Добірка наукової літератури з теми "Immunoglobulin A; Immunoglobulin G; Antigens"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Immunoglobulin A; Immunoglobulin G; Antigens".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Immunoglobulin A; Immunoglobulin G; Antigens"

1

Красавцев, Е. Л., and М. В. Подоляко. "Detection Rate of Immunoglobulins G to Toxocar Antigens in the Republic of Belarus." Педиатрия. Восточная Европа, no. 3 (November 3, 2022): 319–24. http://dx.doi.org/10.34883/pi.2022.10.3.003.

Повний текст джерела
Анотація:
Цель. Изучить частоту выявления иммуноглобулинов G к антигенам токсокар у детей в различных регионах Республики Беларусь, различного возраста, пола.Материалы и методы. Анализ на иммуноглобулины G к антигенам токсокар был взят у 11 541 ребенка. Сравнение частоты выявления иммуноглобулинов G к антигенам токсокар у детей, проживающих в различных регионах Республики Беларусь, различного пола, возраста было произведено методами непараметрической статистики (таблицы 2×2, критерий χ2).Результаты. В результате исследования 11 541 ребенка иммуноглобулины G к антигенам токсокар были выявлены у 1153 человек (10,0%). Наиболее часто иммуноглобулины G к антигенам токсокар регистрировались в возрастной группе от 12 до 15 лет (15,1%), реже – в возрасте до 3 лет (6,9%, р<0,001, χ2=6,7). Самый большой процент положительных результатов зарегистрирован у детей в Могилевской области (15,2%), а самый низкий – у детей в г. Минске (7,9%) и Гомельской области (10,1%). Наиболее часто иммуноглобулины G к антигенам токсокар выявлялись у детей городов Орши (18,75%) и Бобруйска (17,6%), реже – у жителей Борисова (5,3%, р<0,001) и Новополоцка (6,7%, р<0,001).Выводы. В Республике Беларусь частота обнаружения у детей иммуноглобулинов G к антигенам токсокар имеет возрастные и региональные особенности. Наиболее часто иммуноглобулины G к антигенам токсокар отмечались в возрастной группе от 12 до 15 лет (15,1%), реже – в возрасте до 3 лет (6,9%, р<0,001, χ2=6,7). Purpose. To study the detection rate of immunoglobulins G to toxocar antigens in children of different age and gender from different regions of the Republic of Belarus.Materials and methods. Immunoglobulin G tests for toxocar antigens were performed in 11,541 children. The detection rate of immunoglobulin G to toxocar antigens in children of different gender and age living in different regions of the Republic of Belarus was compared using nonparametric statistics (Tables 2×2, χ2 criterion).Results. A survey of 11,541 children revealed G immunoglobulins to toxocar antigens in 1,153 individuals (10.0%). Immunoglobulins G to toxocar antigens were most frequently registered in the age group of 12 to 15 years (15.1%), and less frequently in the age group under 3 years (6.9%, p<0.001, χ2=6.7). The highest percentage of positive results was registered among children living in the Mogilev region (15.2%), and the lowest one among children living in the city of Minsk (7.9%) and in the Gomel region (10.1%). Immunoglobulins G to toxocar antigens were most frequently revealed in children of Orsha (18.75%) and Bobruisk (17.6%), and less often in residents of Borisov (5.3%, p<0.001) and Novopolotsk (6.7%, p<0.001).Conclusions. In the Republic of Belarus, the detection rate of immunoglobulin G to toxocar antigens in children varies by age and region. Immunoglobulin G to toxocar antigens was revealed most frequently in the age group of 12–15 years (15.1%), and less frequently in the age group under 3 years (6.9%, p<0.001, χ2=6.7).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Okamoto, Yasuyuki, Noboru Hamada, Toshimichi Fujisawa, Jaeduk Noh, Junichi Yamakawa, Mariko Ohno, Kunihiko Ito, and Hirotoshi Morii. "Why no simple relationship between thyroid peroxidase activity-inhibiting immunoglobulins and thyroid function in autoimmune thyroid disease?" Acta Endocrinologica 124, no. 4 (April 1991): 442–48. http://dx.doi.org/10.1530/acta.0.1240442.

Повний текст джерела
Анотація:
Abstract. We have reported that some anti-thyroid peroxidase antibodies inhibit the activity of thyroid peroxidase in vitro. These thyroid peroxidase activity-inhibiting immunoglobulins seem to inhibit thyroid function in some patients, but the relationship between thyroid peroxidase activity-inhibiting immunoglobulins and thyroid function is not simple. We designed this study to explore this lack of a simple relationship. We stained immunoglobulin G deposits by immunofluorescence staining or the peroxidase-antiperoxidase method, and stained endogenous thyroid peroxidase activity by enzyme histochemistry in thyroid sections. When cryostat thyroid sections were incubated with thyroid peroxidase activity-inhibiting immunoglobulins, immunoglobulin G deposits were seen as lines of stain on the apical border and as intracellular staining, and endogenous thyroid peroxidase activity was inhibited. In paraffin-embedded thyroid sections from 5 Hashimoto's patients and 6 Graves' patients, immunoglobulin G deposits were not found on the apical border of the follicular epithelium. In frozen thyroid sections from 22 Graves' patients, no clear deposits of immunoglobulin G on this apical border were seen. In organ-cultured thyroid slices incubated with thyroid peroxidase activity-inhibiting immunoglobulins, endogenous thyroid peroxidase activity was not inhibited. In conclusion, thyroid peroxidase activity-inhibiting immunoglobulins may reach its antigen only with difficulty. This is one of the reasons why no simple relationship is observed between thyroid peroxidase activity-inhibiting immunoglobulins and thyroid function.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Toar, Wisje Lusia, Laurentius Rumokoy, Ivonne Maria Untu, and Geertruida Assa. "Insect Crude Thoraxial Antigen-G Extracted from Apis mellifera to Enhance Serum Immunoglobulin of Goats: An Entomology Contribution in Animal Science." ANIMAL PRODUCTION 20, no. 2 (July 30, 2019): 133. http://dx.doi.org/10.20884/1.jap.2018.20.2.608.

Повний текст джерела
Анотація:
This research was conducted to evaluate the influence of insect crude thoraxial antigen-G (CTA) extracted from Apis mellifera L. (Hymenoptera: Apidae) to enhance goat’s serum immunoglobulin level. The first part of this study was the determination of insect CTA proportion level. The insects were collected from four different places: Tomohon, Minahasa, North-Minahasa and Manado areas. The second part of the study was the application of A. mellifera CTA substance on serum immunoglobulin level classification. In this part, twelve young goats handled with traditional maintenance. The animals experiment were divided in two groups: control group and the other treated with 100 µg CTA extract. The proportion of serum immunoglobulins level of goats was detected at 14th days after immunization with insects CTA extract, and compared with the animals immunoglobulin levels at the starting day of treatment. The data of CTA extract proportion level of the insects collected were subjected to statistically analysis using the general linear model (GLM) procedure of SPSS 22. Concerning the classification level of the animal treated with CTA was statistically analyzed according to Mann-Whitney test. The results showed that the proportion level of thoraxial antigens-G of A. mellifera from all areas observed were not significant different (P>0.05). This crude thoraxial antigens-G of this insect were able to increase serum antibody level of the experiment animal after 14 days of immunization. The immunoglobulin level qualification of animals in treated group were significant higher (P<0.05) than in control group. We concluded that the CTA extract of the Apis mellifera could be empowered to improve the young goat immunity against the pathogenic microbes in their environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duthie, Malcolm S., Isabela M. B. Goulart, Steven G. Reed, Janaina Lobato, and Luiz R. Goulart. "Immunoglobulin G and M Detection for Leprosy Diagnosis (129.18)." Journal of Immunology 182, no. 1_Supplement (April 1, 2009): 129.18. http://dx.doi.org/10.4049/jimmunol.182.supp.129.18.

Повний текст джерела
Анотація:
Abstract Leprosy is a curable disease that requires better diagnostic and prognostic tools to accompany preventive and therapeutic strategies. Circulating IgM antibodies against the M. leprae phenolic glycolipid-I (PGL-I) antigen have previously been used to assess humoral immunity. The presence of elevated titers of anti-PGL-I IgM reflects total bacterial load in the body; these antibodies, however, are generally low or absent in paucibacillary patients. Our objective was to compare 3 new recombinant antigens, ML0405, ML2331, and LID1 (comprising critical regions from ML0405 and ML2331), which recognize serum IgG, in comparison and in combination with PGL-I IgM. Serum samples were collected from 105 patients across the leprosy spectrum at the initial diagnosis and again after treatment. Patient positivity for LID1, ML0405, ML2331 and PGL-I tests was 67%, 62%, 65%, and 76%, respectively. A combination of the LID1 and PGL-1 antigens gave a positivity of 80%. After treatment, the ML0405 and PGL-I assays decreased their ELISA index values for all clinical forms, except for the LL form. Importantly, both antigens have been positively correlated with the bacillary load, clinical forms and the operational classification at diagnosis. Our results suggest that the combination of LID1 and PGL-I antigens, recognizing the IgG and IgM response, respectively, could be employed as an auxiliary tool for leprosy diagnosis. This work was funded in part by American Leprosy Mission.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yamagata, G. Richard, Laurel J. Gershwin, and Ming M. Wong. "Immunoglobulin E recognition of Dirofilaria immitis antigens is more specific than immunoglobulin G." Veterinary Parasitology 44, no. 3-4 (October 1992): 223–45. http://dx.doi.org/10.1016/0304-4017(92)90119-t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Weber, Alfred, Andrea Engelmaier, and Sonja Haindl. "Long-term stability of immunoglobulin G antibodies against bacterial antigens in human immunoglobulin G-deficient serum." Journal of Allergy and Clinical Immunology 145, no. 2 (February 2020): AB177. http://dx.doi.org/10.1016/j.jaci.2019.12.374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gasperi, Christiane, Till F. M. Andlauer, Ana Keating, Benjamin Knier, Ana Klein, Verena Pernpeintner, Peter Lichtner, et al. "Genetic determinants of the humoral immune response in MS." Neurology - Neuroimmunology Neuroinflammation 7, no. 5 (July 16, 2020): e827. http://dx.doi.org/10.1212/nxi.0000000000000827.

Повний текст джерела
Анотація:
ObjectiveIn this observational study, we investigated the impact of genetic factors at the immunoglobulin heavy chain constant locus on chromosome 14 and the major histocompatibility complex region on intrathecal immunoglobulin G, A, and M levels as well as on B cells and plasmablasts in the CSF and blood of patients with multiple sclerosis (MS).MethodsUsing regression analyses, we tested genetic variants on chromosome 14 and imputed human leukocyte antigen (HLA) alleles for associations with intrathecal immunoglobulins in 1,279 patients with MS or clinically isolated syndrome and with blood and CSF B cells and plasmablasts in 301 and 348 patients, respectively.ResultsThe minor alleles of variants on chromosome 14 were associated with higher intrathecal immunoglobulin G levels (β = 0.58 [0.47 to 0.68], lowest adjusted p = 2.32 × 10−23), and lower intrathecal immunoglobulin M (β = −0.56 [−0.67 to −0.46], p = 2.06 × 10−24) and A (β = −0.42 [−0.54 to −0.31], p = 7.48 × 10−11) levels. Alleles from the HLA-B*07:02-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype were associated with higher (lowest p = 2.14 × 10−7) and HLA-B*44:02 with lower (β = −0.35 [−0.54 to −0.17], p = 1.38 × 10−2) immunoglobulin G levels. Of interest, different HLA alleles were associated with lower intrathecal immunoglobulin M (HLA-C*02:02, β = −0.45 [−0.61 to −0.28], p = 1.01 × 10−5) and higher immunoglobulin A levels (HLA-DQA1*01:03-DQB1*06:03-DRB1*13:01 haplotype, β = 0.40 [0.21 to 0.60], p = 4.46 × 10−3). The impact of HLA alleles on intrathecal immunoglobulin G and M levels could mostly be explained by associations with CSF B cells and plasmablasts.ConclusionAlthough some HLA alleles seem to primarily drive the extent of humoral immune responses in the CNS by increasing CSF B cells and plasmablasts, genetic variants at the immunoglobulin heavy chain constant locus might regulate intrathecal immunoglobulins levels via different mechanisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hoelzle, L. E., K. Hoelzle, M. Ritzmann, K. Heinritzi, and M. M. Wittenbrink. "Mycoplasma suis Antigens Recognized during Humoral Immune Response in Experimentally Infected Pigs." Clinical and Vaccine Immunology 13, no. 1 (January 2006): 116–22. http://dx.doi.org/10.1128/cvi.13.1.116-122.2006.

Повний текст джерела
Анотація:
ABSTRACT Today, serodiagnostic tests for Mycoplasma suis infections in pigs have low accuracies. The development of novel serodiagnostic strategies requires a detailed analysis of the humoral immune response elicited by M. suis and, in particular, the identification of antigenic proteins of the agent. For this study, indirect enzyme-linked immunosorbent assay (ELISA) and immunoblot analyses were performed using pre- and sequential postinoculation sera from M. suis-infected and mock-infected control pigs. M. suis purified from porcine blood served as the antigen. Eight M. suis-specific antigens (p33, p40, p45, p57, p61, p70, p73, and p83) were identified as targets of the immunoglobulin G (IgG) antibody response during experimental infection, with p40, p45, and p70 being the preferentially recognized M. suis antigens. Besides the M. suis-specific antigens, porcine immunoglobulins were identified in blood-derived M. suis preparations. By immunoglobulin depletion, the specificity of the M. suis antigen for use in indirect ELISA was significantly improved. M. suis-specific Western blot and ELISA reactions were observed in all infected pigs by 14 days postinfection at the latest and until week 14, the end of the experiments. During acute clinical attacks of eperythrozoonosis, a derailment of the antibody response, determined by decreases in both the M. suis net ELISA values and the numbers of M. suis-specific immunoblot bands, was accompanied by peaking levels of autoreactive IgG antibodies. In conclusion, the M. suis-specific antigens found to stimulate specific IgG antibodies are potentially useful for the development of novel serodiagnostic tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Menikou, Stephanie, Andrew J. McArdle, Ming-Shi Li, Myrsini Kaforou, Paul R. Langford, and Michael Levin. "A proteomics-based method for identifying antigens within immune complexes." PLOS ONE 15, no. 12 (December 23, 2020): e0244157. http://dx.doi.org/10.1371/journal.pone.0244157.

Повний текст джерела
Анотація:
A novel approach to recover and identify immune complexes (ICs) was developed using size exclusion chromatography (SEC) and affinity chromatography on immunoglobulin binding columns (HiTrap Protein G). The purification process was monitored by 1D SDS-PAGE, protein staining, Western blotting and, finally, liquid chromatography tandem mass spectrometry (LC MS/MS) was used to identify the recovered antigens. This approach was applied to serum with artificially created immune complexes (ICs) comprising vaccine antigen (influenza) and antibody, which led to recovery and identification of influenza peptides within the recovered ICs. This approach was compared with the established method for IC detection and recovery, polyethylene glycol (PEG) precipitation, followed by LC MS/MS. Both approaches successfully enabled capture, recovery and characterization of immunoglobulins and influenza antigen(s) in complex with the immunoglobulins. However, PEG precipitation has the advantage of simplicity and is more suited for large scale studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aubert, D., G. T. Maine, I. Villena, J. C. Hunt, L. Howard, M. Sheu, S. Brojanac, L. E. Chovan, S. F. Nowlan, and J. M. Pinon. "Recombinant Antigens To Detect Toxoplasma gondii-Specific Immunoglobulin G and Immunoglobulin M in Human Sera by Enzyme Immunoassay." Journal of Clinical Microbiology 38, no. 3 (2000): 1144–50. http://dx.doi.org/10.1128/jcm.38.3.1144-1150.2000.

Повний текст джерела
Анотація:
We have evaluated the diagnostic utility of eleven Toxoplasma gondii recombinant antigens (P22 [SAG2], P24 [GRA1], P25, P28 [GRA2], P29 [GRA7], P30 [SAG1], P35, P41 [GRA4], P54 [ROP2], P66 [ROP1], and P68) in immunoglobulin G (IgG) and IgM recombinant enzyme-linked immunosorbent assays (Rec-ELISAs). Following an initial evaluation, six recombinant antigens (P29, P30, P35, P54, P66, and P68) were tested in the IgG and IgM Rec-ELISAs with four groups of samples which span the toxoplasmosis disease spectrum (negative, chronic infection, acute infection, and recent seroconversion). Our results suggest that the combination of P29, P30, and P35 in an IgG Rec-ELISA and the combination of P29, P35, and P66 in an IgM Rec-ELISA can replace the tachyzoite antigen in IgG and IgM serologic tests, respectively. The relative sensitivity, specificity, and agreement for the IgG P29-P30-P35 Rec-ELISA were 98.4, 95.7, and 97.2%, respectively. The resolved sensitivity, specificity, and agreement for the IgM P29-P35-P66 Rec-ELISA were 93.1, 95.0, and 94.5%, respectively. Relative to the tachyzoite-based immunocapture IgM assay, the IgM P29-P35-P66 Rec-ELISA detects fewer samples that contain IgG antibodies with elevated avidity from individuals with an acute toxoplasmosis.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Immunoglobulin A; Immunoglobulin G; Antigens"

1

Hirano, Ayumi. "T dependent B cell help in cattle : immunoregulatory function of interleukin-4 and CD40-CD40L interactions /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Carson, Richard Thomas. "Immunoglobulin G subclass responses to bacterial protein antigens in man." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bartholomeuz, Risien Chiron Andrew. "Polymeric IgA antibody in humans after vaccination and in disease /." Title page, contents and abstract only, 1989. http://web4.library.adelaide.edu.au/theses/09MD/09mdb287.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Shiming. "Carboxyl-terminal cysteinylation of immunoglobulin G for orientated immobilisation." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hollén, Elisabet. "Coeliac disease in childhood : on the intestinal mucosa and the use of oats /." Linköping : Univ, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Israelsson, Elisabeth. "Host genetic factors and antibody responses with potential involvement in the susceptibility to malaria." Doctoral thesis, Stockholm : Department of Immunology, the Wenner-Gren Institute, Stockholm university, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lee, Katherine Shi-Hui. "The host immune response to Streptococcus pneumoniae : bridging innate and adaptive immunity /." Download the dissertation in PDF, 2006. http://www.lrc.usuhs.mil/dissertations/pdf/lee2006.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chong, Wai-po, and 莊偉波. "Tolerogenic and inflammatory properties of natural killer cells after interacting with apoptotic cells and immunoglobulin G opsonizedapoptotic cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B40203633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chong, Wai-po. "Tolerogenic and inflammatory properties of natural killer cells after interacting with apoptotic cells and immunoglobulin G opsonized apoptotic cells." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/b40203633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maier, Shannon Marie. "Murine models in the investigation of lupus etiology." Oklahoma City : [s.n.], 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Immunoglobulin A; Immunoglobulin G; Antigens"

1

Hideto, Yamada, ed. Immunoglobulin treatment in reproductive and perinatal medicine. Sapporo, Japan: Hokkaido University School of Medicine, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shakib, F. Basic and clinical aspects of IgG subclasses. Basel: Karger, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bradwell, A. R. IgG and IgA subclasses in disease. Birmingham: Binding Site, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Griffiths, Helen Rosemary. Oxygen free radicals, Immunoglobulin G and rheumatoid arthritis. Birmingham: University of Birmingham, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alexander, H. Denis. An immunocytochemistry study of celular antigens and immunoglobulin heavy and light chains in leukaemia. [s.l: The Author], 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nathavitharana, Kamal Augustine. Human milk and salivary secretory immunoglobulin A antibodies directed against antigens of diarrhoeagenic 'Escherichia coli'. Birmingham: University of Birmingham, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. Animal and Plant Health Inspection Service. Veterinary Services. Centers for Epidemiology and Animal Health. Passive transfer status of heifer calves on U.S. dairies, 1991-2007. Fort Collins, CO: U.S. Dept. of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Centers for Epidemiology and Animal Health, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

National Animal Health Monitoring System (U.S.) and United States. Animal and Plant Health Inspection Service. Veterinary Services., eds. Transfer of maternal immunity to calves: National Dairy Heifer Evaluation Project. Fort Collins, Colo: U.S. Dept. of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

F, Skvaril, Morell A, and Perret B. 1944-, eds. Clinical aspects of IgG subclasses and therapeutic implications. Basel: Karger, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Multifunctional IgG and IgG-binding receptors: (Ehrlich's side chain theory revisited). Amsterdam: Elsevier, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Immunoglobulin A; Immunoglobulin G; Antigens"

1

Bharadwaj, Pranay, and Margaret E. Ackerman. "Glycosylation of Antigen-Specific Antibodies: Perspectives on Immunoglobulin G Glycosylation in Vaccination and Immunotherapy." In Experientia Supplementum, 565–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76912-3_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Khelemsky, Yury, Karina Gritsenko, and Jason Litt. "Immunoglobulin G." In Pain Medicine, 185–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43133-8_51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Price, Hugh, Maurice Genereux, and Christopher Sinclair. "Hyperimmune Immunoglobulin G." In Production of Plasma Proteins for Therapeutic Use, 207–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118356807.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pezer, Marija. "Immunoglobulin G Glycosylation in Diseases." In Experientia Supplementum, 395–431. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76912-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Klasić, Marija, and Vlatka Zoldoš. "Epigenetics of Immunoglobulin G Glycosylation." In Experientia Supplementum, 289–301. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76912-3_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Frkatovic, Azra, Olga O. Zaytseva, and Lucija Klaric. "Genetic Regulation of Immunoglobulin G Glycosylation." In Experientia Supplementum, 259–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76912-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lamm, Michael E. "Protection of Mucosal Epithelia by IgA: Intracellular Neutralization and Excretion of Antigens." In Mucosal Immune Defense: Immunoglobulin A, 173–82. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-72232-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yagi, Hirokazu, Saeko Yanaka, and Koichi Kato. "Structure and Dynamics of Immunoglobulin G Glycoproteins." In Glycobiophysics, 219–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2158-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dimmock, Nigel J. "Immunoglobulin G Neutralization by Aggregation of Virions." In Current Topics in Microbiology and Immunology, 14–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77849-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mehta, Pankaj D., Charles E. Isaacs, and Patricia K. Coyle. "Immunoglobulin G Subclasses in Human Colostrum and Milk." In Advances in Experimental Medicine and Biology, 223–26. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3838-7_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Immunoglobulin A; Immunoglobulin G; Antigens"

1

Bo, Lin, Christy C. O'Mahony, Pengfei Wang, Yuliya Semenova, and Gerald Farrell. "Microfiber Coupler Based Biosensor for Immunoglobulin G Antigen Detection." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acp.2013.af2i.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bo, Lin, Christy Charlton O'Mahony, Pengfei Wang, Yuliya Semenova, and Gerald Farrell. "Microfiber Coupler Based Biosensor for Immunoglobulin G Antigen Detection." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acpc.2013.af2i.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krasnoshtanova, Alla, and Alesya Yudina. "PRODUCTION OF ANTIBODIES FROM POULTRY YOLK (IgY) AND INVESTIGATION OF THEIR IMMUNOCHEMICAL PROPERTIES." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/17.

Повний текст джерела
Анотація:
"A particularly important aspect of immunology is to develop non-invasive methods of obtaining antibodies which could be a great alternative to traditional ones that based on the harmful procedure of isolation of immunoglobulins from animal blood sera. That’s why the extraction of antibodies from poultry egg yolks (IgY) is the most promising. Due to the fact of variation of IgY structural features that determine the definite immunochemical properties, yolk antibodies in comparison with mammalian immunoglobulins (IgG) does not interact with rheumatoid factor (Rf), contribute to the activation of the complement system, bind to the Fc-receptor (FcR), and also has weak cross-reactivity, which confirms the possibility of their widespread use in medicine and food. Also the presence of phylogenetic distance between chickens and mammalians guarantees immune response against conservative mammalian protein molecules which is highly important for the creation of new generation test systems. The aim of this work is to develop a selective method of producing high-purity immunoglobulin Y preparations from the yolk of chicken eggs. There were adopted selective conditions of isolation of IgY under spontaneous thawing procedure at the room temperature of firstly frozen yolk solution in a sodium-phosphate buffer mixed with water (pH 5.0) in a ratio of 1:6, which leads to receiving a water-soluble fraction further precipitated with the sodium chloride at a concentration of 10% of the solution mass and subsequently concentrated using ultrafiltration with membrane UAM-10, that allows achieving the content of IgY not less than 95% per dry substance in immunoglobulin fraction. It is possible to produce a protein fraction with a protein content of at least 9 g/l. The purity of the immunoglobulin fraction was verified using polyacrylamide gel electrophoresis. The presence of a light chain in the IgY solution was proved to be a low-molecular compound using the method of gel-filtration-chromatography. The immunological activity of IgY was studied with respect to bovine serum albumin (BSA) as an antigen. The enzymatic resistance of IgY against proteolytic enzymes was tested in area of the gastrointestinal tract."
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Turko, Illarion V., Igor S. Yurkevich, and Vadim L. Chashchin. "Antigen binding properties of Langmuir-Blodgett films of immunoglobulin G deposited onto the optical fiber core." In OE Fiber 91, edited by Robert A. Lieberman. SPIE, 1992. http://dx.doi.org/10.1117/12.56564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rumokoy, Laurentius, Geertruida Assa, Sonny Moningkey, Heydi Manangkot, Constantyn Sumolang, and Wisje Lusia Toar. "Thoraxial Antigen-G of House Fly Musca domestica (Muscidae: Diptera) on Serum Immunoglobulin Level of Goats." In International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/absr.k.200513.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhu, Cheng, and Scott E. Chesla. "Dissociation of Individual Molecular Bonds Under Force." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0286.

Повний текст джерела
Анотація:
Abstract Specific interactions between receptors on cell surfaces are essential for living organisms to sense and adapt to their environment. For example, CD16A (Feγ receptor IIIA) signals a variety of immune functions upon binding of immunoglobulin (Ig) G. While receptor-ligand binding has been extensively studied in chemical terms, only until very recently has direct measurement of individual bond forces become possible. Evans et al. [1] pioneered the use of the micropipet technique to measure detachment forces between two red blood cells (RBC) crosslinked by antibodies. While these authors achieved the sensitivity necessary to detect individual bonds (in piconewton range), the forces they measured appeared to be those of uprooting the molecules from the cell membrane (cohesive detachment mode) instead of dissociating the antibody-antigen bonds (adhesive detachment mode).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, J., and Z. Zhang. "AB1033 The expression of immunoglobulin g and immunoglobulin g4 in lymphoma." In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.3999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

CAMPANELLA, L., E. MARTINI, and M. TOMASSETTI. "COMPARISON BETWEEN TWO DIFFERENT POTENTIOMETRIC METHODS FOR HUMAN ANTI-IMMUNOGLOBULIN G AND HUMAN IMMUNOGLOBULIN G." In Proceedings of the 9th Italian Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701770_0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ramos, Anelize, Maria Magalhães, and Gustavo Silva. "Immunoglobulin G micro purification using TRIM21 coated microplates." In International Symposium on Immunobiologicals. Instituto de Tecnologia em Imunobiológicos, 2022. http://dx.doi.org/10.35259/isi.2022_52248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bezerra, Lia B. M., Letícia K. Dourado, Thiago O. Mencdonça, Telma Antunes, and Carmen S. V. Barbas. "Immunoglobulin G Deficiency Associated With Wegener Granulomatosis: Patients Clinical Characteristics And Replacement Therapy With Intravenous Immunoglobulin." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a2990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Immunoglobulin A; Immunoglobulin G; Antigens"

1

Block, Timothy M., Songming Chen, Anand S. Mehta, and Terry J. Henderson. A Glycoform of Immunoglobulin G (IgG) as an Early Biomarker of Exposure to Nonhuman Substances. Fort Belvoir, VA: Defense Technical Information Center, December 2012. http://dx.doi.org/10.21236/ada570851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mackey, Katherine, Irina Arkhipova-Jenkins, Charlotte Armstrong, Emily Gean, Johanna Anderson, Robin A. Paynter, and Mark Helfand. Antibody Response Following SARS-CoV-2 Infection and Implications for Immunity: A Rapid Living Review. Agency for Healthcare Research and Quality (AHRQ), March 2021. http://dx.doi.org/10.23970/ahrqepccovidimmunity.

Повний текст джерела
Анотація:
 Evidence suggests that the majority of adults develop detectable levels of immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies following infection with SARS-CoV-2 (moderate strength of evidence* [SoE]).  IgM levels peak approximately 20 days after symptom onset or RT-PCR diagnosis and subsequently decline. IgG levels peak approximately 25 days after symptom onset or RT-PCR diagnosis and may remain detectable for at least 120 days (moderate SoE*).  Almost all adults develop neutralizing antibodies in response to SARS-CoV-2 infection, and these antibodies may remain detectable for at least 152 days (low SoE*).  A small percentage of people do not develop antibodies in response to SARS-CoV-2 infection for reasons that are largely unclear but may be related to less severe disease or absence of symptoms.  Antibody prevalence does not appear to vary by age or sex, but older age may be associated with higher antibody levels (low SoE*). Non-White race may be associated with higher antibody prevalence and levels (low SoE*). COVID-19 severity and presence of symptoms may also be associated with higher antibody prevalence or levels (low SoE*). More evidence is needed to draw stronger conclusions regarding how the antibody response varies by patient characteristics and disease factors.  Studies to date have not established the relationship between the development of antibodies after RT-PCR-diagnosed SARS-CoV-2 infection and the risk of reinfection. Studies based on index serologic testing suggest that the presence of antibodies is associated with a lower risk of a subsequent positive SARS-CoV-2 RT-PCR test.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

He, Dan, Hongmei Wu, Yujie Han, Min Liu, and Mao Lu. A meta-analysis of topical antifungal drugs to treat atopic dermatitis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2021. http://dx.doi.org/10.37766/inplasy2021.12.0062.

Повний текст джерела
Анотація:
Review question / Objective: Various bacteria and fungi colonize the skin surface of patients with AD. The colonized fungi mainly include Malassezia, non-Malassezia yeasts, and molds. Among them, Malassezia occupies 63%~86% of the fungal colonization community on the skin surface of AD patients. Although the relationship between the level of Malassezia on the skin surface and disease severity remains controversial, many studies have shown that the level of serum anti-Malassezia-specific immunoglobulin E (IgE) antibodies in AD patients is related to the disease severity, especially in patients with AD in the head and neck. The specific mechanism by which Malassezia causes or aggravates AD is unclear, but damage to the skin barrier in AD patients is a key component of the mechanism. The presence of Malassezia on the skin also seems to change its barrier function, resulting in more Malassezia and its antigens colonizing the skin surface area that is exposed to the immune system. This produces a large number of specific IgE antibodies and cytokines to aggravate the disease.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії