrate efficient UV-IR dual band detectors based on luminescent down conversion. In this design, NCs absorb UV light and re-emit the light in the infrared band of an InGaAs detector. The high quantum yields of infrared nanocrystals and unique absorption profile are shown to provide a significant advantage over organic dyes. The bandwidth of the detectors is measured and the effect of the down conversion layer on the spatial resolution is characterized.
by Scott Mitchell Geyer.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Matthews, Amy L. "Applications of infrared fibers in temperature sensing." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/45909.

Повний текст джерела
Анотація:

As attenuation in silica based fibers approaches its ultimate theoretical limit, investigation is in progress to develop new materials which exhibit lower losses than silica. These bulk materials could then be used to fabricate ultralow loss optical fibers which operate farther out in the infrared than do silica fibers. Such infrared fibers could be used in long, repeaterless telecommunications links, the transmission of CO and CO2 laser power, and in several sensing mechanisms. This thesis presents an overview of these new fibers and how they can be applied in noncontact temperature measurement. Fiber optic temperature sensing is thus reviewed, and an optical fiber pyrometer is discussed.


Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chan, Kin Foong. "Pulsed infrared laser ablation and clinical applications /." Digital version:, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p9992765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bashir, Zareen. "Applications of near infrared spectroscopy in cerebral monitoring." Thesis, University of Manchester, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Amrania, Hemmel. "Ultrafast Mid-Infrared Spectroscopic Imaging with Biomedical Applications." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cummings, Beth L. "Applications of infrared laser spectroscopy to breath analysis." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:5b6e0624-5982-457c-b13c-61484bace371.

Повний текст джерела
Анотація:
The work presented in this thesis is concerned with development of spectroscopic detection methods based on absorption spectroscopy using semiconductor lasers, with particular ref- erence to the field of medical diagnostics through breath analysis. The first part of this thesis deals with the design and testing of a prototype analyser for simultaneous monitoring of the exchange gases O2 , CO2 and H2O in breath. The aim of this analyser is to provide information required to monitor respiration, with potential use in intensive care monitoring or during anaesthesia. The relatively high concentrations of these gases in breath and read- ily available diode laser sources make detection in the near-infrared (NIR) ideal. However, the relatively weakly absorbing A-band O2 transitions at 760 nm require the application of a sensitive spectroscopic method, cavity enhanced absorption spectroscopy (CEAS). In contrast, CO2 and H2O are monitored using direct single pass absorption spectroscopy, with transitions arising from the 2ν1 + ν3 band at 2 μm and ν1 + ν3 band at 1.3 μm, respectively. It has been demonstrated that these gases can be detected simultaneously over a short pathlength (2.74 - 4 cm) in the respiratory flow by combining various spectroscopic methodologies and real-time data analysis. This analyser is shown to offer a viable alter- native for monitoring respiration, exhibiting absolute detection limits of changes of 0.26 % O2 , 0.02 % CO2 and 0.003 % H2O with a 10 ms time resolution, which are comparable to current mass spectrometry based methods, but without their inherent delays. Following this, investigations into the detection of the main gas constituents in breath in the NIR employing noise-reduction modulation based spectroscopic techniques, namely wavelength and frequency modulation (WMS and FMS respectively) are also reported. The described WMS studies on water at 1.37 μm provide a demonstration of conventional WMS detection, as well as a “proof-of-principle” example of a relatively new approach to calibrating the non-absolute information obtained from a WMS absorption signal. Typically WMS spectra are calibrated using mixtures of known gas concentrations or an absolute direct absorption spectrum where possible. In this work however, a self-calibrating method, the phasor decomposition method (PDM), is employed and the returned concentration from this calibration is compared to direct absorption measurement. From this, the calculated concentration using the PDM is found to differ by 9 % from the concentration value obtained by direct absorption, providing an alternative method of calibration for when direct absorption measurements are not possible. The use of FMS in the NIR is also demonstrated as a potential alternative to CEAS for monitoring O2 at 760 nm. FMS detection is performed on atmospherically broadened O2 and a time-normalised αmin(t) of 2.45 ×10−6 cm−1 s1/2 is obtained, which is two orders of magnitude less sensitive than the value of αmin(t) = 2.35 ×10−8 cm−1 s1/2 obtained with CEAS. This combined with the experimental requirements of an FMS system, make its use for detection of O2 a less practicable option compared to CEAS for real-time breath analysis. The latter work in this thesis involves a change in focus to detection of trace gases in breath in the mid-infrared (MIR). The move of spectroscopic detection to the MIR exploits the larger absorption cross-sections available in this region, and to achieve this, a relatively new form of semiconductor laser, the quantum cascade laser (QCL) is used. The design of a continuous wave QCL spectrometer at 8 μm and its operating characteristics are demon- strated and improvements in its performances are also discussed. This QCL system is then utilised to demonstrate the potential of monitoring species in breath, namely the narrow- band absorber methane and the broadband absorber acetone, taking into consideration the potential interference from other absorbing species in breath and the different spectroscopic characteristics exhibited by these molecules. Finally, the potential to further improve the sensitive detection of trace gases in breath in the MIR is also investigated with studies on the use of CEAS and multipass cells. In this work, the molecule of interest is the biomarker OCS, using transitions of the 2ν2 band at 1031 cm−1 , that are probed using a 10 μm QCL. The application of CEAS in the MIR is not as well developed as in the NIR, and the experimental consequences of using optical cavities at these wavelengths, where equipment tends to be more limited, are investigated and sensitivities discussed in the context of other literature. The experimental procedure of optimising a cavity for CEAS using the off-axis alignment method is also studied in detail, as well as the addition of WMS to further improve the signal quality. An effective absorption pathlength of ∼ 100 m was achieved in the cavity, with a bandwidth reduced αmin(BW) of 1.7 ×10−7 cm−1 Hz−1/2 using WMS CEAS achieved. With the poorer quality optics and limitations in equipment in the MIR for CEAS experiments, the use of a multipass cell, a 238 m Herriott cell, is also investigated as an alternative to the use of an optical cavity at 10 μm. Detection of OCS using direct absorption and WMS is demonstrated in the Herriott cell, achieving αmin(BW) = 2.03×10−8 cm−1 Hz−1/2 using WMS. This shows an improvement in sensitivity compared to WMS CEAS, and also shows the potential for future work on biomarker detection, as it approaches the ∼ ppb levels required for breath analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fullager, Daniel B. "Theory, Characterization and Applications of Infrared Hyperbolic Metamaterials." Thesis, The University of North Carolina at Charlotte, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10267303.

Повний текст джерела
Анотація:

Hyperbolic Metamaterials (HMMs) are engineered structures capable of supporting lightmatter interactions that are not normally observed in naturally occuring material systems. These unusual responses are enabled by an enhancement of the photonic density of states (PDOS) in the material. The PDOS enhancement is a result of deliberately introduced anisotropy via a permittivity sign-change in HMM structures which increases the number and frequency spread of possible wave vectors that propagate in the material. Subwavelength structural features allow effective medium theories to be invoked to construct the k-space isofrequency quadratic curves that, for HMMs, result in the k-space isofrequency contour transitioning from being a bounded surface to an unbounded one. Since the PDOS is the integral of the differential volume between k-space contours, unbounded manifolds lead to the implication of an infinite or otherwise drastically enhanced PDOS. Since stored heat can be thought of as a set of non-radiative electromagnetic modes, in this dissertation we demonstrate that HMMs provide an ideal platform to attempt to modify the thermal/IR emissivity of a material. We also show that HMMs provide a platform for broadband plasmonic sensing. The advent of commercial two photon polymerization tools has enabled the rapid production of nano- and microstructures which can be used as scaffolds for directive infrared scatterers. We describe how such directive components can be used to address thermal management needs in vacuum environments in order to maximize radiative thermal transfer. In this context, the fundamental limitations of enhanced spon- taneous emission due to conjugate impedance matched scatterers are also explored. The HMM/conjugate scatterer system’s performance is strongly correlated with the dielectric function of the negative permittivity component of the HMM. In order to fully understand the significance of these engineered materials, we examine in detail the electromagnetic response of one ternary material system, aluminium-doped zinc oxide (AZO), whose tuneable plasma frequency makes it ideal for HMM and thermal transfer applications. This study draws upon first principle calculations from the open literature utilizing a Hubbard-U corrected model for the non-local interaction of charge carriers in AZO crystalline systems. We present the first complete dielectric function of industrially produced AZO samples from DC to 30,000 cm –1 and conclude with an assessment of this material’s suitability fo the applications described.

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Infrared applications"

1

R, Baker L., Masson André, Society of Photo-optical Instrumentation Engineers., Association nationale de la recherche technique., and Sira Limited, eds. Infrared technology and applications. Bellingham, Wash., USA: The Society, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stuart, Barbara H. Infrared Spectroscopy: Fundamentals and Applications. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470011149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

J, Ando D., ed. Biological applications of infrared spectroscopy. Chichester: Published on behalf of ACOL (University of Greenwich) by John Wiley, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nunley, William. Infrared optoelectronics: Devices and applications. New York: M. Dekker, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Infrared spectroscopy: Fundamentals and applications. Chichester, West Sussex, England: J. Wiley, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

1958-, Messerschmidt Robert G., and Harthcock Matthew A. 1955-, eds. Infrared microspectroscopy: Theory and applications. New York: H. Dekker, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Harrington, James A. Infrared fibers and their applications. Bellingham, WA: SPIE Optical Engineering Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Caniou, Joseph. Passive infrared detection: Theory and applications. Boston: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kaplan, Herbert. Practical applications of infrared thermal sensing and imaging equipment. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Practical applications of infrared thermal sensing and imaging equipment. 3rd ed. Bellingham, Wash: The International Society for Optical Engineering, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Infrared applications"

1

Sternberg, Ethan, and David Dolphin. "Medical Applications." In Infrared Absorbing Dyes, 193–212. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2046-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gaussorgues, G. "Industrial and Military Applications." In Infrared Thermography, 414–52. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0711-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manley, Marena, and Paul James Williams. "Applications: Food Science." In Near-Infrared Spectroscopy, 347–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8648-4_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Morris, Michael D., and Gurjit S. Mandair. "Biomedical Applications of Raman Imaging." In Raman, Infrared, and Near-Infrared Chemical Imaging, 109–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470768150.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Astarita, Tommaso, and Giovanni Maria Carlomagno. "Applications." In Infrared Thermography for Thermo-Fluid-Dynamics, 129–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Teutsch, Michael, Angel D. Sappa, and Riad I. Hammoud. "Applications." In Computer Vision in the Infrared Spectrum, 59–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01826-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huck, Christian W. "Bio-applications of NIR Spectroscopy." In Near-Infrared Spectroscopy, 413–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8648-4_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Heise, Herbert Michael. "Medical Applications of NIR Spectroscopy." In Near-Infrared Spectroscopy, 437–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8648-4_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Šašić, Slobodan, and Lin Zhang. "Pharmaceutical Applications of Raman Chemical Imaging." In Raman, Infrared, and Near-Infrared Chemical Imaging, 167–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470768150.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gregory, Peter. "Infrared Absorbers." In High-Technology Applications of Organic Colorants, 215–53. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3822-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Infrared applications"

1

Carter, S. F., Paul W. France, Martin W. Moore, and John R. Williams. "Infrared fiber applications." In OE/LASE '90, 14-19 Jan., Los Angeles, CA, edited by James A. Harrington and Abraham Katzir. SPIE, 1990. http://dx.doi.org/10.1117/12.18625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jenkins, Michael W. "Infrared Control." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.aw1o.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abedin, M. Nurul, Martin G. Mlynczak, and Tamer F. Refaat. "Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission." In SPIE Optical Engineering + Applications, edited by Marija Strojnik and Gonzalo Paez. SPIE, 2010. http://dx.doi.org/10.1117/12.863125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Predmesky, Ronald L., and Matthew J. Zaluzec. "Infrared in automotive applications." In AeroSense '97, edited by Richard N. Wurzbach and Douglas D. Burleigh. SPIE, 1997. http://dx.doi.org/10.1117/12.271631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Daly, John G. "Mid-infrared laser applications." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by Anthony M. Johnson. SPIE, 1991. http://dx.doi.org/10.1117/12.43850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vaillancourt, John E., David T. Chuss, Richard M. Crutcher, Jessie L. Dotson, C. Darren Dowell, D. Al Harper, Roger H. Hildebrand, et al. "Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy." In Optical Engineering + Applications, edited by Marija Strojnik-Scholl. SPIE, 2007. http://dx.doi.org/10.1117/12.730922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lampert, Carl M. "Science and applications of electrochromics and chromogenics." In Infrared Fiber Optics, edited by Paul Klocek and George H. Sigel. SPIE, 2017. http://dx.doi.org/10.1117/12.2284057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mostovoy, A. "Clinical Applications of Medical Thermography." In 2010 Quantitative InfraRed Thermography. QIRT Council, 2010. http://dx.doi.org/10.21611/qirt.2010.098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Benford, Dominic J., Stephen A. Rinehart, David T. Leisawitz, and T. Tupper Hyde. "Cryogenic far-infrared detectors for the Space Infrared Interferometric Telescope (SPIRIT)." In Optical Engineering + Applications, edited by Howard A. MacEwen and James B. Breckinridge. SPIE, 2007. http://dx.doi.org/10.1117/12.734751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vervaet, R., J. M. B. Webber, and R. Hunt. "Infrared Process Linescanner." In Applications of Infrared Technology, edited by Thomas L. Williams. SPIE, 1988. http://dx.doi.org/10.1117/12.945596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Infrared applications"

1

Blair, D. S., and M. C. Oborny. Micropyrolyzer design for infrared spectroscopy applications. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6225318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kedl, R. J. Evaluation of infrared radiant heaters for Army applications. Office of Scientific and Technical Information (OSTI), November 1987. http://dx.doi.org/10.2172/6043356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holmes, Jr, and Archie L. InP Based Avalanche Photodiode Arrays for Mid Infrared Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada482291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baxter, Christopher R., Mark A. Massie, Paul L. McCarley, and Michael E. Couture. MIRIADS - Miniature Infrared Imaging Applications Development System Description and Operation. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada451958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wei, Kung-Hwa. High-Sensitivity Conjugated Polymer/Nanoparticle Nanocomposites for Infrared Sensor Applications. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada538201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fung, Bing M. Liquid Crystals and Ordered Polymers for Infrared and Microwave Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada388297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kiani, Leily S. Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1409981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Razeghi, Manijeh. Growth of InTlSB and InTlP for Long Wavelength Infrared Detector Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada359234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pesce-Rodriguez, Rose A., and Robert A. Fifer. Applications of Fourier Transform Infrared Photoacoustic Spectroscopy to Solid Propellant Characterization. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada240857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Foster, Michelle. Infrared Thermography Applications Presented to the MMWG Predictive Maintenance User’s Group. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1890960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії