Добірка наукової літератури з теми "Hypersonic propulsion and hypersonic aerothermodynamics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hypersonic propulsion and hypersonic aerothermodynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hypersonic propulsion and hypersonic aerothermodynamics"

1

de Araujo Martos, João Felipe, Israel da Silveira Rêgo, Sergio Nicholas Pachon Laiton, Bruno Coelho Lima, Felipe Jean Costa, and Paulo Gilberto de Paula Toro. "Experimental Investigation of Brazilian 14-X B Hypersonic Scramjet Aerospace Vehicle." International Journal of Aerospace Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/5496527.

Повний текст джерела
Анотація:
The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet) to be tested in flight into the Earth’s atmosphere at an altitude of 30 km and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, Institute for Advanced Studies (IEAv), Brazil. The IEAv T3 Hypersonic Shock Tunnel is a ground-test facility able to produce high Mach number and high enthalpy flows in the test section close to those encountered during the flight of the 14-X B into the Earth’s atmosphere at hypersonic flight speeds. A 1 m long stainless steel 14-X B model was experimentally investigated at T3 Hypersonic Shock Tunnel, for freestream Mach numbers ranging from 7 to 8. Static pressure measurements along the lower surface of the 14-X B, as well as high-speed Schlieren photographs taken from the 5.5° leading edge and the 14.5° deflection compression ramp, provided experimental data. Experimental data was compared to the analytical theoretical solutions and the computational fluid dynamics (CFD) simulations, showing good qualitative agreement and in consequence demonstrating the importance of these methods in the project of the 14-X B hypersonic scramjet aerospace vehicle.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sarosh, Ali, Dong Yun Feng, and Muhammad Adnan. "An Aerothermodynamic Design Approach for Scramjet Combustors and Comparative Performance of Low-Efficiency Systems." Applied Mechanics and Materials 110-116 (October 2011): 4652–60. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.4652.

Повний текст джерела
Анотація:
This paper is aimed at development of an integrated approach based on analytical and computational aerothermodynamics for the special case of design of a 75% (low process-efficiency), hydrogen-fuelled, constant area combustor of a hypersonic airbreathing propulsion (HAP) system thereafter undertaking study of two types of HAP systems. The results of configurational aerothermodynamics implied that the most appropriate constant area configuration had a 30 degrees downstream wall-mounted fuel injector with a single acoustically stable cavity placed downstream of the fuel injection point. Moreover for identical flow inlet parameters and system configurations at lower levels of thermodynamic process efficiencies, the constant combustor-area (i.e. Scramjet 1) engine is superior in its performance to the constant combustor-pressure (i.e. Scramjet 2) engine for all values of fuel-air ratios.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Park, Chul, and Wayland Griffith. "Nonequilibrium Hypersonic Aerothermodynamics." Physics Today 44, no. 2 (February 1991): 98. http://dx.doi.org/10.1063/1.2809999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cheng, Sin-I. "Hypersonic propulsion." Progress in Energy and Combustion Science 15, no. 3 (January 1989): 183–202. http://dx.doi.org/10.1016/0360-1285(89)90008-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Treanor, Charles E. "Book Review: Nonequilibrium Hypersonic Aerothermodynamics." AIAA Journal 29, no. 5 (May 1991): 857–58. http://dx.doi.org/10.2514/3.59940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chapman, Gary T. "An overview of hypersonic aerothermodynamics." Communications in Applied Numerical Methods 4, no. 3 (May 1988): 319–25. http://dx.doi.org/10.1002/cnm.1630040305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Park, Chul. "Hypersonic Aerothermodynamics: Past, Present and Future." International Journal of Aeronautical and Space Sciences 14, no. 1 (March 30, 2013): 1–10. http://dx.doi.org/10.5139/ijass.2013.14.1.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sinha, Krishnendu. "Computational Fluid Dynamics in Hypersonic Aerothermodynamics." Defence Science Journal 60, no. 6 (November 20, 2010): 663–71. http://dx.doi.org/10.14429/dsj.60.604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bose, Deepak, James L. Brown, Dinesh K. Prabhu, Peter Gnoffo, Christopher O. Johnston, and Brian Hollis. "Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability." Journal of Spacecraft and Rockets 50, no. 1 (January 2013): 12–18. http://dx.doi.org/10.2514/1.a32268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lofthouse, Andrew J., Iain D. Boyd, and Michael J. Wright. "Effects of continuum breakdown on hypersonic aerothermodynamics." Physics of Fluids 19, no. 2 (February 2007): 027105. http://dx.doi.org/10.1063/1.2710289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hypersonic propulsion and hypersonic aerothermodynamics"

1

Fico, Vincenzo. "A high-order method for computational hypersonic aerothermodynamics." Thesis, University of Strathclyde, 2011. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fiala, Abderrahmane. "Aerothermodynamics of turbulent spots and wedges at hypersonic speeds." Thesis, Imperial College London, 2005. http://hdl.handle.net/10044/1/12013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Song, Dong Joo. "Hypersonic nonequilibrium flow over an ablating teflon surface." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/71192.

Повний текст джерела
Анотація:
A complex chemical system of teflon/air mixture over an axisymmetric decoy at hypersonic reentry flight conditions has been analyzed by using the nonequilibrium viscous shock-layer method. The equilibrium catalytic wall boundary condition was used to obtain the species concentration at the wall. The species conservation equation for binary mixture (air/teflon) was solved to obtain the concentration of freestream air at the wall. Two test cases were chosen to demonstrate the capability of the current code. Due to lack of experimental or theoretical data, the surface measurable quantities from the current code(VSLTEF) were compared with the equivalent air injection and no-mass injection data obtained from VSL7S code. The current code predicts a higher total heat-transfer rate than that predicted by the seven species nonequilibrium air code (VSL7S) with the same injection rate due to the high diffusional heat-transfer rate. The wall pressure was not affected by blowing, while the skin-friction coefficient was decreased (i.e., 43 % reduction for teflon ablation case ; 53 % for nonequilibrium air injection case at 125 kft) when compared with that of no-mass injection case. A shock-layer peak temperature drop ( 1512° R for 125 kft altitude and 848°R for 175 kft altitude) was observed at both cases. The temperature drops were chiefly due to endothermic reactions (dissociation) of the teflon ablation species. Due to large blowing of teflon, the average molecular weight increased substantially and resulted in a reduction of the specific heat ratio γ and an increase in the Prandtl number at the wall. The impurity of sodium was the major source of free electrons near the wall at the end of the vehicle at 125 kft altitude; however, at 175 kft altitude NO⁺ was the major source of free electrons over the entire body. The peak concentration of Na⁺ increased along the body, but that of NO⁺ decreased at both altitudes; While the chemical reaction rate data used is believed to be the best currently available, uncertainties in this data as were cited by Cresswell et al.(1967) may lead to quantitative changes in the above teflon ablation results.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wilson, Althea Grace. "Numerical study of energy utilization in nozzle/plume flow-fields of high-speed air-breathing vehicles." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Wilson_09007dcc804d881b.pdf.

Повний текст джерела
Анотація:
Thesis (M.S.)--Missouri University of Science and Technology, 2008.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 25, 2008) Includes bibliographical references (p. 57).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bae, Yoon-Yeong. "Performance of an aero-space plane propulsion nozzle /." Full-text version available from OU Domain via ProQuest Digital Dissertations, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

DellaFera, Andrew Brian. "Optimization of Hypersonic Airbreathing Propulsion Systems through Mixed Analysis Methods." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/95512.

Повний текст джерела
Анотація:
Accurate flow path modeling of scramjet engines is a key step in the development of an airframe integrated engine for hypersonic vehicles. A scramjet system model architecture is proposed and implemented using three different engine components: the isolator, combustor, and nozzle. For each component a set of intensive properties are iterated to match prescribed conditions, namely the mass flow. These low-fidelity one-dimensional models of hypersonic propulsion systems are used in tandem with Sandia Labs' Dakota optimization toolbox with the goal of accelerating the design and prototyping process. Simulations were created for the various components of the propulsion system and tied together to provide information for the entire flow-path of the engine given an inlet state. The isolator model incorporated methods to compute the intensive properties such as temperature and pressure of the flow path whether a shock-train exists internally as a dual-mode ramjet or if the engine is operating as a pure scramjet with a shock free isolator. A Fanno flow-like model was implemented to determine the friction losses in the isolator and a relation is iterated upon to determine the strength and length of the shock train. Two combustor models were created, the first of which uses equilibrium chemistry to estimate the state of the flow throughout the combustor and nozzle. Going one step further, the second model uses a set of canonical reactors to capture the non-equilibrium effects that may exist in the combustor/nozzle. The equilibrium combustor model was created to provide faster calculations in early iterations, and the reactor model was created to provide more realistic data despite its longer computational time. The full engine model was then compared and validated with experimental data from a scramjet combustor rig. The model is then paired with an optimization toolbox to yield a preliminary engine design for a provided design space, using a finite element analysis to ensure a feasible design. The implemented finite element analysis uses a coarse mesh with simple geometry to reduce computational time while still yielding sufficiently accurate results. The results of the optimization are then available as the starting point for higher fidelity analyses such as 2-D or 3-D computational fluid dynamics.
Master of Science
Ramjets and scramjets are the key to sustained flight at speeds above five times the speed of sound. These propulsion systems pose a challenging simulation environment due to the wide range of flow seen by the system structure. A scramjet simulation model is formulated using a series of combustion models with the goal of accurately modelling the combustion processes throughout the engine. The combustor model is paired with an isolator model and the engine model is compared against previous studies. A structural analysis model is then paired with the engine simulation, and the combined model is used within an optimizer to find an optimum design.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Halls-Moore, Michael Louis. "Computational modelling of hypersonic propulsion intakes at off-design conditions." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/59000.

Повний текст джерела
Анотація:
Hypersonic airbreathing propulsion is soon to become a viable means of transportation and hence determination of engine efficiency at varying flow conditions is important. This report contains the summary of literature surveyed on hypersonic airbreathing propulsion and intake design. An overview of ramjet/scramjets and flow factors that affect their efficiency were studied. A 2D planar intake was studied to generate Mach reflections via a shock-expansion interaction. The Mach reflection geometry was predicted with a slipstream profiler and an algebraic model, which was compared to finite volume based CFD code. An axisymmetric intake with a similar configuration to the planar intake was used to generate shock-expansion interactions. A Method of Characteristics code was written to predict the Von Neumann and Detachment Criteria for the transition between regular and Mach reflections. CFD was used to confirm the existence of a shock reflection transition hysteresis in a traverse of this dual solution domain. An increase in the freestream Mach number and initial flow angle for the planar intakes led to a complex subsonic/supersonic flowfield involving multiple shock reflections and interactions, known as a Type 3 Mach reflection. A temporal analysis was carried out to provide insight into the development of the Type 3 case using CFD. The initial flow angle was increased sequentially to assess the affect on the flowfield topology.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zoebelein, Till. "Development of an LU-scheme for the solution of hypersonic non-equilibrium flow." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/12509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Silton, Sidra Idelle. "Ablation onset in unsteady hypersonic flow about nose-tips with a forward-facing cavity." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3023560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gupta, Anurag. "The artificially blunted leading edge concept for aerothermodynamic performance enhancement." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/12442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Hypersonic propulsion and hypersonic aerothermodynamics"

1

T, Pratt David, ed. Hypersonic airbreathing propulsion. Washington, D.C: American Institute of Aeronautics and Astronautics, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Heiser, William H. Hypersonic airbreathing propulsion: With Daniel H. Daley and Unmeel B. Mehta. Washington, D.C: American Institute of Aeronautics and Astronautics, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hypersonic aerothermodynamics. Washington, DC: American Institute of Aeronautics and Astronautics, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Park, Chul. Nonequilibrium hypersonic aerothermodynamics. New York: Wiley, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Hypersonic combined cycle propulsion. Neuilly sur Seine, France: AGARD, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Hypersonic combined cycle propulsion. Neuilly sur Seine, France: AGARD, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coons, L. L. Propulsion challenges of hypersonic flight. New York: AIAA, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Special course on aerothermodynamics of hypersonic vehicles. Neuilly sur Seine, France: AGARD, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kors, David L. Combined cycle propulsion for hypersonic flight. New York: AIAA, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ahuja, J. K. Investigation of hypersonic shock-induced combustion in a hydrogen-air system. Washington, D. C: American Institute of Aeronautics and Astronautics, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hypersonic propulsion and hypersonic aerothermodynamics"

1

Povinelli, Louis A. "CFD for Hypersonic Propulsion." In Hypersonic Flows for Reentry Problems, 170–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84580-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Viviani, Antonio, and Giuseppe Pezzella. "Basics of Hypersonic Aerodynamics and Aerothermodynamics." In Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles, 1–125. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13927-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Candler, Graham V., Pramod K. Subbareddy, and Ioannis Nompelis. "CFD Methods for Hypersonic Flows and Aerothermodynamics." In Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances, 203–37. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015. http://dx.doi.org/10.2514/5.9781624103292.0203.0238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Povinelli, Louis A. "Applications of CFD for Hypersonic Propulsion." In Instabilities and Turbulence in Engineering Flows, 333–48. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1743-2_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cambier, J. L., and H. G. Adelman. "The PDWA Concept for Hypersonic Propulsion." In Fluid Mechanics and Its Applications, 285–97. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5432-1_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hirschel, E. H. "Hot Experimental Technique: a New Requirement of Aerothermodynamics." In New Trends in Instrumentation for Hypersonic Research, 25–39. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1828-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pandolfi, M., and S. Borrelli. "An Upwind Formulation for Hypersonic Nonequilibrium Flows." In Modern Research Topics in Aerospace Propulsion, 213–26. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0945-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chazot, Olivier, and Francesco Panerai. "High-Enthalpy Facilities and Plasma Wind Tunnels for Aerothermodynamics Ground Testing." In Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances, 329–42. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015. http://dx.doi.org/10.2514/5.9781624103292.0329.0342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leyland, Pénélope, Françoise Perrel, and Jan B. Vos. "Application of Multiblock Codes for Computational Aerothermodynamics of Hypersonic Vehicles." In Shock Waves @ Marseille I, 335–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78829-1_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McDaniel, J. C., S. D. Hollo, and K. G. Klavuhn. "Planar Velocimetry in High-Speed Aerodynamic and Propulsion Flowfields." In New Trends in Instrumentation for Hypersonic Research, 381–90. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1828-6_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hypersonic propulsion and hypersonic aerothermodynamics"

1

Toro, P. G. P., M. A. S. Minucci, J. B. Chanes, A. C. Oliveira, F. A. A. Gomes, L. N. Myrabo, Henry T. Nagamatsu, and Andrew V. Pakhomov. "New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu." In BEAMED ENERGY PROPULSION: Fifth International Symposium on Beamed Energy Propulsion. AIP, 2008. http://dx.doi.org/10.1063/1.2931888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barros, José E., Marco Gabaldo, and Marcelo D. Guerra. "Aerothermodynamics cycle model for new hypersonic propulsion: Rocket Ignited Supersonic Combustion Ram Jet." In 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eyi, Sinan. "Aerothermodynamic Design Optimization in Hypersonic Flows." In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MILLER, III, C. "Hypersonic aerodynamic/aerothermodynamic testing capabilities at Langley Research Center." In 28th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-3937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Itoh, Katsuhiro, Shuichi Ueda, Tomoyuki Komuro, Kazuo Sato, Hideyuki Tanno, and Masahiro Takahashi. "Hypervelocity aerothermodynamic and propulsion research using a high enthalpy shock tunnel HIEST." In 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gabaldo, Marco, Jose E. Barros, Marcelo D. Guerra, and Eduardo Oliveira. "Aerothermodynamic simulation model for new hypersonic propulsion: Rocket Ignited Supersonic Combustion Ram Jet." In AIAA SPACE 2016. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-5323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lopez-Reig, J., R. Rebolo, A. Matesanz, A. Velazquez, and M. Rodriguez. "Integration of hypersonic aerothermodynamics design methods." In Space Plane and Hypersonic Systems and Technology Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Sijun, and Ed Blosch. "Hypersonic Nonequilibrium Aerothermodynamics in CFD-FASTRAN." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37296.

Повний текст джерела
Анотація:
This paper presents the implementation of a state of the art Navier-Stokes code CFD-FASTRAN capable of simulating flow in thermochemical non-equilibrium. CFD-FASTRAN models the fluid as a reacting gas in chemical and thermal non-equilibrium using standard finite rate chemistry models and a two-temperature model for the gas. To validate, a code-to-code comparison between LAURA code and CFD-FASTRAN was carried out.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berger, Karen T., Kevin E. Hollingsworth, Shelia A. Wright, and Shann J. Rufer. "NASA Langley Aerothermodynamics Laboratory: Hypersonic Testing Capabilities." In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lofthouse, Andrew, Iain Boyd, and Michael Wright. "Effects of Continuum Breakdown on Hypersonic Aerothermodynamics." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hypersonic propulsion and hypersonic aerothermodynamics"

1

Holden, Michael S., Timothy P. Wadhams, Gregory J. Smolinski, Ronald A. Parker, and John K. Harvey. Experimental Studies of Shock Interaction Phenomena Associated with Hypersonic Airbreathing Propulsion. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada400749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії