Добірка наукової літератури з теми "Inductive energy storage system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Inductive energy storage system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Inductive energy storage system"

1

K, Senthil, S. Mitra, Amitava Roy, Archana Sharma, and D. P. Chakravarthy. "Compact inductive energy storage pulse power system." Review of Scientific Instruments 83, no. 5 (May 2012): 054703. http://dx.doi.org/10.1063/1.4721278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jin, Jian Xun, Wei Xu, Xin Zhou, and Xiao Yuan Chen. "Digitalization Control and Characteristic Analysis of a Superconducting Inductive Energy Management System." Applied Mechanics and Materials 416-417 (September 2013): 474–79. http://dx.doi.org/10.4028/www.scientific.net/amm.416-417.474.

Повний текст джерела
Анотація:
In past decades, the technique of superconducting magnetic energy storage (SMES) has received substantial attention both by academia and industry with the great improvement of applicable high temperature superconductors and relevant control technologies. A bridge-type inductive energy management system topology is presented for SMES applications by using a concept of digitalization. The inductive power charging, storing and discharging status are modelled, and then digitalized for the advanced control implementation. As a consequence, an inductive energy control method can be realized by the digitalized models to satisfy relative project requirements by high efficiency and control precession. New principles and methodologies provide the theoretical foundation to achieve digital power inductor energy control and superconducting inductive energy storage device operation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Druzhinin, A. S., V. G. Kuchinsky, B. A. Larionov, A. G. Roshal, V. P. Silin, and V. F. Soikin. "Pulse power systems using inductive energy storage." IEEE Transactions on Magnetics 28, no. 1 (1992): 410–13. http://dx.doi.org/10.1109/20.119898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Базанов, А. А., А. Н. Ерофеев, А. В. Ивановский, В. И. Мамышев та Е. В. Шаповалов. "Электровзрывной размыкатель тока для быстрого вывода энергии из индуктивного накопителя в нагрузку". Журнал технической физики 93, № 8 (2023): 1204. http://dx.doi.org/10.21883/jtf.2023.08.55984.76-23.

Повний текст джерела
Анотація:
The paper presents the results of model testing of the electrically exploded current interrupter (switch) designed for the switching system used to release the electromagnetic energy from the inductive storage to the load through a closing switch-discharger. A capacitor bank was used as a source of energy for the inductive storage. Some features of the discharger were varied in order to increase its reliability and operation speed. The obtained experimental data allowed making recommendations on practical implementation of the opening switch. The optimized version demonstrated a possibility to form current pulses with submicrosecond rise time, up to ~ 100 ns, in the low-impedance loads of the inductive storages. The obtained result is true for the currents of megaampere and multimegaampere level that makes it possible to use the opening switch for commutation of the energy sources with high energy capacity, for example, of the explosive magnetic generators.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vera-Ruiz, Sneider Eduardo, Aaron Alejandro Coll-Bravo, Héctor Jesús Macías-Loor, Kevin Patricio Paz-Mendoza, and Ronald Ismael Véliz-Menéndez. "Contributions and benefits of accumulation systems to the electrical system." International journal of physical sciences and engineering 8, no. 2 (August 12, 2024): 9–16. http://dx.doi.org/10.53730/ijpse.v8n2.15053.

Повний текст джерела
Анотація:
Energy storage systems play a crucial role in the modernization and stability of the electrical system. The objective is to explore the different types of storage systems and their contributions to energy efficiency, the integration of renewable energies, and the improvement of the reliability of the electricity supply. A qualitative investigation was carried out, and the bibliographic review and the inductive-deductive method were used as a methodology, the result was that accumulation systems have less economic and environmental impact, standing out as the most innovative technologies and possible implementation at a global level, these Results indicate that the adoption of these systems not only improves grid stability, but also facilitates a faster transition to a sustainable energy future.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Dao Jing, Hong Guang Zhang, Xiao Na Sun, and Dao Jing Wang. "Energy Storage and Deposition Characteristics of Spark Ignition System." Advanced Materials Research 383-390 (November 2011): 1647–52. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.1647.

Повний текст джерела
Анотація:
Time-resolved current and voltage measurements for an inductive automotive spark system were made. The measurements were made in air for a range of charge time from 1-8ms, at ambient temperatures. Primary current was measured, so the primary energy can be calculated. Current and voltage signal of secondary circuit was detected, from which the spark energy and energy transformation efficiency can be calculated. Test results show that: when the charge time is 6ms, both the primary energy and spark energy reaches to saturation value, does not advanced any more with the charge time increasing; and the energy transformation efficiency is at an appropriate range.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Genin, V. S., and M. V. Popova. "Features of using diesel power stations and systems with energy storage and current limiters." Traktory i sel hozmashiny 79, no. 3 (March 15, 2012): 39–40. http://dx.doi.org/10.17816/0321-4443-69396.

Повний текст джерела
Анотація:
Electromechanical processes arising at the operation of superconducting inductive storage device and current limiters in power system with synchronous loading are considered. A mathematical model is developed. Relations between characteristics of power system, storage device and current limiters are investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Go, Tomio, Kyousuke Kanesawa, Nobuyuki Yamazaki, Seiji Mukaigawa, Koichi Takaki, and Tamiya Fujiwara. "Energy Efficiency of Inductive Energy Storage System Pulsed Power Generator Using Fast Recovery Diode." IEEJ Transactions on Fundamentals and Materials 129, no. 1 (2009): 23–29. http://dx.doi.org/10.1541/ieejfms.129.23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kamiński, Bartłomiej, Marcin Nikoniuk, and Łukasz Drązikowski. "A concept of propulsion and power supply systems for PRT vehicles." Archives of Transport 27-28, no. 3-4 (December 31, 2013): 81–93. http://dx.doi.org/10.5604/01.3001.0004.0110.

Повний текст джерела
Анотація:
An innovative propulsion and power supply topology for Personal Rapid Transit is presented. The concept is based on application of linear induction motor for propulsion and hybrid power supply using Contactless Energy Transfer supported by a supercapacitor energy storage. Proposed solution is based on the application of linear induction motor as a propulsion and inductive contactless energy transfer.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Xinyi. "Wireless Charging and Endurance Platform of Patrol UAV Based on Inductive Power Collection of Transmission Line." Journal of Physics: Conference Series 2137, no. 1 (December 1, 2021): 012013. http://dx.doi.org/10.1088/1742-6596/2137/1/012013.

Повний текст джерела
Анотація:
Abstract This project designs a wireless charging and endurance platform for patrol UAV based on inductive power collection. The main function is to solve the problems of short dead time and continuous inspection of ordinary patrol UAV. The system is mainly composed of transmission line inductive energy taking coil, inductive power supply, energy storage battery module, wireless charging module, energy management module and patrol UAV with wireless charging function.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Inductive energy storage system"

1

Abbey, Chad. "A doubly-fed induction generator and energy storage system for wind power applications /." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81522.

Повний текст джерела
Анотація:
Wind generation has become the most important alternate energy source and has experienced increased growth in Europe during the past decade while more recently, the same trends have been exhibited in North America. Although it has great potential as an alternative to less environmentally friendly energy sources, there are various technical challenges that cause wind to be regarded negatively by many utilities. Others are hesitant to accept its widespread implementation, particularly when the penetration of wind in a given area is high.
This work presents the addition of an energy storage system to a wind turbine design.
Various advantages are exhibited for the wind turbine with energy storage. Firstly, the generator is capable of accurately controlling the output power of the generator and inevitably of the wind park. Reactive power requirements are also reduced as a result of a more stable voltage at the point of interconnection. In addition, improved transient performance is exhibited for various local disturbances.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Radebe, Thandwefika. "Are solar home systems a more financially viable method of electrifying Ghana households?" Master's thesis, Faculty of Commerce, 2021. http://hdl.handle.net/11427/33001.

Повний текст джерела
Анотація:
Africa still has the lowest electrification rates in the world with over 600 million people estimated to be living without access to electricity. What makes the challenge even greater for Africa is that the continent is so sparsely populated that building grid infrastructure is not viable in many cases. However, “pay-as-you-go” solar home systems have provided the continent with the opportunity to correct its electrification deficit. These innovations are not new and many of the costs of operating these systems have reached grid parity when one considers the Levelized Cost of Energy Model. However, these projects still fail to meet institutional investors' bankability criteria. The aim of this study is to try and understand whether solar home systems provide the investor with an opportunity to make a larger risk-adjusted return versus existing grid-based power station projects being considered on the continent. This study uses Ghana's recently built Kpone power station as a case study to complete this analysis. The study also seeks to assess what viability criteria is employed by a broad base of investors if they were to consider funding off-grid power. The study makes use of the Net Present Value model to compare the returns for Kpone and Zola Electric's Infinity solar home system. The study also conducts inductive qualitative analysis to try and ascertain what criteria is assessed for project viability and then builds a conceptual framework for assessing future projects. The study found that Kpone provided a better risk-adjusted return to that of Zola Electric's solar home system, largely because of Kpone's project finance structure reducing the risk of the investment. Our findings also show that investment ticket size, company track record and management track record are among the most highly considered criteria for investments into off-grid companies.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pimperton, M. G. "The meatgrinder : an efficient current-multiplying inductive energy storage and transfer circuit." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/10828.

Повний текст джерела
Анотація:
The meatgrinder is a high-efficiency inductive energy storage and transfer circuit which may be used to supply high-current pulsed power requirements in applications such as electromagnetic propulsion. It overcomes the inherent 25% efficiency limit when transferring energy between uncoupled inductors and simultaneously provides current multiplication. An unloaded six-step demonstration circuit has been used to multiply current from 7A to 76A at an efficiency of 44%, and a single-step demonstration circuit has been used to multiply the current in an uncoupled load induct or from lOA to 30A, the efficiency of energy transfer being 31%. Both circuits use power MOSFETs for switching. These circuits have been used in conjunction with theoretical analysis and computer simulation to study the design and performance of the meatgrinder. Investigations have been carried out in order to confirm the basic theory, to clarify the details of circuit operation, and to provide the information necessary for future feasibility studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Navas, Michael Andrés Hernández. "Sistema de armazenamento aplicado a sistemas eólicos empregando conversores de fonte z conectados à rede elétrica." reponame:Repositório Institucional da UFABC, 2015.

Знайти повний текст джерела
Анотація:
Orientador: Dr. Alfeu J. Sguarezi Filho
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2015.
Neste trabalho apresenta-se uma configuração do sistema de armazenamento de energia com baterias aplicado a sistemas de geração de energia eólica empregando conversores de fonte Z conectados à rede elétrica. Os geradores de indução gaiola de esquilo, são frequentemente utilizados nos sistemas de geração de energia eólica, por sua robustez, simplicidade, peso menor e custo baixo. Este é conectado diretamente ao conversor de potência bidirecional back to back, pode fornecer potências ativa e reativa à rede elétrica. Além disso, é estudado o conversor de fonte Z aplicado nesta topologia. No entanto, a implantação de sistemas de armazenamento de energia com baterias nos sistemas de geração de energia eólica na atualidade é muito importante, devido à possibilidade de oscilações da tensão e corrente na rede elétrica, portanto, estes podem ajudar à estabilização das tensões, correntes e a frequência na rede elétrica. Este sistema é conectado ao conversor back to back por meio de um conversor elevador-abaixador de corrente contínua. Para controlar a velocidade no eixo do rotor no gerador de indução, a estratégia é baseada no controle direto de torque. Enquanto, para o conversor do lado da rede é empregada a técnica de controle orientado pela tensão. Para o banco de baterias é utilizado o controle da tensão no barramento de corrente contínua e do fluxo na corrente da bateria, utilizando controladores do tipo PI. Com os novos desenvolvimentos tecnológicos nas chaves de potência, são apresentadas topologias de conversores CC-CA como o conversor de fonte Z, este tipo de conversor corrige algumas limitações do conversor back to back, com as características de elevador/abaixador de tensão, sem o uso de dispositivos de comutação, são permitidos os curto-circuitos na chaves, empregando novas técnicas de modulação, e reduz a quantidade harmônica injetada na rede elétrica. Os estudos foram realizados por meio de técnicas de simulação computacional usando modelos matemáticos do sistema estudado para a validação das estratégias de controle empregadas em diferentes condições de operação. Para as simulações empregou-se a ferramenta computacional SimPowerSystems R do Matlab/Simulink R .
This paper presents a battery energy storage system applied to wind power generation based on Z-source inverter connected to the power grid. The squirrel cage induction generators, often used in wind power generation systems, for its robustness, simplicity, lower weight and low cost. This is connected directly to the bidirectional power converter back to back, therefore, and provides active and reactive powers to grid. In addition, it is studied the Z-source inverter applied in this topology. However, the implementation of battery energy storage systems in wind power generation systems, currently is very important, due to possibility of the voltage and current fluctuations in the power grid, so these may to stabilisation of current, voltage and frequency on the grid. This system is connected to back to back converter through a DC-DC converter (buck-boost). For the rotor speed control on induction generator, the strategy is based on direct torque control. While, for the grid side converter is employed the technique of voltage oriented control. For the battery bank voltage control is used on DC-link voltage and battery current flow, through PI type controllers. With the new technological developments in the keys of power, DC converters topologies are presented as the Z-source inverter, this type converter fixes some limitations of the converter back to back, with the characteristics of buck-boost voltage, without the use of switching devices, allowed short-circuits on converter, using new modulation techniques, and reduces the amount injected harmonic to power grid. The studies were performed by means of computer simulation techniques using mathematical models of studied system to validate the control strategies employed in different operating conditions. For the simulations was used the computational tool SimPowerSystems R do Matlab/Simulink R .
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tahat, M. A. "Thermo-chemical energy storage system." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chang, Xiao. "Supercapacitor based energy storage system." Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25509.

Повний текст джерела
Анотація:
The supercapacitor, as a recently developed electrochemical energy storage device, offers extremely high capacitance per unit volume. Due to its unique double-layer structure and electrostatic charge mechanism, the supercapacitor has a much higher power density than the battery, and a much higher energy density than the conventional capacitor. It also benefits from a long cycle life, and wide temperature range. However, limited by a low cell voltage of 2.7V and high equivalent series resistance, the supercapacitor may be inefficient for high power grid level applications. Characteristic analysis of the supercapacitor shows that the efficiency reduces to 54.7% at peak current conditions. Based on supercapacitor modelling studies, two parameter identification methods are proposed, which are realised by a simple experiment, with an acceptable accuracy. A parallel combined supercapacitor and electrolytic capacitor energy storage system is proposed to improve high power application performance, which offers efficiency improvements in excess of 10%. A detailed description of such parallel capacitor systems are included in this thesis, where a design guide is developed to achieve an optimal design in terms of system efficiency, power capability, and volume. The capacitor based energy storage technique is suited to distributed generation applications where low-voltage ride through and grid code compliance are important considerations. A supercapacitor based static synchronous compensator is proposed, which is able to manipulate both active and reactive power exchange with the power system. Steady-state and transient responses are studied based on simulation of a test power system. A system frequency based control algorithm is used for active power control, which has a better stabilised system frequency than with conventional voltage control. The parallel hybrid capacitor technique is employed, which greatly improves the system performance in terms of efficiency, thermally, costs, and volume, compared with a system that only uses supercapacitors.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ranjith, Adam. "Thermal Energy Storage System Construction." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264530.

Повний текст джерела
Анотація:
In the framework of 2020 PUPM HEAT project three different types of thermal energy storage (TES) systems are being constructed and analyzed at a demonstration site set up at the power plant IREN in Moncalieri, Italy. KTH will assist this project by setting up a validation rig where three TES systems in smaller dimensions will be constructed and analyzed for its performance, to use as guideline for the demonstration site rig. The first TES system that is being constructed is the submerged parallel spiral heat exchanger which is a completely new version of latent heat storage to be tested. For this idea, parallel layers of spiral copper coils will fill up a tank shell which in turn will be filled with phase change material. By injecting high temperature heat transfer fluid, phase change material will change its state and energy will be stored in the system. When injecting low temperature heat transfer fluid, the energy will be extracted. This BSc thesis will present detailed design solutions for the tank shell and the spiral copper coils that will be used for the heat exchanger. Presented solutions are then used to order parts needed to initiate the construction phase.
Inom ramverket för 2020 PUPM HEAT projektet kommer tre olika typer av värmeenergilagrings enheter tillverkas och analyseras vid energikraftverket IREN i Moncalieri, Italien. KTH kommer att assistera detta projekt genom att sätta upp en anläggning med tre liknande värmeenergilagrings enheter i mindre dimensioner som kommer konstrueras och analyseras. Dess data kommer sedan användas som riktlinje för att tillverka de större värmeenergilagringsenheterna i IREN. Den första enheten som tillverkas är en värmeväxlare som bygger på en ny version av latent energilagring. Den kommer att bestå av parallella lager av spiral formade koppar rör som fyller en tank. Tomrummet som blir över kommer att fyllas upp av fasändrings material (PCM). Genom att injicera varmt vatten i systemet kommer PCM:et att byta fas, vilket resulterar i att värmeenergin lagras i systemet. När sedan kallt vatten injiceras kan den sparade energin bli utvunnen. Den här rapporten kommer att presentera designen till tank kåpan såväl som den inre strukturen med kopparrör som behövs till värmeväxlaren. Resultatet ska möjliggöra beställning av alla delar som behövs för att konstruera värmeväxlaren.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Degnon, Mawuena. "Étude des commutateurs semi-conducteurs à ouverture destinés à des applications de puissance pulsée avec des tensions de sortie allant jusqu'à 500 kV." Electronic Thesis or Diss., Pau, 2024. https://theses.hal.science/tel-04685830.

Повний текст джерела
Анотація:
Dans les systèmes de hautes puissances pulsées, le stockage inductif présente un avantage indéniable vis-à-vis du stockage capacitif du fait de sa plus forte densité d’énergie. L’exploitation de cet avantage nécessite toutefois l'utilisation d'un interrupteur à ouverture pour générer l'impulsion de tension. En outre, compte tenu de la demande croissante de générateurs impulsionnels fiables, en particulier pour les applications industrielles, il devient indispensable de recourir aux composants semi-conducteurs. La diode SOS (Semiconductor Opening Switch), développée dans les années 1990 à l'Institute of Electrophysics en Russie, est un candidat idéal pour la commutation état solide à ouverture, de par sa capacité à générer des impulsions de haute puissance de manière fiable et répétitive, tout en offrant une longue durée de vie et un fonctionnement exempt de maintenance. Cependant, le manque de fabricants de diodes SOS limite leur utilisation à grande échelle. Par conséquent, cette thèse se concentre sur l’étude de diodes disponibles dans le commerce (OTS : Off-The-Shelf) capables de commuter rapidement des courants élevés et de générer des tensions nanosecondes pouvant atteindre 500 kV. Plusieurs types de diodes, incluant les diodes de redressement, à avalanche, à temps de récupération rapide et de suppression de tension transitoire (TVS) ont été étudiés en tant qu’interrupteurs à ouverture, en comparaison avec les diodes SOS de référence. Pour mener à bien cette étude, des bancs d’essai à basse, moyenne et haute énergie (respectivement 25 mJ, 10 J et 40 J) ont été mis au point. Afin d’augmenter leur efficacité énergétique, ces bancs utilisent un circuit basé sur un élément magnétique unique : un transformateur impulsionnel saturable. Plusieurs noyaux magnétiques nanocristallins ont été examinés sur le banc de 10 J dans le but d’optimiser les performances du transformateur. Parmi les diodes étudiées sur les bancs de 25 mJ et 10 J, les diodes TVS et les diodes de redressement ont émergé du lot, démontrant des performances de temps de commutation de l'ordre de la nanoseconde et de tensions générées de plusieurs kilovolts. Enfin, un prototype de générateur de hautes puissances pulsées de 40 J (GO-SSOS) basé sur un interrupteur OTS composé de diodes de redressement a été développé. Le rendement énergétique du système varie de 35% à 70% selon la valeur de la charge, et la puissance crête obtenue est supérieure à 300 MW. Sur une charge de 1 kΩ, l'impulsion de tension générée atteint une amplitude de 500 kV avec un temps de montée de 36 ns et une largeur à mi-hauteur de 80 ns. La reproductibilité des impulsions à une fréquence de répétition de 60 Hz est démontrée, ainsi qu’une application de génération de décharges couronnes. Les travaux prouvent la fiabilité des diodes OTS en mode SOS, ne révélant aucune dégradation après quelques milliers d'impulsions générées. Ils ouvrent également la voie à l’utilisation de cette technologie pour des applications industrielles telles que la stérilisation par faisceau d’électrons
In pulsed power systems, inductive energy storage has an advantage over capacitive storage because of its higher energy density. Exploiting this advantage requires the use of an opening switch to generate the voltage pulse. Moreover, the growing need for reliable pulsed power generators, particularly for industrial applications, strongly supports the adoption of solid-state solutions. The Semiconductor Opening Switch (SOS) diode developed in the 1990s at the Institute of Electrophysics in Russia is an ideal candidate for solid-state opening switching because of its ability to reliably generate high-power pulses at high repetition rates while offering long lifetime and maintenance-free operation. However, the lack of SOS diode manufacturers prevents their widespread use. This thesis is therefore devoted to the study of off-the-shelf (OTS) diodes capable of rapidly switching high currents and generating nanosecond voltages of up to 500 kV. The research includes the investigation of various diode types including rectifier, avalanche, fast recovery, and transient voltage suppression (TVS) diodes as opening switches in comparison with state-of-the-art SOS diodes. Low, medium, and high-energy (25 mJ, 10 J, and 40 J respectively) test benches are developed for the experiments. Their circuits use a single magnetic element – a saturable pulse transformer – resulting in high energy efficiency. Several nanocrystalline cores are examined for optimum transformer performance at an energy of 10 J. Among the diodes investigated at 25 mJ and 10 J energy, the TVS and rectifying diodes stand out particularly promising with nanosecond switching time and generated voltages in the kilovolt range. Finally, a 40 J pulsed power generator prototype (GO-SSOS) based on an OTS opening switch consisting of rectifier diodes is developed. The GO-SSOS achieves a peak power of more than 300 MW with an energy efficiency ranging from 35% to 70% depending on the load value. Across a 1 kΩ load, the voltage pulse generated reaches 500 kV amplitude with a rise time of 36 ns and a pulse width of 80 ns. The system shows high reproducibility at a repetition rate of 60 Hz and is used to demonstrate a corona discharge application. The work proves the reliability of the OTS diodes in SOS mode, revealing no degradation after thousands of pulses. It also offers the prospect of using this technology in industrial applications such as electron-beam sterilization
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thaicham, Pruitipong. "Fluidised-MCPCM glazed energy storage system." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/11057/.

Повний текст джерела
Анотація:
The thesis presents an experimental investigation into the feasibility of using a slurry containing a micro encapsulated phase change material (MCPCM), n-eicosane, as a heat transfer fluid for enhanced latent heat transport. Increasing the convective heat transfer coefficient would permit the use of a smaller volumetric flow rate and reduce pumping power. The primary parameters investigated are the volumetric concentrations and flow rates. Measurements of thermal capacity of the novel slurries were performed using two techniques, standard differential scanning calorimeter (DSC) and thermal analysis (TA). Pumping power consumption, viscosity and pressure loss of the flowing slurries were investigated in order to determine the most suitable concentration of MCPCM used in the slurry, over the range 5-40%. The effects of repeated use of liquid-solid phase change particles upon melting and solidifying were studied using a small-scale rig of a closed loop circuit. The research work further involved the design, construction and tests the proposed system based on incorporating microencapsulated phase change material (MCPCM) within a fluidised and sealed double glazed panel, which could be integrated into building fabric. The use of a MCPCM slurry can improve the performance of a working fluid by as much as 52% compared to a single phase fluid. A concentration of 20-30% was the most suitable mixture for the working fluid due to the associated heat capacity and reasonable pressure drop. Measurement showed that a saving in pumping power of 12% could be obtained. The performance of the fluidised glazed energy storage system can be improved by up to 18% with the use of MCPCM slurry as a working fluid.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abbey, Chad Michel. "Energy storage system optimization and control with wind energy." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66694.

Повний текст джерела
Анотація:
This thesis proposes a methodology for planning, scheduling and on-line control of an energy storage system for the integration of wind energy. Using the case study of a remote wind-diesel system, the different time frames of the design and implementation process are detailed. First, a long-term planning approach for rating of the power and energy capacities of the ESS is presented, based on stochastic optimization. The formulation is then adapted into a hourly scheduling approach and results are compared with the expected cost of energy and energy requirements resulting from the planning study. The optimization results are used as training data for an artificial neural network, in an effort to generate an on-line control that captures inherent rules, using artificial intelligence. The ESS is realized as a two-level ESS and a general control structure for on-line operation of multi-level ESS is proposed and adapted for the wind-diesel system, as the first level in a hierarchical control. The system is evaluated in simulation and selected results are validated using a hardware-in-the-loop representation of the system, demonstrating that the proposed controller is realizable.
Cette thèse propose une méthodologie pour la planification, l'utilisation et la commande d'un système de stockage d'énergie permettant l'intégration de l'énergie éolienne. Utilisant comme étude de cas un réseau autonome alimenté par un système éolien-diesel, les différentes étapes de la conception et la mise en oeuvre sont détaillées. Premièrement, une étude de planification à long terme pour le dimensionnement de la puissance nominale et de la capacité énergétique du stockage est présentée, basée sur les méthodes d'optimisation stochastique. La formulation est ensuite adaptée à une commande sur une base horaire et les résultats sont comparés, au niveau de l'énergie et de la quantité d'énergie utilisée, aux résultats obtenus dans l'étude de planification. Les résultats obtenus par optimisation du système sont utilisés dans l'entrainement d'un réseau de neurones artificiels, afin de produire une commande qui capte les règles inhérentes au système, utilisant l'intelligence artificielle. Le stockage d'énergie est réalisé par un système de stockage à deux niveaux et une structure de commande appropriée à plusieurs niveaux est proposée et adaptée pour un système éolien-diesel, comme premier niveau d'une commande hiérarchique. La performance du système est évaluée par simulation et certains résultats ont été validés avec un banc d'essai. Celui-ci consiste à des convertisseurs électroniques intégrés avec une représentation par simulation temps réel du système. Les résultats obtenus concordent avec les résultats de simulation et confirment que la commande proposée est réalisable.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Inductive energy storage system"

1

K, Sood Pradeep, and Lewis Research Center, eds. Study of the generator/motor operation of induction machines in a high frequency link space power system. Madison, Wis: University of Wisconsin, [Dept. of Electrical and Computer Engineering, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raza, Stephen Tsvangirayi. Compressed-air energy storage system analysis. Sudbury, Ont: Laurentian University, School of Engineering, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

C, Willhoite Bryon, Ommering Gert van, and Lewis Research Center, eds. Energy storage and thermal control system design status. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sohn, C. W. Chilled water storage cooling system at Fort Jackson, SC. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Institution of Engineering and Technology and Knovel (Firm), eds. Energy storage for power systems. 2nd ed. Stevenage, U.K: Institution of Engineering and Technology, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

E, Kascak Peter, and NASA Glenn Research Center, eds. DC bus regulation with a flywheel energy storage system. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

E, Kascak Peter, and NASA Glenn Research Center, eds. DC bus regulation with a flywheel energy storage system. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Simpson, Andrew. Energy storage system considerations for grid-charged hybrid electric vehicles. Washington, D.C.]: U.S. Dept. of Energy, National Renewable Energy Laboratory, Office of Energy Efficiency & Renewable Energy, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

E, Coles-Hamilton Carolyn, Lacy Dovie E, and United States. National Aeronautics and Space Administration., eds. Impact of thermal energy storage properties on solar dynamic space power conversion system mass. [Washington, DC]: National Aeronautics and Space Administration, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gevorgian, V. Ramping performance analysis of the Kahuku wind-energy battery storage system. Golden, CO: National Renewable Energy Laboratory, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Inductive energy storage system"

1

Abu-Siada, Ahmed, Mohammad A. S. Masoum, Yasser Alharbi, Farhad Shahnia, and A. M. Shiddiq Yunus. "Superconducting Magnetic Energy Storage, a Promising FACTS Device for Wind Energy Conversion Systems." In Recent Advances in Renewable Energy, 49–86. UAE: Bentham Science Publishers Ltd., 2017. http://dx.doi.org/10.2174/9781681085425117020004.

Повний текст джерела
Анотація:
The applications of FACTS devices have become popular in the last few decades. There are many types of FACTS devices that are currently used in power systems to improve system stability, power quality and the overall reliability of the power systems. Since the involvement of renewable energies based power plants such as wind and PV, problems related to power system stability and quality has become even more complex, therefore the deployment of FACTS devices has become a challenging task. In this chapter, a Superconducting Magnetic Energy Storage (SMES) Unit is applied to improve the performance of Doubly Fed Induction Generator (DFIG) based wind turbine during various disturbances such as voltage sag, short circuit faults and load variation, including problems related to internal faults within the DFIG converters.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Junker, M., and W. Pfeiffer. "Instabilities of Discharges and Their Application for Opening Switches in Inductive Energy Storage Systems." In Gaseous Dielectrics VII, 387–92. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1295-4_73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Derkouche, Djamel, and K. Kouzi. "Intelligent Flywheel Energy Storage System Speed Integrated to the Wind Energy Conversion System Based on Multiphase Induction Machine." In Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities, 688–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92038-8_69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Djamel, Derkouche, and Kouzi Katia. "Robust Control of Multiphase Induction Generator Equipped with Fuzzy Flywheel Energy Storage System." In Lecture Notes in Networks and Systems, 501–10. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21216-1_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singh, Pradeep, Krishan Arora, and Umesh C. Rathore. "Energy Storage Systems with Artificial Intelligence Techniques in Doubly Fed Induction Generator Based Wind Energy Conversion System — An Overview." In Intelligent Circuits and Systems for SDG 3 – Good Health and well-being, 403–18. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003521716-44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bouras, Meriem, and Katia Kouzi. "Analysis of Novel Flywheel Energy Storage System Based on Dual Stator Induction Machine Incorporated in Wind Energy Systems Using Intelligent Approach." In Artificial Intelligence in Renewable Energetic Systems, 357–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73192-6_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Daoud, Mohamed, and Atif Iqbal. "Vector Control of Dual 3-ϕ Induction Machine-Based Flywheel Energy Storage System Using Fuzzy Logic Controllers." In Studies in Big Data, 339–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4412-9_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hissel, Daniel, Denis Candusso, and Marie-Cécile Pera. "Fuel Cells: System Operation." In Energy Storage, 153–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557808.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Honig, Emanuel M. "Inductive Energy Storage Circuits and Switches." In Opening Switches, 1–48. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1929-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Price, A. C. R. "The RegenesysTMEnergy Storage System." In Renewable Energy Storage, 11–24. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118903070.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Inductive energy storage system"

1

Akiyama, Hidenori, Tsuyoshi Sueda, Ulf Katschinski, Sunao Katsuki, and Sadao Maeda. "Pulsed power generators using an inductive energy storage system." In Laser interaction and related plasma phenomena: 12th international conference. AIP, 1996. http://dx.doi.org/10.1063/1.50388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jianxun Jin and Xiaoyuan Chen. "HTS inductive magnetic energy storage with power control technology." In APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2008. http://dx.doi.org/10.1109/apccas.2008.4746414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Takaki, Koichi, Hidekazu Kirihara, Chiharu Noda, Seiji Mukaigawa, and Tamiya Fujiwara. "Production of Atmospheric-Pressure Glow Using Inductive Energy Storage System Pulsed Power Generator." In 2006 Twenty-Seventh International Power Modulator Symposium. IEEE, 2006. http://dx.doi.org/10.1109/modsym.2006.365251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kamatani, Masaki, Satoshi Ihara, Saburoh Satoh, and Chobei Yamabe. "Application of an inductive energy storage pulsed-power generation with POS for a laser system." In Advanced High-Power Lasers and Applications, edited by Marek Osinski, Howard T. Powell, and Koichi Toyoda. SPIE, 2000. http://dx.doi.org/10.1117/12.380862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Senthil, K., S. Mitra, Archana Sharma, K. V. Nagesh, and D. P. Chakravarthy. "Experimental results of inductive energy storage pulsed power system using exploding wire as an opening switch." In 2011 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2011. http://dx.doi.org/10.1109/ivec.2011.5747084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Idjdarene, K., D. Rekioua, T. Rekioua, and A. Tounzi. "Vector Control of Autonomous Induction Generator with Battery Storage System." In 2017 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2017. http://dx.doi.org/10.1109/irsec.2017.8477323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ibrahima, Kone, and Chengyong Zhao. "Modeling of wind energy conversion system using doubly fed induction generator equipped batteries energy storage system." In 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). IEEE, 2011. http://dx.doi.org/10.1109/drpt.2011.5994187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Minnaert, Ben, Bart Thoen, David Plets, Wout Joseph, and Nobby Stevens. "Optimal energy storage solution for an inductively powered system for dairy cows." In 2017 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2017. http://dx.doi.org/10.1109/wpt.2017.7953805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kruglov, Sergey A., Nikolai M. Vereschagin, Sergey M. Karabanov, Andrei A. Serezhin, Dmitriy V. Suvorov, Sergei G. Shatilov, and Kirill D. Agaltsov. "Issues of Application of High-Voltage Pulse Generators with Inductive Energy Storage and Gas-Discharge Current Interrupters." In 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2021. http://dx.doi.org/10.1109/eeeic/icpseurope51590.2021.9584703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

L. Forero, Fabi´an, Ricardo Alzate, Mar´ıa A. Mantilla, and Rodolpho V. Neves. "Off-Grid Renewable Generation Control without Energy Storage." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1309.

Повний текст джерела
Анотація:
This paper addresses the power-sharing of an off-grid generation system including renewable resources without energy storage. Initially, a modified MPPT P&O algorithm is employed to adapt the operation of a photovoltaic array subjected to variations in power demand. Further adjustments are performed to employ the same procedure on a self-excited induction generation extracting wind power. The aforementioned improvements allowed the regulation of DC-link voltages experiencing underloading conditions, restricting their ranges to operational limits of power inverters. Moreover, a parallel combination of both generation units is achieved in terms of a droop power-sharing scheme. Simulation results performed in the SimScape toolbox of MATLAB are presented, confirming the appropriate operation of the off-grid system under variations in demand and power supply conditions. Ongoing work is aimed at the experimental verification on a laboratory prototype for the numerical predictions given.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Inductive energy storage system"

1

Gonder, J., J. Cosgrove, Y. Shi, A. Saxon, and A. Pesaran. Lower-Energy Energy Storage System (LEESS) Component Evaluation. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thomas, Janice, and Frank Ervin. Modular Energy Storage System for Alternative Energy Vehicles. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1064406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Balducci, Patrick J., Md Jan E. Alam, Thomas E. McDermott, Vanshika Fotedar, Xu Ma, Di Wu, Bilal Ahmad Bhatti, et al. Nantucket Island Energy Storage System Assessment. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1564262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Walker, Andy, and Jal Desai. Battery Energy Storage System Evaluation Method. Office of Scientific and Technical Information (OSTI), January 2024. http://dx.doi.org/10.2172/2279165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meth, M. SYSTEM ANALYSIS OF ELECTRICAL ENERGY STORAGE SYSTEMS. Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/1150507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lu, Ning, Mark R. Weimar, Yuri V. Makarov, Jian Ma, and Vilayanur V. Viswanathan. The Wide-Area Energy Storage and Management System ? Battery Storage Evaluation. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/969906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Saeed, Rami, and Terry Morton. Advanced Reactors Integrated Energy System - Thermal Energy Storage Island Design. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2293481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Di, Chunlian Jin, Patrick J. Balducci, and Michael CW Kintner-Meyer. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1114904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rose, David Martin, Benjamin L. Schenkman, and Daniel R. Borneo. Test report : Raytheon / KTech RK30 Energy Storage System. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1115335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Singh, D., W. Yu, W. Zhao, T. Kim, D. M. France, and R. K. Smith. High Efficiency Thermal Energy Storage System for CSP. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1500002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії