Добірка наукової літератури з теми "IMAGE SEGMENTATION TECHNIQUES"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "IMAGE SEGMENTATION TECHNIQUES".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "IMAGE SEGMENTATION TECHNIQUES"
Haralick, Robert M., and Linda G. Shapiro. "Image segmentation techniques." Computer Vision, Graphics, and Image Processing 29, no. 1 (January 1985): 100–132. http://dx.doi.org/10.1016/s0734-189x(85)90153-7.
Повний текст джерелаSingh, Inderpal, and Dinesh Kumar. "A Review on Different Image Segmentation Techniques." Indian Journal of Applied Research 4, no. 4 (October 1, 2011): 1–3. http://dx.doi.org/10.15373/2249555x/apr2014/200.
Повний текст джерелаTongbram, Simon. "Clustering-based Image Segmentation Techniques: A Review." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 701–7. http://dx.doi.org/10.5373/jardcs/v12sp7/20202160.
Повний текст джерелаSharma, Dr Kamlesh, and Nidhi Garg. "An Extensive Review on Image Segmentation Techniques." Indian Journal of Image Processing and Recognition 1, no. 2 (June 10, 2021): 1–5. http://dx.doi.org/10.35940/ijipr.b1002.061221.
Повний текст джерелаSharma, Dr Kamlesh, and Nidhi Garg. "An Extensive Review on Image Segmentation Techniques." Indian Journal of Image Processing and Recognition 1, no. 2 (June 10, 2021): 1–5. http://dx.doi.org/10.54105/ijipr.b1002.061221.
Повний текст джерелаPatel, Dr Bharat C., and Dr Jagin M. Patel. "Comparative Study on Text Segmentation Techniques." YMER Digital 21, no. 01 (January 19, 2022): 372–80. http://dx.doi.org/10.37896/ymer21.01/35.
Повний текст джерелаGehlot, Shiv, and John Deva Kumar. "The Image Segmentation Techniques." International Journal of Image, Graphics and Signal Processing 9, no. 2 (February 8, 2017): 9–18. http://dx.doi.org/10.5815/ijigsp.2017.02.02.
Повний текст джерелаAbdul, Wadood. "Region Based Segmentation Techniques for Digital Images." Journal of Computational and Theoretical Nanoscience 16, no. 9 (September 1, 2019): 3792–801. http://dx.doi.org/10.1166/jctn.2019.8252.
Повний текст джерелаTripathi, Rakesh, and Neelesh Gupta. "A Review on Segmentation Techniques in Large-Scale Remote Sensing Images." SMART MOVES JOURNAL IJOSCIENCE 4, no. 4 (April 20, 2018): 7. http://dx.doi.org/10.24113/ijoscience.v4i4.143.
Повний текст джерелаChandrakala, M. "Image Analysis of Sauvola and Niblack Thresholding Techniques." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 14, 2021): 2353–57. http://dx.doi.org/10.22214/ijraset.2021.34569.
Повний текст джерелаДисертації з теми "IMAGE SEGMENTATION TECHNIQUES"
Duramaz, Alper. "Image Segmentation Based On Variational Techniques." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607721/index.pdf.
Повний текст джерелаbut for the hierarchical four-phase segmentation, it is observed that this method sometimes gives unsatisfactory results. In this work, a fast hierarchical four-phase segmentation method is proposed where the Chan-Vese active contour method is applied following the gradient flows method. After the segmentation process, the segmented regions are denoised using diffusion filters. Additionally, for the low signal-to-noise ratio applications, the prefiltering scheme using nonlinear diffusion filters is included in the proposed method. Simulations have shown that the proposed method provides an effective solution to the image segmentation and denoising problem.
Altinoklu, Metin Burak. "Image Segmentation Based On Variational Techniques." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610415/index.pdf.
Повний текст джерела#8211
Shah variational approach have been studied. By obtaining an optimum point of the Mumford-Shah functional which is a piecewise smooth approximate image and a set of edge curves, an image can be decomposed into regions. This piecewise smooth approximate image is smooth inside of regions, but it is allowed to be discontinuous region wise. Unfortunately, because of the irregularity of the Mumford Shah functional, it cannot be directly used for image segmentation. On the other hand, there are several approaches to approximate the Mumford-Shah functional. In the first approach, suggested by Ambrosio-Tortorelli, it is regularized in a special way. The regularized functional (Ambrosio-Tortorelli functional) is supposed to be gamma-convergent to the Mumford-Shah functional. In the second approach, the Mumford-Shah functional is minimized in two steps. In the first minimization step, the edge set is held constant and the resultant functional is minimized. The second minimization step is about updating the edge set by using level set methods. The second approximation to the Mumford-Shah functional is known as the Chan-Vese method. In both approaches, resultant PDE equations (Euler-Lagrange equations of associated functionals) are solved by finite difference methods. In this study, both approaches are implemented in a MATLAB environment. The overall performance of the algorithms has been investigated based on computer simulations over a series of images from simple to complicated.
Storve, Sigurd. "Kalman Smoothing Techniques in Medical Image Segmentation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18823.
Повний текст джерелаSeemann, Torsten 1973. "Digital image processing using local segmentation." Monash University, School of Computer Science and Software Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/8055.
Повний текст джерелаMatalas, Ioannis. "Segmentation techniques suitable for medical images." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339149.
Повний текст джерелаYeo, Si Yong. "Implicit deformable models for biomedical image segmentation." Thesis, Swansea University, 2011. https://cronfa.swan.ac.uk/Record/cronfa42416.
Повний текст джерелаAlazawi, Eman. "Holoscopic 3D image depth estimation and segmentation techniques." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/10517.
Повний текст джерелаShaffrey, Cian William. "Multiscale techniques for image segmentation, classification and retrieval." Thesis, University of Cambridge, 2003. https://www.repository.cam.ac.uk/handle/1810/272033.
Повний текст джерелаSekkal, Rafiq. "Techniques visuelles pour la détection et le suivi d’objets 2D." Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0032/document.
Повний текст джерелаNowadays, image processing remains a very important step in different fields of applications. In an indoor environment, for a navigation system related to a mobile robot (electrical wheelchair), visual information detection and tracking is crucial to perform robotic tasks (localization, planning…). In particular, when considering passing door task, it is essential to be able to detect and track automatically all the doors that belong to the environment. Door detection is not an obvious task: the variations related to the door status (open or closed), their appearance (e.g. same color as the walls) and their relative position to the camera have influence on the results. On the other hand, tasks such as the detection of navigable areas or obstacle avoidance may involve a dedicated semantic representation to interpret the content of the scene. Segmentation techniques are then used to extract pseudosemantic regions based on several criteria (color, gradient, texture...). When adding the temporal dimension, the regions are tracked then using spatiotemporal segmentation algorithms. In this thesis, we first present joint door detection and tracking technique in a corridor environment: based on dedicated geometrical features, the proposed solution offers interesting results. Then, we present an original joint hierarchical and multiresolution segmentation framework able to extract a pseudo-semantic region representation. Finally, this technique is extended to video sequences to allow the tracking of regions along image sequences. Based on contour motion extraction, this solution has shown relevant results that can be successfully applied to corridor videos
Celik, Mehmet Kemal. "Digital image segmentation using periodic codings." Thesis, Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/80099.
Повний текст джерелаMaster of Science
Книги з теми "IMAGE SEGMENTATION TECHNIQUES"
Siddiqui, Fasahat Ullah, and Abid Yahya. Clustering Techniques for Image Segmentation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81230-0.
Повний текст джерелаRoland, Wilson. Image segmentation and uncertainty. Letchworth, Herts., England: Research Studies Press, 1988.
Знайти повний текст джерелаIsmail, Ben Ayed, ed. Variational and level set methods in image segmentation. Berlin: Springer Verlag, 2010.
Знайти повний текст джерелаLeppäjärvi, Seppo. Image segmentation and analysis for automatic color correction. Lappeenranta, Finland: Lappeenranta University of Technology, 1999.
Знайти повний текст джерелаGorte, Ben. Probabilistic segmentation of remotely sensed images. Enschede: International Institute for Aerospace Survey and Earth Sciences (ITC), 1998.
Знайти повний текст джерелаVernon, David. Fourier vision: Segmentation and velocity measurement using the Fourier transform. Boston: Kluwer Academic, 2001.
Знайти повний текст джерелаNitzberg, M. Filtering, segmentation, and depth. Berlin: Springer-Verlag, 1993.
Знайти повний текст джерелаVideo segmentation and its applications. New York: Springer, 2011.
Знайти повний текст джерелаBatra, Dhruv. Interactive Co-segmentation of Objects in Image Collections. New York, NY: Springer Science+Business Media, LLC, 2011.
Знайти повний текст джерела1956-, Solimini Sergio, ed. Variational methods in image segmentation: With seven image processing experiments. Boston: Birkhäuser, 1995.
Знайти повний текст джерелаЧастини книг з теми "IMAGE SEGMENTATION TECHNIQUES"
Bhanu, Bir, and Sungkee Lee. "Image segmentation Techniques." In Genetic Learning for Adaptive Image Segmentation, 15–24. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2774-9_2.
Повний текст джерелаZhang, Yu-Jin. "Image Segmentation." In A Selection of Image Analysis Techniques, 31–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/b23131-2.
Повний текст джерелаChaki, Jyotismita, and Nilanjan Dey. "Segmentation Techniques." In A Beginner's Guide to Image Preprocessing Techniques, 57–72. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academicdivision of T&F Informa, plc, 2019. | Series: Intelligent signalprocessing and data analysis: CRC Press, 2018. http://dx.doi.org/10.1201/9780429441134-5.
Повний текст джерелаSiddiqui, Fasahat Ullah, and Abid Yahya. "Partitioning Clustering Techniques." In Clustering Techniques for Image Segmentation, 35–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_2.
Повний текст джерелаHe, Jia, Chang-Su Kim, and C. C. Jay Kuo. "Interactive Image Segmentation Techniques." In SpringerBriefs in Electrical and Computer Engineering, 17–62. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-60-4_3.
Повний текст джерелаSiddiqui, Fasahat Ullah, and Abid Yahya. "Novel Partitioning Clustering." In Clustering Techniques for Image Segmentation, 69–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_3.
Повний текст джерелаSiddiqui, Fasahat Ullah, and Abid Yahya. "Quantitative Analysis Methods of Clustering Techniques." In Clustering Techniques for Image Segmentation, 93–105. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_4.
Повний текст джерелаSiddiqui, Fasahat Ullah, and Abid Yahya. "Introduction to Image Segmentation and Clustering." In Clustering Techniques for Image Segmentation, 1–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_1.
Повний текст джерелаPhonsa, Gurbakash, and K. Manu. "A Survey: Image Segmentation Techniques." In Harmony Search and Nature Inspired Optimization Algorithms, 1123–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0761-4_105.
Повний текст джерелаMozdren, Karel, Tomas Burianek, Jan Platos, and Václav Snášel. "Evolutionary Techniques for Image Segmentation." In Advances in Intelligent Systems and Computing, 291–300. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08156-4_29.
Повний текст джерелаТези доповідей конференцій з теми "IMAGE SEGMENTATION TECHNIQUES"
Haralick, Robert M., and Linda G. Shapiro. "Image Segmentation Techniques." In 1985 Technical Symposium East, edited by John F. Gilmore. SPIE, 1985. http://dx.doi.org/10.1117/12.948400.
Повний текст джерелаTaouli, Sidi Ahmed. "Research on the Image Segmentation by Watershed Transforms." In 3rd International Conference on Machine Learning Techniques and Data Science (MLDS 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.122108.
Повний текст джерелаSong, Yuheng, and Hao Yan. "Image Segmentation Techniques Overview." In 2017 Asia Modelling Symposium (AMS). 11th International Conference on Mathematical Modelling & Computer Simulation. IEEE, 2017. http://dx.doi.org/10.1109/ams.2017.24.
Повний текст джерелаCornelis, De Becker, Bister, Vanhove, Demonceau, and Cornelis. "Techniques for Cardiac Image Segmentation." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.590248.
Повний текст джерелаComelis, J., J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis. "Techniques for cardiac image segmentation." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5762094.
Повний текст джерелаXu, Haixiang, Guangxi Zhu, Jinwen Tian, Xiang Zhang, and Fuyuan Peng. "Image segmentation using support vector machine." In MIPPR 2005 Image Analysis Techniques, edited by Deren Li and Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655253.
Повний текст джерелаZhang, Hong-wei, and Zheng-guang Liu. "Wavelet-based snake model for image segmentation." In MIPPR 2005 Image Analysis Techniques, edited by Deren Li and Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655275.
Повний текст джерелаGao, Li, Jie Xia, Junli Liang, and Shuyuan Yang. "Improved Techniques for Unsupervised Image Segmentation." In 2006 International Conference on Communications, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/icccas.2006.284608.
Повний текст джерелаPandey, Rahul, and R. Lalchhanhima. "Segmentation Techniques for Complex Image: Review." In 2020 International Conference on Computational Performance Evaluation (ComPE). IEEE, 2020. http://dx.doi.org/10.1109/compe49325.2020.9200027.
Повний текст джерелаSevak, Jay S., Aerika D. Kapadia, Jaiminkumar B. Chavda, Arpita Shah, and Mrugendrasinh Rahevar. "Survey on semantic image segmentation techniques." In 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE, 2017. http://dx.doi.org/10.1109/iss1.2017.8389420.
Повний текст джерелаЗвіти організацій з теми "IMAGE SEGMENTATION TECHNIQUES"
Huang, Haohang, Erol Tutumluer, Jiayi Luo, Kelin Ding, Issam Qamhia, and John Hart. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2. Illinois Center for Transportation, September 2022. http://dx.doi.org/10.36501/0197-9191/22-017.
Повний текст джерелаHuang, Haohang, Jiayi Luo, Kelin Ding, Erol Tutumluer, John Hart, and Issam Qamhia. I-RIPRAP 3D Image Analysis Software: User Manual. Illinois Center for Transportation, June 2023. http://dx.doi.org/10.36501/0197-9191/23-008.
Повний текст джерелаPatwa, B., P. L. St-Charles, G. Bellefleur, and B. Rousseau. Predictive models for first arrivals on seismic reflection data, Manitoba, New Brunswick, and Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329758.
Повний текст джерелаAsari, Vijayan, Paheding Sidike, Binu Nair, Saibabu Arigela, Varun Santhaseelan, and Chen Cui. PR-433-133700-R01 Pipeline Right-of-Way Automated Threat Detection by Advanced Image Analysis. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2015. http://dx.doi.org/10.55274/r0010891.
Повний текст джерела