Добірка наукової літератури з теми "Impact of ionizing radiation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Impact of ionizing radiation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Impact of ionizing radiation"

1

Götberg, Y., S. E. de Mink, J. H. Groh, C. Leitherer, and C. Norman. "The impact of stars stripped in binaries on the integrated spectra of stellar populations." Astronomy & Astrophysics 629 (September 2019): A134. http://dx.doi.org/10.1051/0004-6361/201834525.

Повний текст джерела
Анотація:
Stars stripped of their envelopes from interaction with a binary companion emit a significant fraction of their radiation as ionizing photons. They are potentially important stellar sources of ionizing radiation, however, they are still often neglected in spectral synthesis simulations or simulations of stellar feedback. In anticipating the large datasets of galaxy spectra from the upcoming James Webb Space Telescope, we modeled the radiative contribution from stripped stars by using detailed evolutionary and spectral models. We estimated their impact on the integrated spectra and specifically on the emission rates of H I-, He I-, and He II-ionizing photons from stellar populations. We find that stripped stars have the largest impact on the ionizing spectrum of a population in which star formation halted several Myr ago. In such stellar populations, stripped stars dominate the emission of ionizing photons, mimicking a younger stellar population in which massive stars are still present. Our models also suggest that stripped stars have harder ionizing spectra than massive stars. The additional ionizing radiation, with which stripped stars contribute affects observable properties that are related to the emission of ionizing photons from stellar populations. In co-eval stellar populations, the ionizing radiation from stripped stars increases the ionization parameter and the production efficiency of hydrogen ionizing photons. They also cause high values for these parameters for about ten times longer than what is predicted for massive stars. The effect on properties related to non-ionizing wavelengths is less pronounced, such as on the ultraviolet continuum slope or stellar contribution to emission lines. However, the hard ionizing radiation from stripped stars likely introduces a characteristic ionization structure of the nebula, which leads to the emission of highly ionized elements such as O2+ and C3+. We, therefore, expect that the presence of stripped stars affects the location in the BPT diagram and the diagnostic ratio of O III to O II nebular emission lines. Our models are publicly available through CDS database and on the STARBURST99 website.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuznetsov, P. A., A. S. Olenev, L. S. Dzhokhadze, and O. M. Seliverstova. "Impact of ionizing radiation on the fetus." Rossiiskii vestnik akushera-ginekologa 18, no. 5 (2018): 32. http://dx.doi.org/10.17116/rosakush20181805132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bennardo, Luigi, Maria Passante, Norma Cameli, Antonio Cristaudo, Cataldo Patruno, Steven Paul Nisticò, and Martina Silvestri. "Skin Manifestations after Ionizing Radiation Exposure: A Systematic Review." Bioengineering 8, no. 11 (October 22, 2021): 153. http://dx.doi.org/10.3390/bioengineering8110153.

Повний текст джерела
Анотація:
Morphological and functional skin alterations secondary to the action of ionizing radiation are well documented. In addition to its application in the medical field, ionizing radiation represents a public health problem for diagnostic and therapeutic purposes due to the potential risk of exposure to unexpected events, such as nuclear accidents or malicious acts. With regard to the use of ionizing radiations in the medical field, today, they constitute a fundamental therapeutic method for various neoplastic pathologies. Therefore, the onset of adverse skin events induced by radiation represents a widespread and not negligible problem, affecting 95% of patients undergoing radiotherapy. A systematic literature search was performed from July 2021 up to August 2021 using PubMed, Embase, and Cochrane databases. Articles were screened by title, abstract and full text as needed. A manual search among the references of the included papers was also performed. This systematic review describes the various skin reactions that can arise following exposure to ionizing radiation and which significantly impact the quality of life, especially in cancer patients.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kanter, D. J., M. B. O'Brien, X. H. Shi, T. Chu, T. Mishima, S. Beriwal, M. W. Epperly, P. Wipf, J. S. Greenberger, and Y. Sadovsky. "The impact of ionizing radiation on placental trophoblasts." Placenta 35, no. 2 (February 2014): 85–91. http://dx.doi.org/10.1016/j.placenta.2013.12.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vepsäläinen, Antti P., Amir H. Karamlou, John L. Orrell, Akshunna S. Dogra, Ben Loer, Francisca Vasconcelos, David K. Kim, et al. "Impact of ionizing radiation on superconducting qubit coherence." Nature 584, no. 7822 (August 26, 2020): 551–56. http://dx.doi.org/10.1038/s41586-020-2619-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Evans, Katherine M., Jenna Bodmer, Bryce Edwards, James Levins, Amanda O’Meara, Merima Ruhotina, Richard Smith, et al. "An Exploratory Analysis of Public Awareness and Perception of Ionizing Radiation and Guide to Public Health Practice in Vermont." Journal of Environmental and Public Health 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/476495.

Повний текст джерела
Анотація:
Exposure to ionizing radiation has potential for acute and chronic health effects. Within the general public of the United States, there may be a discrepancy between perceived and actual health risks. In conjunction with the Vermont Department of Health, a survey designed to assess public perception and knowledge of ionizing radiation was administered at 6 Vermont locationsn=169. Descriptive and inferential statistical analyses were conducted. Eighty percent of respondents underestimated the contribution of medical imaging tests to total ionizing radiation exposure. Although only thirty-nine percent of participants were confident in their healthcare professional’s knowledge of ionizing radiation, most would prefer to receive information from their healthcare professional. Only one-third of individuals who received a medical imaging test in the past year were educated by their healthcare professional about the risks of these tests. Those who tested their home for radon were twice as likely to choose radon as the greatest ionizing radiation risk to self. Although respondents had an above-average education level, there were many misperceptions of actual risks of exposure to ionizing radiation, particularly of medical imaging tests. Educating healthcare professionals would therefore have a profound and positive impact on public understanding of ionizing radiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

rezaiekahkhaie, sakine, and Khadije Rezaie Keikhaie. "The Role of Ionizing Radiation in Cellular Signaling Pathways, Mutagenesis, and Carcinogenesis." International Journal of Basic Science in Medicine 3, no. 4 (January 13, 2019): 147–53. http://dx.doi.org/10.15171/ijbsm.2018.26.

Повний текст джерела
Анотація:
One of the negative effects of ionizing radiation is the alteration of cellular signaling pathways which lead to carcinogenesis and tumorigenesis. In this review, we discussed the impacts of ionizing radiation on cells and cellular signaling pathways. In this regard, exposure to radiation can directly or indirectly alter cellular signaling pathways. Remarkably, irradiated cells release special mediators into cellular matrix, aberrating cell-cell and cell-environment interactions. Most notably, these mediators include nitric oxide (NO), reactive oxygen species (ROS), and cell growth factors which contribute to cellular interactions between irradiated cells and their neighbor cells, a phenomenon known as radiation-induced bystander effect. DNA molecule is the most important cellular compartment damaged by ionizing radiation. On the other hand, the ability of irradiated cells to repair the damaged DNA is very low. Therefore, DNA alternations are passed to the next generations, and ultimately lead to carcinogenesis. The study of ionizing radiations and their impacts on biological systems is of remarkable importance to divulge their impacts on cellular signaling pathways.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ning, Bingxu, Zhiyuan Hu, Zhengxuan Zhang, Zhangli Liu, Ming Chen, Dawei Bi, and Shichang Zou. "The impact of total ionizing radiation on body effect." Microelectronics Journal 42, no. 12 (December 2011): 1396–99. http://dx.doi.org/10.1016/j.mejo.2011.09.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tamuliene, Jelena, Liudmila Romanova, Vasyl Vukstich, Alexander Papp, Laura Baliulyte, and Alexander Snegursky. "The impact of low-energy ionizing radiation on glutamine." International Journal of Mass Spectrometry 444 (October 2019): 116185. http://dx.doi.org/10.1016/j.ijms.2019.116185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pohle, Sebastian, Raoul Ernst, Colin MacKenzie, Martin Spicher, Thomas Romig, Andrew Hemphill, and Stephan Gripp. "Echinococcus multilocularis: The impact of ionizing radiation on metacestodes." Experimental Parasitology 127, no. 1 (January 2011): 127–34. http://dx.doi.org/10.1016/j.exppara.2010.07.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Impact of ionizing radiation"

1

Usman, Muhammad. "Impact of Ionizing Radiation on 4H-SiC Devices." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-60763.

Повний текст джерела
Анотація:
Electronic components, based on current semiconductor technologies and operating in radiation rich environments, suffer degradation of their performance as a result of radiation exposure. Silicon carbide (SiC) provides an alternate solution as a radiation hard material, because of its wide bandgap and higher atomic displacement energies, for devices intended for radiation environment applications. However, the radiation tolerance and reliability of SiC-based devices needs to be understood by testing devices  under controlled radiation environments. These kinds of studies have been previously performed on diodes and MESFETs, but multilayer devices such as bipolar junction transistors (BJT) have not yet been studied. In this thesis, SiC material, BJTs fabricated from SiC, and various dielectrics for SiC passivation are studied by exposure to high energy ion beams with selected energies and fluences. The studies reveal that the implantation induced crystal damage in SiC material can be partly recovered at relatively low temperatures, for damag elevels much lower than needed for amorphization. The implantation experiments performed on BJTs in the bulk of devices show that the degradation in deviceperformance produced by low dose ion implantations can be recovered at 420 oC, however, higher doses produce more resistant damage. Ion induced damage at the interface of passivation layer and SiC in BJT has also been examined in this thesis. It is found that damaging of the interface by ionizing radiation reduces the current gain as well. However, for this type of damage, annealing at low temperatures further reduces the gain. Silicon dioxide (SiO2) is today the dielectric material most often used for gate dielectric or passivation layers, also for SiC. However, in this thesis several alternate passivation materials are investigated, such as, AlN, Al2O3 and Ta2O5. These materials are deposited by atomic layer deposition (ALD) both as single layers and in stacks, combining several different layers. Al2O3 is further investigated with respect to thermalstability and radiation hardness. It is observed that high temperature treatment of Al2O3 can substantially improve the performance of the dielectric film. A radiation hardness study furthermore reveals that Al2O3 is more resistant to ionizing radiation than currently used SiO2 and it is a suitable candidate for devices in radiation rich applications.
QC 20120117
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ткаченко, Р. Д. "Еколого-біологічні аспекти впливу іонізуючого випромінювання на людину". Thesis, НТУ "ХПІ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/29746.

Повний текст джерела
Анотація:
У результаті дії іонізуючого випромінювання на організм людини в тканинах можуть виникати складні фізичні, хімічні, біологічні процеси, що порушують нормальне протікання біохімічних реакцій та обмін речовин. Для захисту людей необхідно не тільки зменшувати вплив іонізуючого випромінювання, але й сприяти виведенню з організму радіонуклідів.
As a result of ionizing radiation on the human body tissues may have complex physical, chemical and biological processes that break normal biochemical reactions and metabolism. To protect people need not only to reduce the impact of radiation, but also to promote the excretion of radionuclides.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brown, Ashley Richards. "The impact of ionizing radiation on microbial cells pertinent to the storage, disposal and remediation of radioactive waste." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/the-impact-of-ionizing-radiation-on-microbial-cells-pertinent-to-the-storage-disposal-and-remediation-of-radioactive-waste(1935e25b-3bcd-48b8-b2b9-50c33518eb3f).html.

Повний текст джерела
Анотація:
Microorganisms control many processes pertinent to the stability of radwaste inventories in nuclear storage and disposal facilities. Furthermore, numerous subsurface bacteria, such as Shewanella spp. have the ability to couple the oxidation of organic matter to the reduction of a range of metals, anions and radionuclides, thus providing the potential for the use of such versatile species in the bioremediation of radionuclide contaminated land. However, the organisms promoting these processes will likely be subject to significant radiation doses. Hence, the impact of acute doses of ionizing radiation on the physiological status of a key Fe(III)-reducing organism, Shewanella oneidensis, was assessed. FT-IR spectroscopy and MALDI-TOF-MS suggested that the metabolic response to radiation is underpinned by alterations to proteins and lipids. Multivariate statistical analysis indicated that the phenotypic response was somewhat predictable although dependent upon radiation dose and stage of recovery. In addition to the cellular environment, the impact of radiation on the extracellular environment was also assessed. Gamma radiation activated ferrihydrite and the usually recalcitrant hematite for reduction by S. oneidensis. TEM, SAED and Mössbauer spectroscopy revealed that this was a result of radiation induced changes to crystallinity. Despite these observations, environments exposed to radiation fluxes will be much more complex, with a range of electron acceptors, electron donors and a diverse microbial community. In addition, environmental dose rates will be much lower than those used in previous experiments. Sediment microcosms irradiated over a two month period at chronic dose rates exhibited enhanced Fe(III)-reduction despite receiving potentially lethal doses. The microbial ecology was probed throughout irradiations using pyrosequencing to reveal significant shifts in the microbial communities, dependent on dose and availability of organic electron donors. The radiation tolerance of an algal contaminant of a spent nuclear fuel pond was also assessed. FT-IR spectroscopy revealed a resistant phenotype of Haematococcus pluvialis, whose metabolism may be protected by the radiation induced production of an astaxanthin carotenoid. The experiments of this thesis provide evidence for a range of impacts of ionizing radiation on microorganisms, including the potential for radiation to provide the basis for novel ecosystems. These results have important implications to the long-term storage of nuclear waste and the geomicrobiology of nuclear environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ngoumou, Y. Ewondo Judith. "The combined impact of ionizing radiation and momentum winds from massive stars on molecular clouds." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-175657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Luft, Sabine [Verfasser], Marco [Akademischer Betreuer] Durante, and Paul G. [Akademischer Betreuer] Layer. "Impact of ionizing radiation on human embryonic stem cells / Sabine Luft. Betreuer: Marco Durante ; Paul G. Layer." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://d-nb.info/1111910359/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nitsch, Scarlett [Verfasser], Gisela [Akademischer Betreuer] Taucher-Scholz, and Gerhard [Akademischer Betreuer] Thiel. "Impact of ionizing radiation on cardiac differentiation capability of human embryonic stem cells / Scarlett Nitsch ; Gisela Taucher-Scholz, Gerhard Thiel." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1194164161/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klink, Axel [Verfasser], Bodo [Akademischer Betreuer] Laube, and Ralf [Akademischer Betreuer] Galuske. "Impact of Low-Dose Ionizing Radiation on Cognitive Abilities in the Mouse : Assessment of Radiation Sensitivity during Pre- and Postnatal Brain Development / Axel Klink ; Bodo Laube, Ralf Galuske." Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1230554572/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ngoumou, Y. Ewondo Judith Verfasser], and Andreas [Akademischer Betreuer] [Burkert. "The combined impact of ionizing radiation and momentum winds from massive stars on molecular clouds / Judith Ngoumou Y Ewondo. Betreuer: Andreas Burkert." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1060632764/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Villegas, Navarro Fernanda. "Micro/nanometric Scale Study of Energy Deposition and its Impact on the Biological Response for Ionizing Radiation : Brachytherapy radionuclides, proton and carbon ion beams." Doctoral thesis, Uppsala universitet, Medicinsk strålningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-279385.

Повний текст джерела
Анотація:
Research in radiotherapy for cancer treatment focuses on finding methods that can improve the compromise between tumour cell inactivation versus damage to the surrounding healthy tissue. As new radiation modalities such as proton therapy become accessible for everyday clinical practice, a better understanding of the variation in biological response of the tumour and healthy tissues would improve treatment planning to achieve optimal outcome. The development of radiobiological models capable of accurate predictions of biological effectiveness is needed. Existing radiation quality descriptors such as absorbed dose and LET are insufficient to explain variation in biological effectiveness for different treatment modalities. The stochastic nature of ionizing radiation creates discrete patterns of energy deposition (ED) sites which can now be analysed through sophisticated computer simulations (e.g. Monte Carlo track structure codes). This opens the possibility to develop a nanometre characterization of radiation quality based on the spatial cluster patterns of ED. The aim of this thesis is to investigate the track structure (ED spatial pattern) properties of several radiation qualities at a micro- and nanometric scale while exploring their influence in biological response through correlations with published experimental data. This work uses track structure data simulated for a set of 15 different radiation qualities: 4 commonly used brachytherapy sources, 6 different proton energies, 4 different carbon ion energies, and 60Co photons used as reference radiation for quantification of biological effectiveness. At a micrometre level, the behaviour of the microdosimetric spread in energy deposition for target sizes of the order of cell nuclei was analysed. The degree of the influence it had in the biological response was found to be negligible for photon sources but for protons and carbon ions the impact increased with decreasing particle energy suggesting it may be a confounding factor in biological response. Finally, this thesis outlines a framework for modelling the relative biological effectiveness based on the frequency distribution of cluster order as a surrogate for the nanometre classification for the physical properties of radiation quality. The results indicate that this frequency is a valuable descriptor of ionizing radiation. The positive correlation across the different types of ionizing radiation encourages further development of the framework by incorporating the behavior of the microdosimetric spread and expanding tests to other experimental datasets.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shreder, Kateryna [Verfasser], Marco [Akademischer Betreuer] Durante, and Gerhard [Akademischer Betreuer] Thiel. "Impact of ionizing radiation on adipokine-induced inflammation in musculoskeletal diseases (MSD): Investigations in primary cells and MSD patients / Kateryna Shreder ; Marco Durante, Gerhard Thiel." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2017. http://d-nb.info/1139844075/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Impact of ionizing radiation"

1

Radiation, United Nations Scientific Committee on the Effects of Atomic. Sources, effects and risks of ionizing radiation: 1988 report to the General Assembly, with annexes. New York: United Nations, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Merwin, S. E. Value-impact study for implementation of a portable health physics instrumentation performance standard. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Merwin, S. E. Value-impact study for implementation of a portable health physics instrumentation performance standard. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Merwin, S. E. Value-impact study for implementation of a portable health physics instrumentation performance standard. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Humans, IARC Working Group on the Evaluation of Carcinogenic Risks to. Non-ionizing radiation. Lyon, France: IARC Press, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Martin, Paul R. Ionizing radiation dosimetry. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

R, Martin Paul. Ionizing radiation dosimetry. Washington, D.C: National Institute of Standards and Technology, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kudri︠a︡shov, I︠U︡riĭ Borisovich. Radiation biophysics (ionizing radiations). New York: Nova Science Pub., 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

K, Farzaneh Nushin, ed. Biochemistry of ionizing radiation. New York: Raven Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wood, Andrew W., and Ken Karipidis, eds. Non-ionizing Radiation Protection. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119284673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Impact of ionizing radiation"

1

Gabriel, P., and M. Penhaker. "Measurement and Analysis of the Impact of the Environment on the Spread of Ionizing Radiation in Medical Facilities." In IFMBE Proceedings, 1190–93. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00846-2_295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brent, Robert L. "Ionizing Radiation." In Protocols for High-Risk Pregnancies, 21–32. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444323870.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Seward, James P. "IONIZING RADIATION." In Physical and Biological Hazards of the Workplace, 177–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119276531.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fan, Xuetong. "Ionizing Radiation." In Decontamination of Fresh and Minimally Processed Produce, 379–405. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229187.ch22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Garg, Seema, and David J. Gawkrodger. "Ionizing Radiation." In Kanerva’s Occupational Dermatology, 1179–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68617-2_77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rosenthal, Ionel. "Ionizing Radiation." In Advanced Series in Agricultural Sciences, 9–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77106-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thompson, David A. "Ionizing Radiation." In Inorganic Reactions and Methods, 130–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Griffey, Richard T. "Ionizing Radiation." In Oncologic Emergency Medicine, 107–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26387-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Garg, Seema, and David J. Gawkrodger. "Ionizing Radiation." In Kanerva’s Occupational Dermatology, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-40221-5_77-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maartens, Pieter Johann, Margot Flint, and Stefan S. du Plessis. "Ionizing Radiation." In Male Infertility, 211–23. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1040-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Impact of ionizing radiation"

1

Carré, Antoine, Thomas Westerhoff, and Tony B. Hull. "Impact of ionizing radiations on ZERODUR." In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, edited by Howard A. MacEwen, Makenzie Lystrup, Giovanni G. Fazio, Natalie Batalha, Edward C. Tong, and Nicholas Siegler. SPIE, 2018. http://dx.doi.org/10.1117/12.2313426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Borodin, Кirill, Sergey Konev, Elena Kovaleva, and Damir Bajtimirov. "Assessment of ionizing radiation impact on food stuffs by EPR spectroscopy." In PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2018): Proceedings of the V International Young Researchers’ Conference. Author(s), 2018. http://dx.doi.org/10.1063/1.5055086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ruibin, Li, He Chaohui, Chen Wei, Li Junlin, Wang Guizhen, Qi Chao, Yang Shanchao, and Wang Chenhui. "Impact of TID on the Transient Ionizing Irradiation Response of CMOS Circuits." In 2018 International Conference on Radiation Effects of Electronic Devices (ICREED). IEEE, 2018. http://dx.doi.org/10.1109/icreed.2018.8905056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Prahardi, R., and Arundito Widikusumo. "Zero Dose." In Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.008.

Повний текст джерела
Анотація:
Ionizing radiation in the medical world has long been used, both for diagnostic and therapeutic purposes. But the use of ionizing radiation, besides helping a lot in diagnosis and therapy, ionizing radiation is also hazardous for us. The effects of ionizing radiation on humans are divided into two types, namely stochastic effects, and non-stochastic (deterministic) effects. Of the two kinds of effects caused by ionizing radiation, the stochastic effect needs special attention. Because the dose-limiting parameter does not exist, how much radiation dose can cause the stochastic effect. We only have the principle that no matter how small the radiation that hits us, it will still impact us. The mechanism for this effect is either a direct effect or an indirect effect, or a newly discovered effect, namely the bystander effect, all of which lead to DNA damage. This DNA damage will cause various kinds of health problems for us. Keywords: Stochastic Effect, DNA Damage. Gene Mutation, Bystander Effect
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Simmons-Potter, K., A. Vaddigiri, W. J. Thomes, Jr., and D. C. Meister. "Impact of ionizing radiation on the optical properties of YAG laser materials." In Photonic Devices + Applications, edited by William J. Thomes, Jr. and Fred M. Dickey. SPIE, 2007. http://dx.doi.org/10.1117/12.736559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Witulski, A. F., M. B. Smith, N. Mahadevan, A. L. Sternberg, C. Barnes, D. Sheldon, R. D. Schrimpf, G. Karsai, and M. W. McCurdy. "Bayesian Modeling of COTS Power MOSFET Ionizing Dose Impact on Circuit Response." In 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2017. http://dx.doi.org/10.1109/radecs.2017.8696104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bakerenkov, Alexander S., Aleksandr E. Koziukov, Alexander S. Rodin, Vladislav A. Felitsyn, Viacheslav S. Pershenkov, Nikita S. Glukhov, and Vladimir V. Belyakov. "Characterization of Widely Used Bipolar Transistors in Wide Temperature Range Before and After Ionizing Radiation Impact." In 2018 IEEE Nuclear & Space Radiation Effects Conference (NSREC 2018). IEEE, 2018. http://dx.doi.org/10.1109/nsrec.2018.8584306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Needham, Michael. "Detecting Sources of Ionizing Radiation in the Waste Stream." In 10th Annual North American Waste-to-Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/nawtec10-1016.

Повний текст джерела
Анотація:
Why is the detection of radioactive sources important to the solid waste industry?: Radioactive material is used extensively in the United States in research, medicine, education, and industry for the benefit of society (e.g. smoke detectors, industrial process gauges, medical diagnosis/treatment). Generally speaking, the Nuclear Regulatory Commission and state governments regulate the use and disposal of radioactive materials. Licensed radioactive waste disposal facilities receive the bulk of the waste generated in the United States with exceptions for low-level waste (e.g. medical patient waste) that may be disposed of as municipal waste. According to the Conference of Radiation Control Program Directors, Inc (CRCPD)., there has been an increasing number of incidence involving the detection of prohibited radioactive wastes at solid waste management facilities. While the CRCPD acknowledges that the increased incidence may be partially attributed to the growing number of solid waste facilities that have detection systems, undetected sources of ionizing radiation can harm the environment, have a negative impact on employee health and safety, and result in significant remedial actions. Implementing an effective detection/response plan can aid in the proper management of radioactive waste and serve to minimize the potential for negative outcomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Doridant, A., S. Jarrix, J. Raoult, A. Blain, N. Chatry, P. Calvel, P. Hoffmann, and L. Dusseau. "Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor." In 2011 12th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2011. http://dx.doi.org/10.1109/radecs.2011.6131307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Varotsou, Athina, Pierre Pourrouquet, Romain Fonta, Daniel Boscher, and Robert Ecoffet. "Impact of the Trapped Proton Anisotropy on the Ionizing Dose at Low Earth Orbits." In 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2017. http://dx.doi.org/10.1109/radecs.2017.8696148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Impact of ionizing radiation"

1

Little, John B. Bystander Effects of Ionizing Radiation. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1339440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

St Ledger, John. Basics of Ionizing Radiation and Dose. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1869576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ayala, F. Genetic variation in resistance to ionizing radiation. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/5696596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

B.Baumgaugh, J.Bishop, D.Karmgard, J.Marchant, M.McKenna, R.Ruchti, M.Vigneault, L.Hernandez, and C.Hurlbut. Waveshifters and Scintillators for Ionizing Radiation Detection. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/924745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ayala, F. J. Genetic variation in resistance to ionizing radiation. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6331129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ayala, F. Genetic variation in resistance to ionizing radiation. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5597533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ayala, F. Genetic variation in resistance to ionizing radiation. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7368758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kraner, H. W., R. Beuttenmuller, W. Chen, J. A. Kierstead, Z. Li, Y. Zhang, L. Dou, E. Fretwurst, and G. Lindstroem. Ionizing radiation effects on silicon test structures. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10119896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dillon, Michael B., and Steven G. Homann. Building Protection Against External Ionizing Fallout Radiation. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1358310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nelson, Gregory A. Low Dose Ionizing Radiation Modulates Immune Function. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1234698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії