Добірка наукової літератури з теми "Ice Detection"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ice Detection".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ice Detection"

1

Arvidson, Rhonda, and Stan Jones. "Ice Detection and Avoidance." International Oil Spill Conference Proceedings 2003, no. 1 (April 1, 2003): 453–56. http://dx.doi.org/10.7901/2169-3358-2003-1-453.

Повний текст джерела
Анотація:
ABSTRACT An extensive risk assessment of oil transportation in Prince William Sound, Alaska was finalized in 1996 that identified drifting icebergs, from Columbia Glacier, as one of the most significant oil spill risks remaining to be addressed. The Prince William Sound Regional Citizens’ Advisory Council (PWS RCAC) was a major participant in this risk analysis. As part of the groundwork for the ice detection project, PWS RCAC has also sponsered extensive studies of Columbia Glacier calving and drift patterns, iceberg size and distribution. A collaborative project, called the ice detection project, was developed by a multi stakeholder working group and provides an opportunity for an immediate and long-term solution using existing technology. One objective of the project is to verify the efficiency, effectiveness and reliability of existing radar technologies to provide mariners and the United States Coast Guard with real time information regarding ice conditions. A secondary objective is to promote the research and development through field testing of new and emerging technologies to determine the possible enhancement of conventional radar. In addition to PWS RCAC, stakeholders responsible for spearheading this project are: Alyeska Pipeline Service Company, Alaska Department of Environmental Conservation, Oil Spill Recovery Institute, United States Coast Guard, Prince William Sound Community College and National Oceanic and Atmospheric Administration. Each of the seven participants brings expertise and backing from the stakeholder they represent. The site chosen for the ice detection radar project is Reef Island (illustration 1), located adjacent to Bligh Reef, Prince William Sound. This location is ideal because of its proximity to Columbia Glacier, the source of the icebergs, as well as providing an unobstructed view of the shipping lanes. A fifty foot tower was installed at the site during the fall of 2001 and a conventional radar system is currently being configured for installation. The expectation is that the system will be up and running by July of 2002, giving real time information on ice in the tanker lanes to mariners in Prince William Sound. A second field test of an UHF radar prototype is planned for the summer of 2002. Field testing and ground truthing of the radar system is scheduled for the next five years.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brett, Gemma M., Daniel Price, Wolfgang Rack, and Patricia J. Langhorne. "Satellite altimetry detection of ice-shelf-influenced fast ice." Cryosphere 15, no. 8 (August 26, 2021): 4099–115. http://dx.doi.org/10.5194/tc-15-4099-2021.

Повний текст джерела
Анотація:
Abstract. The outflow of supercooled Ice Shelf Water from the conjoined Ross and McMurdo ice shelf cavity augments fast ice thickness and forms a thick sub-ice platelet layer in McMurdo Sound. Here, we investigate whether the CryoSat-2 satellite radar altimeter can consistently detect the higher freeboard caused by the thicker fast ice combined with the buoyant forcing of a sub-ice platelet layer beneath. Freeboards obtained from CryoSat-2 were compared with 4 years of drill-hole-measured sea ice freeboard, snow depth, and sea ice and sub-ice platelet layer thicknesses in McMurdo Sound in November 2011, 2013, 2017 and 2018. The spatial distribution of higher CryoSat-2 freeboard concurred with the distributions of thicker ice-shelf-influenced fast ice and the sub-ice platelet layer. The mean CryoSat-2 freeboard was 0.07–0.09 m higher over the main path of supercooled Ice Shelf Water outflow, in the centre of the sound, relative to the west and east. In this central region, the mean CryoSat-2-derived ice thickness was 35 % larger than the mean drill-hole-measured fast ice thickness. We attribute this overestimate in satellite-altimeter-obtained ice thickness to the additional buoyant forcing of the sub-ice platelet layer which had a mean thickness of 3.90 m in the centre. We demonstrate the capability of CryoSat-2 to detect higher Ice Shelf Water-influenced fast ice freeboard in McMurdo Sound. Further development of this method could provide a tool to identify regions of ice-shelf-influenced fast ice elsewhere on the Antarctic coastline with adequate information on the snow layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weeks, W. F., Edward O. Lewis, Brian W. Currie, and Simon Kaykin. "Detection and Classification of Ice." Arctic and Alpine Research 20, no. 1 (February 1988): 129. http://dx.doi.org/10.2307/1551711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Deiler, Christoph, and Nicolas Fezans. "Performance-Based Ice Detection Methodology." Journal of Aircraft 57, no. 2 (March 2020): 209–23. http://dx.doi.org/10.2514/1.c034828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gagnon, R. E., J. Groves, and W. Pearson. "Remote ice detection equipment — RIDE." Cold Regions Science and Technology 72 (March 2012): 7–16. http://dx.doi.org/10.1016/j.coldregions.2011.11.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Arcone, S. "Detection and classification of ice." Cold Regions Science and Technology 15, no. 1 (February 1988): 95. http://dx.doi.org/10.1016/0165-232x(88)90044-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Grulich, Lucas, Ralf Weigel, Andreas Hildebrandt, Michael Wand, and Peter Spichtinger. "Automatic shape detection of ice crystals." Journal of Computational Science 54 (September 2021): 101429. http://dx.doi.org/10.1016/j.jocs.2021.101429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shire, S., J. Quarini, and R. S. Ayala. "Ultrasonic detection of slurry ice flows." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 219, no. 3 (August 1, 2005): 217–25. http://dx.doi.org/10.1243/095440805x33180.

Повний текст джерела
Анотація:
Experimental work has been carried out to investigate the use of ultrasound in the detection of slurry ice flows within pipes. The work sets out the basis for a novel device that is both portable and adaptable to retrofitting onto existing pipelines. This method of noninvasive pipeline interrogation has applications within many parts of the chemical and process industries. The work described here relates particularly to the use of ultrasound to detect the presence of an ice pig within product pipelines in the food industry. Research has shown that the products tested and the ice slurry have very different ‘sound signatures’. The signals obtained from ultrasonic tests proved to be reproducible, even under dynamic flow conditions. Contamination of products with slush ice was detectable down to the levels of a few per cent of slush ice. The technique was verified for detection of the interface between the product and the ice pig under flow conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mendig, C., J. Riemenschneider, H. P. Monner, L. J. Vier, M. Endres, and Hannah Sommerwerk. "Ice detection by ultrasonic guided waves." CEAS Aeronautical Journal 9, no. 3 (March 9, 2018): 405–15. http://dx.doi.org/10.1007/s13272-018-0289-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brown, Michael E., Christopher D. Koresko, and Geoffrey A. Blake. "Detection of Water Ice on Nereid." Astrophysical Journal 508, no. 2 (December 1, 1998): L175—L176. http://dx.doi.org/10.1086/311741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ice Detection"

1

Drummond, Krista. "Polarimetric road ice detection." Thesis, The University of Arizona, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1572997.

Повний текст джерела
Анотація:

This thesis investigated the science behind polarimetric road ice detection systems. Laboratory Mueller matrix measurements of a simulated road under differing surface conditions were collected searching for a discriminatory polarization property. These Mueller matrices were decomposed into depolarization, diattenuation, and retardance. Individual sample surface polarization properties were then calculated from these three unique matrices and compared. Specular and off-specular reflection responses of each sample were collected. Four polarization properties stood out for having high separation between dry and iced measurements: Depolarization Index, Linear Diattenuation, Linear Polarizance, and Linear Retardance.

Through our investigation polarimetric ice detection is possible. Continued research of the polarization properties of road ice can result in the development of a road ice detection system. Proposed deployment methods of such a system have been outlined following the analysis of the data collected in this experiment.

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Drummond, Krista. "Polarimetric Road Ice Detection." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/347115.

Повний текст джерела
Анотація:
Ever since automobiles became affordable for the average American, with the introduction of the Ford Model T in 1908, making driving safer has been a priority. While driver intoxication and distraction are the leading causes of automotive fatalities, poor road conditions increase the frequency and deadliness of these incidents. Monitoring road conditions for thousands of miles of road is a huge undertaking, one too large for human surveillance. Automated systems capable of detecting and reacting to dangerous road conditions would be life-saving. These systems could be mounted to the sides of road and notify an operator of conditions in real-time. Drivers could be warned, action taken, and many lives saved. This thesis investigated the science behind polarimetric road ice detection systems. Laboratory Mueller matrix measurements of a simulated road under differing surface conditions were collected searching for a discriminatory polarization property. These Mueller matrices were decomposed into depolarization, diattenuation, and retardance. Individual sample surface polarization properties were then calculated from these three unique matrices and compared. Simulated road samples were measured under many wavelengths and angles, which gave us a larger data library from which to observe trends. Specular and off-specular reflection responses of each sample were also collected. Four polarization properties stood out for having high separation between dry and iced measurements: Depolarization Index, Linear Diattenuation, Linear Polarizance, and Linear Retardance. Through our investigation polarimetric ice detection is possible. Continued research of the polarization properties of road ice can result in the development of a road ice detection system. Proposed deployment methods of such a system have been outlined following the analysis of the data collected in this experiment. Not only is polarimetric ice detection an exciting and novel use of polarization, it has the potential to improve road safety through real-time ice response measures.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sohn, Hong-Gyoo. "Boundary detection using multisensor imagery: Application to ice sheet margin detection /." The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487942476406942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Christner, Brent C. "Detection, recovery, isolation, and characterization of bacteria in glacial ice and Lake Vostok accretion ice." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1015965965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Christner, Brent Craig. "Detection, recovery, isolation and characterization of bacteria in glacial ice and Lake Vostok accretion ice /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402288260857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dershowitz, Adam L. (Adam Lee) 1967. "A passive infrared ice detection technique for helicopter applications." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/44271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Böser, Sebastian. "Acoustic detection of ultra-high energy cascades in ice." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2007. http://dx.doi.org/10.18452/15670.

Повний текст джерела
Анотація:
Existierende Neutrinoteleskope sind für den Nachweis von Neutrinos aus astrophysikalischen Quellen mit Energien im TeV Bereich optimiert. Aufgrund der geringen Flüsse und Wirkungsquerschnitte wurden bislang keine extraterrestrischen hochenergetischen Neutrinos beobachtet. Erst die im Bau befindlichen kubikkilometer-großen Cherenkov-Neutrinodetektoren werden das notwendige Volumen haben, um diese nachzuweisen. Für Neutrinos aus Wechselwirkungen der kosmischen Strahlung im EeV-Bereich mit dem kosmischen Mikrowellenhintergrund wird dennoch nicht mehr als ein Ereignis im Jahr erwartet. Nachweisvolumen in der Größenordnung von 100 km^3 sind notwendig, um den Fluß dieser Neutrinos zu bestimmen und die vorhergesagten Wirkungsquerschnitte zu überprüfen. Alternative Meßtechniken sind erforderlich, um einen Detektor dieses Ausmaßes zu realisieren. Eine vielversprechende Idee ist die Erfassung akustischer Wellen aus den in der Neutrinowechselwirkung erzeugten hadronischen Kaskaden. Aufgrund der höheren Signalstärke und der großen Schalldämpfungslängen ist die Eisdecke des Südpols dem Wasser der Ozeane als Medium vorzuziehen. Zunächst sind jedoch geeignete Sensoren, eine Überprüfung der thermo-akustischen Schallerzeugung und Kenntnisse der akustischen Eigenschaften des Eises von Nöten. In einer theoretischen Ableitung konnte die Äquivalenz der Mechanismen der Erzeugung akustischer Wellen durch thermo-elastische Anregung in Flüßigkeiten und isotropen Festkörpern gezeigt werden. Einer Analyse des existierenden Wissensstandes folgte die Simulation eines kombinierten Cherenkov-Radiowellen-Ultraschall-Detektors. Für den Einsatz im Eis wurden spezielle akustische Sensoren entwickelt und zur Erfassung der Schallemission von intensiven Protonen- und Laserstrahlen eingesetzt. Darauf aufbauend wurde ein akustische Sender- und Empfänger-Aufbau entwickelt, mit dem Ziel, die Ultraschalleigenschaften des südpolaren Eises in-situ zu untersuchen. Die Ergebnisse dieser ersten Bemühungen werden in dieser Arbeit vorgestellt.
Current neutrino telescopes are designed to detect neutrinos with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km^3 scale that are currently under construction will have the necessary volume to observe these rare interactions. Yet, for neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of around 100 km^3 will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in cascades following the neutrino interaction. Higher amplitudes of the sonic signal and the large absorption length of sound favour South Polar ice instead of sea water as a medium. For an estimate of the potential of such a detector, suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice are necessary. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. A detailed analysis of the existing knowledge and a simulation study of a hybrid optical-radio-acoustic detector have been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams. Based on this, the hitherto largest array of acoustic sensors and transmitters was devised and implemented, with the aim to study the ultrasonic properties of the South Polar ice in-situ. Results from all of these first efforts are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carlsson, Viktor. "Measuring routines of ice accretion for Wind Turbine applications : The correlation of production losses and detection of ice." Thesis, Umeå universitet, Institutionen för fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-37896.

Повний текст джерела
Анотація:
Wind power will play a major role in the future energy system in Sweden. Most of the major wind parks are planned to be built in sites where the cold climate and atmospheric icing can cause serious problems. This underlines the importance of addressing these issues. The major cause of these problems is in-cloud icing of the rotor blades due to super cooled liquid droplets of clouds. The droplets freeze upon impact with the rotor blade and form hard rime ice. This rime ice causes disruption in the aerodynamics that leads to production losses, extra loads on the rotor blades and when the ice is shed it poses a safety risk to people in the near environment. This master thesis focuses on how to measure the accretion of ice and the correlation between measured ice and production losses of two wind parks in northern Sweden.   The results show a good correlation between the ice accretion on a stationary sensor and the production loss from a wind turbine. In most icing events the icing of the sensor and large production losses from the wind turbine correlated clearly. Attempts to quantify the production losses at a certain ice rate measured with the stationary sensors was done, however no clear results was produced. The reason for this is that the wind turbines often stop completely during an icing event and that the time series analyzed was too short to be able to quantify the losses at certain wind speed and ice rates.   Recommendations on the type of sensor which should be used was to be produced, however the conclusion was that no single sensor has acted satisfactory and could be recommended to measure ice accretion for wind turbine applications. Due to this, at least two sensors are recommended to increase the redundancy in the measurement system. Modeling ice accretion with standard parameters measured has been done and the results show that the time of icing could be determined quite well when the sensors was ice free, however when the sensors and especially the humidity sensors was iced the time of icing was overestimated.   The main conclusion drawn is that there is a clear relationship between the icing of a stationary sensor and the rotor blade. There is still no which fulfills all demands of measuring ice accretion for wind turbine applications, further it is possible with simple models to roughly determine when icing occurs with standard measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eriksson, Carl-Johan. "Wireless Weather Station for the detection of black ice on roads." Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-80470.

Повний текст джерела
Анотація:
Att hålla de svenska vägarna säkra under vinterhalvåret är något som kräver stora resurser och kostar samhället stora pengar. De system som idag finns för att ge information om hur väg förhållandena ser ut är inte tillräckliga. Det finns för få väderstationer utplacerade runt om i vägnätet för att kunna ge en bra geografisk upplösning åt de som beslutar om ut dirigering av insatser. Att ta fram en kostnadseffektiv och helt trådlös väderstation som kan placeras ut oavsett tillgång till strömförsörjning eller trådbunden kommunikation är något som funnits som önskan hos de stora aktörerna inom vinterväghållningen i Sverige en längre tid. Vid ökad geografisk upplösning av väderförhållandena i vägnätet kommer det möjliggöras mer riktade insatser av vinterväghållningen. Detta skulle resultera i minskat slitage på verktyg samt minskat användande av salt på vägbanan vilket innebär ekonomiska vinster och inte minst miljömässiga vinster. Intervjuer och enkätsvar har legat till grund för framtagning av ett underlag för en väderstation av detta slag. Under arbetet med väderstationens underlag har ytterligare önskemål och idéer från människor som är aktiva inom branschen dykt upp. Detta har lett till att examensarbetet inriktat sig framför allt på att ta fram ett nytt  sensorsystem som helt kontaktfritt från vägbanans yta detekterar vad som finns på vägytan när det gäller torr, våt eller isig vägbanan. Ett komplett sensorsystem har utvecklats som placeras i vägbanan och mäter temperaturen samt helt kontaktfritt från vägytan detektera om vägbanan är torr, våt eller om det finns is på den. Sensorsystemet är helt batteriförsörjt och skickar data helt trådlöst från vägbanan. Detta gör det möjligt att använda flera sensorer i vägbanan och på detta sätt skapa ett sensornätverk som kan avgöra hur förhållandena ser ut på längre sträckor än i dagsläget endast i en punkt.
Keeping the Swedish roads safe during winter months is something that requires large resources and costs society a lot of money. The systems that provide information on road condition today are not enough. There are too few weather stations located around the road network to provide a good spatial resolution to those who decide if there is a need for ice- or snow removal on the roads. To provide a cost effective and completely wireless weather station that can be deployed regardless of access to power or wired communications is something that existed as a desire by the major contractors for the winter road maintenance in Sweden for a long time. A higher spatial resolution of weather conditions in the road network will make it possible to use more focused efforts where the road conditions are not good. This would result in reduced wear on the tools, less fuel consumption and reduced use of salt on the roadway resulting in economic gains and not least environmental benefits. Interviews and questionnaires were the basis for creating a base for a weather station of this kind. While working on weather station data, additional requests and ideas from people who are active in the industry emerged. This has led to the thesis work focused primarily on developing a new sensor system that completely contact-free from the road surface detect what is on the road surface when it comes to distinguish dry, wet or icy road surface. A complete sensor system has been developed that is placed in the roadway and which measures the temperature and uses a sensor that doesn't have any contact with the road surface to detect if the road surface is dry, wet, or if there is ice on it. The sensor system is battery powered and transmits data wirelessly from the road. This makes it possible to use multiple sensors in the roadway, thereby creating a sensor network that can determine what the conditions are at longer distances than in only one point.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Koçer, Zeynep A. "Detection of Influenza A Viruses From Environmental Lake and Pond Ice." Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1276804585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Ice Detection"

1

Mehran, Mehregany, Roy Shuvo, and United States. National Aeronautics and Space Administration., eds. Microfabricated ice-detection sensor. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mehran, Mehregany, Roy Shuvo, and United States. National Aeronautics and Space Administration., eds. Microfabricated ice-detection sensor. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

W, Currie Brian, and Haykin Simon S. 1931-, eds. Detection and classification of ice. Letchworth, Hertfordshire, England: Research Studies Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

W, Currie Brian, and Haykin S. S. 1931-, eds. Detection and classification of ice. Letchworth: Research Studies, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Davies, Coach, and United States. National Aeronautics and Space Administration., eds. The detection of water ice in comet Hale-Bopp. 7th ed. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

K, Davies J., and United States. National Aeronautics and Space Administration., eds. The detection of water ice in comet Hale-Bopp. 7th ed. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ryan, Joseph Patrick. Assessment of marine radars for the detection of ice and icebergs. Ottawa: Environmental Studies Revolving Funds, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Canada Oil and Gas Lands Administration. Evaluation of two search radar systems for detection of ice masses. [Ottawa: Energy, Mines and Resources], 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Environmental Studies Revolving Funds (Canada). Evaluation of two search radar systems for detection of ice masses. S.l: s.n, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Environmental Studies Revolving Funds (Canada). Assessment of marine radars for the detection of ice and icebergs. S.l: s.n, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ice Detection"

1

Yu, Kegen. "Sea Ice Detection." In Navigation: Science and Technology, 163–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0411-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Binglin, Gabriel Thomas, and Dexter Williams. "Ice Detection on Electrical Power Cables." In Advances in Visual Computing, 355–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27863-6_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rösel, Anja. "Physical Characteristics of Sea Ice." In Detection of Melt Ponds on Arctic Sea Ice with Optical Satellite Data, 7–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37033-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kofman, Wlodek, Roberto Orosei, and Elena Pettinelli. "Radar Signal Propagation and Detection Through Ice." In Satellites of the Outer Solar System, 247–69. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7439-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Yuhao, Yong Yin, and Shuai Gao. "Research on the Sea Ice Modeling and Collision Detection in Ice Navigation Scene." In AsiaSim 2012, 149–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34387-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fukumi, Minoru, Taketsugu Nagao, Yasue Mitsukura, and Rajiv Khosla. "Drift Ice Detection Using a Self-organizing Neural Network." In Lecture Notes in Computer Science, 1268–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552413_181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Quan, Liang, Feng Zhihui, Zhu Xin, Zhang Zicheng, Ji Wei, and Kuo-Chi Chang. "Ice Detection Transmission Line Based on Improved Census Transform." In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021), 669–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76346-6_59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fingas, Merv, and Carl E. Brown. "Detection of Oil in, with, and under Ice and Snow." In Handbook of Oil Spill Science and Technology, 385–94. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118989982.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Heath, D. M., and William P. Winfree. "Quantitative Thickness Measurements of Ice Layers with Remote IR Detection." In Review of Progress in Quantitative Nondestructive Evaluation, 1161–68. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2848-7_149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Capra, A., M. Frezzotti, F. Mancini, F. Radicioni, and L. Vittuari. "GPS for ice sheet movement monitoring and grounding line detection." In Geodesy on the Move, 486–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72245-5_82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ice Detection"

1

DeAnna, Russell G., Mehran Mehregany, and Shuvo Roy. "Microfabricated ice-detection sensor." In Smart Structures and Materials '97, edited by Vijay K. Varadan and Paul J. McWhorter. SPIE, 1997. http://dx.doi.org/10.1117/12.276618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jarvinen, Philip. ""Aircraft Ice Detection Method"." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wallace, Randy, and Galdemir Botura. "Development of ICE/NO-ICE Sensor System for in-Flight Ice Detection." In FAA In-flight Icing / Ground De-icing International Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Deiler, Christoph, and Nicolas Fezans. "Performance-Based Ice Detection Methodology." In AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-3394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

PASERO, EROS, MARCO RICCARDI, and TASSILO MEINDL. "MULTI-FREQUENCY ICE DETECTION SYSTEM." In Proceedings of the 10th Italian Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812833532_0098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Seckel, David. "In-ice radio detection of GZK neutrinos." In First international workshop on the radio detection of high energy particles. AIP, 2001. http://dx.doi.org/10.1063/1.1398173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abdalla, Younis E., M. T. Iqbal, and M. Shehata. "Black Ice detection system using Kinect." In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017. http://dx.doi.org/10.1109/ccece.2017.7946722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jackson, Darren G., and Joshua I. Goldberg. "Ice Detection Systems: A Historical Perspective." In 2007 SAE Aircraft and Engine Icing International Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-3325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SPRIGGS, T. "An ice detection system for helicopters." In Digital Avionics Systems Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Waldmann, C., and A. Nikolovska. "Acoustic detection of ice cracking events." In 2008 New Trends for Environmental Monitoring Using Passive Systems (PASSIVE 2008). IEEE, 2008. http://dx.doi.org/10.1109/passive.2008.4787004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ice Detection"

1

Nielsen, P. A., and John Thomas. Signal Detection in Arctic Under-Ice Noise. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada204175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Couture, N., and S. Wolfe. Ground ice detection and implications for permafrost geomorphology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2010. http://dx.doi.org/10.4095/263376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Couture, N. Ground ice detection and implications for permafrost geomorphology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2010. http://dx.doi.org/10.4095/263383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brock, Billy C. On the detection of crevasses in glacial ice with synthetic-aperture radar. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/989382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meitzler, Thomas, Elena Bankowski, David Bednarz, Mary Bienkowski, Jennifer Bishop, Darryl Bryk, Kimberly Lane, EJ Sohn, and John Vala. A Survey and Comparison of Several Space Shuttle External Tank (ET) Ice/Frost Detection and Evaluation Systems. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada461159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lever, James, Allan Delaney, Laura Ray, E. Trautman, Lynette Barna, and Amy Burzynski. Autonomous GPR surveys using the polar rover Yeti. Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43600.

Повний текст джерела
Анотація:
The National Science Foundation operates stations on the ice sheets of Antarctica and Greenland to investigate Earth’s climate history, life in extreme environments, and the evolution of the cosmos. Understandably, logistics costs predominate budgets due to the remote locations and harsh environments involved. Currently, manual ground-penetrating radar (GPR) surveys must preceed vehicle travel across polar ice sheets to detect subsurface crevasses or other voids. This exposes the crew to the risks of undetected hazards. We have developed an autonomous rover, Yeti, specifically to conduct GPR surveys across polar ice sheets. It is a simple four-wheel-drive, battery-powered vehicle that executes autonomous surveys via GPS waypoint following. We describe here three recent Yeti deployments, two in Antarctica and one in Greenland. Our key objective was to demonstrate the operational value of a rover to locate subsurface hazards. Yeti operated reliably at −30 ◦C, and it has good oversnow mobility and adequate GPS accuracy for waypoint-following and hazard georeferencing. It has acquired data on hundreds of crevasse encounters to improve our understanding of heavily crevassed traverse routes and to develop automated crevasse-detection algorithms. Importantly, it helped to locate a previously undetected buried building at the South Pole. Yeti can improve safety by decoupling survey personnel from the consequences of undetected hazards. It also enables higher-quality systematic surveys to improve hazard-detection probabilities, increase assessment confidence, and build datasets to understand the evolution of these regions. Yeti has demonstrated that autonomous vehicles have great potential to improve the safety and efficiency of polar logistics.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Martin, Shawn Bryan, Mark Steven Derzon, Ronald F. Renzi, and Gordon Andrew Chandler. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/934580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bjella, Kevin, Yuri Shur, Misha Kanevskiy, Paul Duvoy, Bruno Grunau, John Best, Stephen Bourne, and Rosa Affleck. Improving design methodologies and assessment tools for building on permafrost in a warming climate. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38879.

Повний текст джерела
Анотація:
The U.S. Department of Defense (DoD) operates numerous Arctic and Subarctic installations, including Alaska. Changes to permafrost can threaten critical built infrastructure. It is critical to accurately characterize and compare site conditions in permafrost regions to enable the efficient, cost-effective design and construction of an infrastructure well suited to the permafrost environment and that meets DoD requirements. This report describes three research efforts to establish (1) field investigation approaches for ground ice detection and delineation, (2) methods and modeling for early warning detection of thawing permafrost under infrastructure, and (3) an outline of a decision support system that determines the most applicable foundation design for warming and degrading permafrost. Outcomes of these interrelated efforts address needs to improve construction of DoD mission critical infrastructure on Arctic and Subarctic permafrost terrains. Field investigation processes used systematic methodologies including borehole data and geophysical measurements to effectively characterize subsurface permafrost information. The Permafrost Foundation Decision Support System (PFFDSS) tool implements and logically links field survey information and foundation type assessments. The current version of PFFDSS is designed to be accessible to design-engineers of a broad range of experience, that will reduce the effort and cost, and improve the effectiveness of site assessment.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bounds, John Alan. Mod 1 ICS TI Report: ICS Conversion of a 140% HPGe Detector. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1261788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wierbowski, D., F. Detienne, and P. Sethi. A Quick Crash Detection Method for the Internet Key Exchange Protocol (IKE). Edited by Y. Nir. RFC Editor, June 2011. http://dx.doi.org/10.17487/rfc6290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії