Добірка наукової літератури з теми "Information 3D"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Information 3D".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Information 3D"
Kuznetsov, A. A., O. O. Stefanovych, D. I. Prokopovych-Tkachenko, and K. O. Kuznetsova. "3D STEGANOGRAPHY INFORMATION HIDING." Telecommunications and Radio Engineering 78, no. 12 (2019): 1049–61. http://dx.doi.org/10.1615/telecomradeng.v78.i12.30.
Повний текст джерелаRamos, Francisco, Miguel Chover, and Oscar Ripolles. "A Multiresolution Approach to Render 3D Models." Informatica 24, no. 4 (January 1, 2013): 603–18. http://dx.doi.org/10.15388/informatica.2013.06.
Повний текст джерелаOKI, Makoto, Yasuzo SUTO, Okinori YAMAMOTO, Tetsuro SUGIYAMA, and Kazuhiko FUJII. "3D Visualization of City Information." Journal of the Visualization Society of Japan 20, no. 1Supplement (2000): 193–96. http://dx.doi.org/10.3154/jvs.20.1supplement_193.
Повний текст джерелаRoush, W. "IMAGING: Information Displays Go 3D." Science 278, no. 5342 (November 21, 1997): 1398. http://dx.doi.org/10.1126/science.278.5342.1398.
Повний текст джерелаOstrovsky, Y., A. Torralba, and P. Sinha. "Recognition with purely 3D information." Journal of Vision 2, no. 7 (March 15, 2010): 684. http://dx.doi.org/10.1167/2.7.684.
Повний текст джерелаGasteiger, Johann, Jens Sadowski, Jan Schuur, Paul Selzer, Larissa Steinhauer, and Valentin Steinhauer. "Chemical Information in 3D Space." Journal of Chemical Information and Computer Sciences 36, no. 5 (January 1996): 1030–37. http://dx.doi.org/10.1021/ci960343+.
Повний текст джерелаKuznetsov, А. А., O. O. Stefanovych, D. I. Prokopovych-Tkachenko, and K. O. Kuznetsova. "3D steganography hiding of information." Radiotekhnika, no. 195 (December 28, 2018): 193–202. http://dx.doi.org/10.30837/rt.2018.4.195.19.
Повний текст джерелаHe, Yunlong, and Liang Guo. "Cloud 3D Printing Information Research." Academic Journal of Science and Technology 9, no. 3 (March 12, 2024): 258–62. http://dx.doi.org/10.54097/b7yjyk73.
Повний текст джерелаHoppen, Martin, Ralf Waspe, Malte Rast, and Juergen Rossmann. "Distributed Information Processing and Rendering for 3D Simulation Applications." International Journal of Computer Theory and Engineering 6, no. 3 (2014): 247–53. http://dx.doi.org/10.7763/ijcte.2014.v6.870.
Повний текст джерелаTakanashi, Ikuko, Shigeru Muraki, Akio Doi, and Arie Kaufman. "Visual Information Sensing Technology. 3D Active Net. 3D Volume Extraction." Journal of the Institute of Image Information and Television Engineers 51, no. 12 (1997): 2097–106. http://dx.doi.org/10.3169/itej.51.2097.
Повний текст джерелаДисертації з теми "Information 3D"
Santos, Cristina Russo dos. "3D metaphoric information visualization /." Paris : École nationale supérieure des télécommunications, 2002. http://catalogue.bnf.fr/ark:/12148/cb38915995f.
Повний текст джерелаGill, Lewis. "A 3D landscape information model." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4879/.
Повний текст джерелаAndersson, Gustav. "Kartografisk kommunikation med hjälp av en 3D-modell : 3D-verktyg för kommunal planering." Thesis, University of Kalmar, School of Communication and Design, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hik:diva-502.
Повний текст джерелаI det här arbetet behandlas användningen av 3D som planeringsverktyg för kommunal planering och vägprojektering. Projektet går ut på att utveckla en 3D-modell över ett område i Kalmar med teorier inom informationsdesign och kommunikation med kartor. Huvudsyftet är att undersöka hur en stadsmiljö i 3D kan utvecklas för att bli ett hjälpmedel i planeringsprocessen och dialogen med Kalmars befolkning och press.
Med stöd i teorier och en kvalitativ undersökning genom ett användartest undersöks problemformuleringen: Hur kan man utveckla en tredimensionell miljö i syfte att underlätta planeringen av nybyggnationer på områden Norra Kvarnholmen och Malmfjärden med utgångspunkt från teorier kring kommunikationsprocesser och kommunikation via kartor? Hur kan de huvudanvändare som skapar objekt i sagda miljö placera in valda byggnader och trafiklösningar?
Resultatet och slutsatsen av undersökningen visar att bilder och filmsekvenser ifrån en 3D-modell är ett värdefullt verktyg i planeringssammanhang och i syftet att föra en dialog med dess målgrupp.
In this paper treat the usage of 3D as planning tool for local planning and roadprojecting. The goal with the project is to develop a 3D model over an area in Kalmar with theories within information design and communication with maps.
The main purpose is to examine how an urban environment in 3D can develop to become a help in the planning process and the dialogue with the citizens of Kalmar and press. With support in theories and a qualitative examination through a user test examine the problem question: How is it possible to develop a three-dimensional region with intension to facilitate planning of new construction at Norra Kvarnholmen and Malmfjärden starting from theories in communication process and communication with maps? How can the main users creating objects in the mentioned milieu placing chosen buildings and traffic problems?
The result and conclusion of the examination show that the pictures and film sequences from a 3D model is a valuable tool in planning and in meaning of having a dialogue with their target group.
Bengtsson, Jonas, and Mikael Grönkvist. "Performing Geographic Information System Analyses on Building Information Management Models." Thesis, KTH, Geodesi och satellitpositionering, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208922.
Повний текст джерелаI takt med den ökade användningen av både BIM och 3D-GIS inom samhällsbyggnadsprocessen har även intresset för att sammanföra de två verktygen blivit större. En möjlighet med integration är potentialen att visualisera BIM-modeller tillsammans med andra geografiska data i 3D. En annan är att kunna genomföra rumsliga 3D-analyser på modellerna. Båda dessa går att utföra med hjälp av GIS-programvara. Denna studie utforskar hur en integration mellan BIM och GIS kan se ut. Målet är att genomföra typiska GIS-analyser i 3D på BIM-modeller. Tidigare forskning pekar mot vissa framgångar inom området genom att arbeta med det utpekade standardformatet för respektive verktyg – IFC för BIM och CityGML för GIS. Transformation mellan formaten skedde med hjälp av programvarorna Revit, FME och ArcGIS. Ett par framhållna tillämpningar av GIS-analyser valdes ut för tester på de konverterade modellerna – nätverksanalyser inomhus, siktanalyser och rumsliga analyser för 3D-byggnader. Som indata användes flera olika BIM-modeller, både sådana som tillverkats för faktisk användning och modeller som skapats för att användas som exempeldata inom programvarorna. Utifrån resultaten från det praktiska arbetet kan konstateras att en enkel, automatiserad och fullskalig integration mellan verktygen verkar ligga en bit in i framtiden. De flesta transformationerna mellan IFC och CityGML misslyckades i någon aspekt, speciellt de mer detaljerade och komplexa. I vissa testfall kunde filen inte importeras i ArcGIS, i andra saknas eller existerar oväntade geometrier även om importen lyckats. Det finns också exempel där geometrier förflyttats. Som en konsekvens av dessa problem kunde de flesta 3D-analyser inte genomföras alls eller lyckades inte ge betydelsefulla resultat. Ett fåtal av de ursprungliga analyserna gav dock positiv utdelning. Att kombinera (felaktiga) CityGML-modeller med annan rumslig data fungerade förhållandevis väl ur ett visualiseringssyfte. Både skuggvolymsanalysen och framtagandet av siktlinjer från byggnaderna gav någorlunda korrekta resultat vilket indikerar att det kan finnas en framtid gällande de tillämpningarna. Hindren för en fullskalig integration som identifierades genom arbetet delades upp i fyra olika kategorier. Den första är BIM-användning där hög kvalitet på de skapade modellerna är viktigt för korrekta slutresultat. Den andra är detaljeringsgraden där avsaknaden av gemensamma definitioner för detaljeringsgraderna ställer till problem. Den tredje kategorin är koordinat- och referenssystem där en lösning på kopplingen mellan lokala och globala system redan kan finnas på plats i en av de senare utgåvorna av IFC-formatet. Den sista och största kategorin är problematiken kring just format och programvaror där mer arbete på översättningen mellan IFC och CityGML kommer att krävas. I framtiden finns det gott om arbete att göra med dessa olika problem. Det finns också potential att utveckla egna verktyg för integrationen eller att ägna sig åt att göra andra analyser än de som valdes ut i den här studien.
Apel, Marcus. "A 3d geoscience information system framework." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:swb:105-3300478.
Повний текст джерелаApel, Marcus. "A 3d geoscience information system framework." Doctoral thesis, Vandoeuvre-les-Nancy, INPL, 2004. https://tubaf.qucosa.de/id/qucosa%3A22479.
Повний текст джерелаTian, Kehan. "Three dimensional (3D) optical information processing." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35627.
Повний текст джерелаIncludes bibliographical references (p. 141-151).
Light exhibits dramatically different properties when it propagates in or interacts with 3D structured media. Comparing to 2D optical elements where the light interacts with a sequence of surfaces separated by free space, 3D optical elements provides more degrees of freedom to perform imaging and optical information processing functions. With sufficient dielectric contrast, a periodically structured medium may be capable of forbidding propagation of light in certain frequency range, called band gap; the medium is then called a photonic crystal. Various "defects", i.e. deviations from perfect periodicity, in photonic crystals are designed and widely used as waveguides and microcavities in integrated optical circuits without appreciable loss. However, many of the proposed waveguide structures suffer from large group velocity dispersion (GVD) and exhibit relatively small guiding bandwidth because of the distributed Bragg reflection (DBR) along the guiding direction. As optical communications and optical computing progress, more challenging demands have also been proposed, such as tunable guiding bandwidth, dramatically slowing down group velocity and active control of group velocity. We propose and analyze shear discontinuities as a new type of defect in photonic crystals.
(cont.) We demonstrate that this defect can support guided modes with very low GVD and maximum guiding bandwidth, provided that the shear shift equals half the lattice constant. A mode gap emerges when the shear shift is different than half the lattice constant, and the mode gap can be tuned by changing the amount of the shear shift. This property can be used to design photonic crystal waveguides with tunable guiding bandwidth and group velocity, and induce bound states. The necessary condition for the existence of guiding modes is discussed. By changing the shape of circular rods at the shear interface, we further optimize our sheared photonic crystals to achieve minimum GVD. Based on a coupled resonator optical waveguide (CROW) with a mechanically adjustable shear discontinuity, we also design a tunable slow light device to realize active control of the group velocity of light. Tuning ranges from arbitrarily small group velocity to approximately the value of group velocity in the bulk material with the same average refractive index. The properties of eigenstates of tunable CROWs: symmetry and field distribution, and the dependence of the group velocity on the shear shift are also investigated.
(cont.) Using the finite-difference time-domain (FDTD) simulation, we demonstrate the process of tuning group velocity of light in CROWs by only changing the shear shift. A weakly modulated 3D medium diffracts light in the Bragg regime (in contrast to Raman-Nath regime for 2D optical elements), called volume hologram. Because of Bragg selectivity, volume holograms have been widely used in data storage and 3D imaging. In data storage, the limited diffraction efficiency will affect the signal-noise-ratio (SNR), thus the memory capacity of volume holograms. Resonant holography can enhance the diffraction efficiency from a volume hologram by enclosing it in a Fabry-Perot cavity with the light multiple passes through the volume hologram. We analyze crosstalk in resonant holographic memories and derive the conditions where resonance improves storage quality. We also carry out the analysis for both plane wave and apodized Gaussian reference beams. By utilizing Hermite Gaussian references (higher order modes of Gaussian beams), a new holographic multiplexing method is proposed - mode multiplexing.
(cont.) We derive and analyze the diffraction pattern from mode multiplexing with Hermite Gaussian references, and predict its capability to eliminate the inter-page crosstalk due to the independence of Hermite Gaussian's orthogonality on the direction of signal beam as well as decrease intra-page crosstalk to lower level through apodization. When using volume holograms for imaging, the third dimension of volume holograms provided more degrees of freedom to shape the optical response corresponding to more demanding requirements than traditional optical systems. Based on Bragg diffraction, we propose a new technique - 3D measurement of deformation using volume holography. We derive the response of a volume grating to arbitrary deformations, using a perturbative approach. This result will be interesting for two applications: (a) when a deformation is undesirable and one seeks to minimize the diffracted field's sensitivity to it and (b) when the deformation itself is the quantity of interest, and the diffracted field is used as a probe into the deformed volume where the hologram was originally recorded.
(cont.) We show that our result is consistent with previous derivations motivated by the phenomenon of shrinkage in photopolymer holographic materials. We also present the analysis of the grating's response to deformation due to a point indenter and present experimental results consistent with theory.
by Kehan Tian.
Ph.D.
Trapp, Matthias. "Analysis and exploration of virtual 3D city models using 3D information lenses." Master's thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1393/.
Повний текст джерелаDiese Diplomarbeit behandelt echtzeitfähige Renderingverfahren für 3D Informationslinsen, die auf der Fokus-&-Kontext-Metapher basieren. Im folgenden werden ihre Anwendbarkeit auf Objekte und Strukturen von virtuellen 3D-Stadtmodellen analysiert, konzipiert, implementiert und bewertet. Die Focus-&-Kontext-Visualisierung für virtuelle 3D-Stadtmodelle ist im Gegensatz zum Anwendungsbereich der 3D Geländemodelle kaum untersucht. Hier jedoch ist eine gezielte Visualisierung von kontextbezogenen Daten zu Objekten von großer Bedeutung für die interaktive Exploration und Analyse. Programmierbare Computerhardware erlaubt die Umsetzung neuer Linsen-Techniken, welche die Steigerung der perzeptorischen und kognitiven Qualität der Visualisierung im Vergleich zu klassischen perspektivischen Projektionen zum Ziel hat. Für eine Auswahl von 3D-Informationslinsen wird die Integration in ein 3D-Szenengraph-System durchgeführt: • Verdeckungslinsen modifizieren die Gestaltung von virtuellen 3D-Stadtmodell- Objekten, um deren Verdeckungen aufzulösen und somit die Navigation zu erleichtern. • Best-View Linsen zeigen Stadtmodell-Objekte in einer prioritätsdefinierten Weise und vermitteln Meta-Informationen virtueller 3D-Stadtmodelle. Sie unterstützen dadurch deren Exploration und Navigation. • Farb- und Deformationslinsen modifizieren die Gestaltung und die Geometrie von 3D-Stadtmodell-Bereichen, um deren Wahrnehmung zu steigern. Die in dieser Arbeit präsentierten Techniken für 3D Informationslinsen und die Anwendung auf virtuelle 3D Stadt-Modelle verdeutlichen deren Potenzial in der interaktiven Visualisierung und bilden eine Basis für Weiterentwicklungen.
Hsu, P. H. "3D information place : architecture for virtual place-making and information navigation." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604679.
Повний текст джерелаEarnshaw, Rae A. "3D and multimedia on the information superhighway." IEEE, 1997. http://hdl.handle.net/10454/3509.
Повний текст джерелаWhat has generated the unprecedented fascination with the Internet? What future lies ahead for computing as the Internet and its associated infrastructure expand? Will the network be able to cope with rising demands for carrying capacity and response speed? Will it change the way scientists, designers, artists, computer professionals, and home users work in the future? These are some of the wideranging questions being asked about the Internet and World Wide Web.
Книги з теми "Information 3D"
Lee, Jiyeong, and Sisi Zlatanova, eds. 3D Geo-Information Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87395-2.
Повний текст джерелаInternational Workshop on 3D Geo-Information (3rd 2008 Seoul, Korea). 3D geo-information sciences. Berlin: Springer, 2009.
Знайти повний текст джерелаKolbe, Thomas H., Gerhard König, and Claus Nagel, eds. Advances in 3D Geo-Information Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12670-3.
Повний текст джерелаAbdul-Rahman, Alias, Sisi Zlatanova, and Volker Coors, eds. Innovations in 3D Geo Information Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36998-1.
Повний текст джерелаIsikdag, Umit, ed. Innovations in 3D Geo-Information Sciences. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00515-7.
Повний текст джерелаNeutens, Tijs, and Philippe Maeyer, eds. Developments in 3D Geo-Information Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04791-6.
Повний текст джерелаKolbe, Thomas H. Advances in 3D Geo-Information Sciences. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Знайти повний текст джерелаNeutens, Tijs. Developments in 3D geo-information sciences. Edited by International Workshop on 3D Geo-Information (4th : 2009 : Ghent, Belgium). Heidelberg: Springer, 2010.
Знайти повний текст джерелаZlatanova, Siyka. 3D GIS for urban development. Enschede, Netherlands: International Institute for Aerospace Survey and Earth Sciences, 2000.
Знайти повний текст джерелаЧастини книг з теми "Information 3D"
Zhang, David, and Guangming Lu. "3D Information in Palmprint." In 3D Biometrics, 105–33. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7400-5_7.
Повний текст джерелаChiang, Wen-Hsing, and Wolfgang Kinzelbach. "Supplementary Information." In 3D-Groundwater Modeling with PMWIN, 309–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05549-6_7.
Повний текст джерелаDell’Unto, Nicolò, and Giacomo Landeschi. "Geographical information systems in archaeology." In Archaeological 3D GIS, 5–17. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003034131-2.
Повний текст джерелаBrüggemann, Thilo, and Petra von Both. "3D-Stadtmodellierung: CityGML." In Building Information Modeling, 177–92. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-05606-3_10.
Повний текст джерелаEbertshäuser, Sebastian, Thilo Brüggemann, and Petra von Both. "3D-Stadtmodellierung: CityGML." In Building Information Modeling, 243–61. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33361-4_12.
Повний текст джерелаGeorge, Mary Ann, and Anna Merine George. "Stereovision for 3D Information." In Advances in Intelligent Systems and Computing, 1595–602. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1602-5_158.
Повний текст джерелаCavallar, Claudia, and Daniel Dögl. "Organizing Information in 3D." In Virtual Worlds, 308–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-68686-x_29.
Повний текст джерелаLiu, Wenjian, and Yue Zhou. "Reinforcing LiDAR-Based 3D Object Detection with RGB and 3D Information." In Neural Information Processing, 199–209. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36711-4_18.
Повний текст джерелаCostamagna, Erik. "Geographic Information Science (GIS) 3D." In Encyclopedia of Quality of Life and Well-Being Research, 2512–21. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-0753-5_4083.
Повний текст джерелаKim, Gui-Jung, and Jung-Soo Han. "Simulation of 3D Information Visualization." In Lecture Notes in Electrical Engineering, 317–23. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2911-7_27.
Повний текст джерелаТези доповідей конференцій з теми "Information 3D"
Steinlechner, Harald, Gerhard Paar, Christoph Traxler, Piluca Caballo-Perucha, Jean-Baptiste Vincent, Thomas Ortner, and Emily Cardarelli. "Hera 3D Geographical Information System." In IAF Space Exploration Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 792–800. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078357-0089.
Повний текст джерелаLi, Liuwenjie, Enzhi Xu, and Chenxing Wang. "A 3D information steganography technique using DiffStega." In International Conference on Optical and Photonic Engineering (icOPEN 2024), edited by Jianglei Di, Kemao Qian, Shijie Feng, Jianping Zhou, Xiangjun Zou, Haixia Wang, and Chao Zuo, 22. SPIE, 2025. https://doi.org/10.1117/12.3057357.
Повний текст джерелаOstermann, Joern. "3D information coding." In 2010 Picture Coding Symposium (PCS). IEEE, 2010. http://dx.doi.org/10.1109/pcs.2010.5702461.
Повний текст джерела"Publisher's Information." In 2013 International Conference on 3D Vision (3DV). IEEE, 2013. http://dx.doi.org/10.1109/3dv.2013.66.
Повний текст джерела"Publisher's Information." In 2015 International Conference on 3D Vision (3DV). IEEE, 2015. http://dx.doi.org/10.1109/3dv.2015.83.
Повний текст джерела"[Publisher's information]." In 2018 International Conference on 3D Vision (3DV). IEEE, 2018. http://dx.doi.org/10.1109/3dv.2018.00094.
Повний текст джерела"[Publishers' information]." In 2016 Fourth International Conference on 3D Vision (3DV). IEEE, 2016. http://dx.doi.org/10.1109/3dv.2016.77.
Повний текст джерела"Publisher's Information - Volume 2." In 2014 2nd International Conference on 3D Vision (3DV). IEEE, 2014. http://dx.doi.org/10.1109/3dv.2014.116.
Повний текст джерела"[Publisher's information - Volume 1]." In 2014 2nd International Conference on 3D Vision (3DV). IEEE, 2014. http://dx.doi.org/10.1109/3dv.2014.123.
Повний текст джерелаZeng, Dan. "Relevance model in information retrieval based on information science perspective." In 2011 International Conference on Photonics, 3D-imaging, and Visualization. SPIE, 2011. http://dx.doi.org/10.1117/12.906091.
Повний текст джерелаЗвіти організацій з теми "Information 3D"
Chellappa, Rama, and Amit K. Roy Chowdhury. An information theoretic evaluation criterion for 3D reconstruction algorithms. Gaithersburg, MD: National Institute of Standards and Technology, 2004. http://dx.doi.org/10.6028/nist.sp.1036.
Повний текст джерелаHiguchi, Kazunori, Martial Hebert, and Katsushi Ikeuchi. Combining Shape and Color Information for 3D Object Recognition. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada274123.
Повний текст джерелаWeiss, David S., Birgitta Whaley, and Jungsang Kim. Topological Quantum Information in a 3D Neutral Atom Array. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada619954.
Повний текст джерелаWang, Song. Metallic Material Image Segmentation by using 3D Grain Structure Consistency and Intra/Inter-Grain Model Information. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada617033.
Повний текст джерелаde Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison, et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331097.
Повний текст джерелаde Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison, et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331871.
Повний текст джерелаHuang, Haohang, Jiayi Luo, Kelin Ding, Erol Tutumluer, John Hart, and Issam Qamhia. I-RIPRAP 3D Image Analysis Software: User Manual. Illinois Center for Transportation, June 2023. http://dx.doi.org/10.36501/0197-9191/23-008.
Повний текст джерелаProkhorov, Оleksandr V., Vladyslav O. Lisovichenko, Mariia S. Mazorchuk, and Olena H. Kuzminska. Developing a 3D quest game for career guidance to estimate students’ digital competences. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4416.
Повний текст джерелаde Kemp, E. A. Canada in 3D - National Geological Surveys Committee update report. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331340.
Повний текст джерелаPaul, D., E. A. de Kemp, and M. R. St-Onge. Canada in 3D (C3D) the next generation view of the geology of Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331348.
Повний текст джерела