Добірка наукової літератури з теми "Hydrostatic models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hydrostatic models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hydrostatic models"
Hasegawa, Tatsuhiko. "Hydrostatic models of Bok globules." Astrophysics and Space Science 119, no. 1 (January 1986): 151–54. http://dx.doi.org/10.1007/bf00648835.
Повний текст джерелаWhite, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth. "Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic." Quarterly Journal of the Royal Meteorological Society 131, no. 609 (July 1, 2005): 2081–107. http://dx.doi.org/10.1256/qj.04.49.
Повний текст джерелаGibbon, J. D., and D. D. Holm. "Extreme events in solutions of hydrostatic and non-hydrostatic climate models." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1939 (March 28, 2011): 1156–79. http://dx.doi.org/10.1098/rsta.2010.0244.
Повний текст джерелаDeupree, Robert G. "Multidimensional Hydrodynamic and Hydrostatic Stellar Models." Symposium - International Astronomical Union 215 (2004): 378–87. http://dx.doi.org/10.1017/s0074180900195919.
Повний текст джерелаDuffy, Dean G. "Hydrostatic Adjustment in Nonhydrostatic, Compressible Mesoscale Models." Monthly Weather Review 125, no. 12 (December 1997): 3357–67. http://dx.doi.org/10.1175/1520-0493(1997)125<3357:haincm>2.0.co;2.
Повний текст джерелаAscasibar, Y., A. C. Obreja, and A. I. Díaz. "Hydrostatic photoionization models of the Orion Bar." Monthly Notices of the Royal Astronomical Society 416, no. 2 (July 11, 2011): 1546–55. http://dx.doi.org/10.1111/j.1365-2966.2011.19151.x.
Повний текст джерелаZingale, M., L. J. Dursi, J. ZuHone, A. C. Calder, B. Fryxell, T. Plewa, J. W. Truran, et al. "Mapping Initial Hydrostatic Models in Godunov Codes." Astrophysical Journal Supplement Series 143, no. 2 (December 2002): 539–65. http://dx.doi.org/10.1086/342754.
Повний текст джерелаGuerra, Jorge E., and Paul A. Ullrich. "A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models." Geoscientific Model Development 9, no. 5 (June 1, 2016): 2007–29. http://dx.doi.org/10.5194/gmd-9-2007-2016.
Повний текст джерелаSavoulides, N., K. S. Breuer, S. Jacobson, and F. F. Ehrich. "Low-Order Models for Very Short Hybrid Gas Bearings." Journal of Tribology 123, no. 2 (June 16, 2000): 368–75. http://dx.doi.org/10.1115/1.1308000.
Повний текст джерелаKållberg, P., and A. Montani. "A case study carried out with two different NWP systems." Natural Hazards and Earth System Sciences 6, no. 5 (September 4, 2006): 755–60. http://dx.doi.org/10.5194/nhess-6-755-2006.
Повний текст джерелаДисертації з теми "Hydrostatic models"
Ye, Feng. "Derivation of a two-layer non-hydrostatic shallow water model." Thesis, Water Resources Research Center, University of Hawaii at Manoa, 1995. http://hdl.handle.net/10125/21919.
Повний текст джерелаThesis (M. S.)--University of Hawaii at Manoa, 1995.
Includes bibliographical references (leaves 55-59).
UHM: Has both book and microform.
U.S. Geological Survey; project no. 06; grant agreement no. 14-08-0001-G2015
Zhang, Yuli. "Free wobble/nutation of the earth : a new approach for hydrostatic earth models /." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0008/MQ34243.pdf.
Повний текст джерелаLeague, Richard B. "Bond graph model and computer simulation of a hydrostatic drive test stand." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/50042.
Повний текст джерелаMaster of Science
incomplete_metadata
Gonzaga, F. Luis F. "Static pressure drop as affected by moisture and foreign material in rough rice." Thesis, Kansas State University, 1985. http://hdl.handle.net/2097/9843.
Повний текст джерелаBulian, Gabriele. "DEVELOPMENT OF ANALYTICAL NONLINEAR MODELS FOR PARAMETRIC ROLL AND HYDROSTATIC RESTORING VARIATIONS IN REGULAR AND IRREGULAR WAVES." Doctoral thesis, Università degli studi di Trieste, 2006. http://hdl.handle.net/10077/2518.
Повний текст джерелаParametrically excited roll motion has become a relevant technical issue, especially in recent years, due the increasing number of accidents related to this phenomenon. For this reason, its study has attracted the interest of researchers, regulatory bodies and classification societies. The objective of this thesis is the developing of nonlinear analytical models able to provide simplified tools for the analysis of parametrically excited roll motion in longitudinal regular and irregular long crested waves. The sought models will take into account the nonlinearities of restoring and of damping, in order to try filling the gap with the analytical modelling in beam sea. In addition, semi-empirical methodologies will be provided to try extending the usual static approach to ship stability based on the analysis of GZ curve, in a probabilistic framework where the propensity of the ship to exhibit restoring variations in waves is rationally accounted for. The thesis addresses three main topics: the modelling of parametric roll in regular sea (Chapter 2 to Chapter 5), the modelling of parametric roll motion in irregular long crested sea (Chapter 6 and Chapter 7) and the extension of deterministic stability criteria based on the analysis of geometrical GZ curve properties to a probabilistic framework (Chapter 8). Chapter 1 gives an introduction, whereas Chapter 9 reports a series of final remarks. For the regular sea case an analytical model is developed and analysed both in time domain and in frequency domain. In this latter case an approximate analytical solution for the nonlinear response curve in the first parametric resonance region is provided by using the approximate method of averaging. Prediction are compared with experimental results for four ships, and the analytical model is investigated with particular attention to the presence of multiple stable steady states and the inception of chaotic motions. The influence of harmonic components higher than the first one in the fluctuation of the restoring is also investigated. In the case of irregular sea, the Grim's effective wave concept is used to develop an analytical model for the long crested longitudinal sea condition, that allows for an approximate analytical determination of the stochastic stability threshold in the first parametric resonance region. Experimental results are compared with Monte Carlo simulations on a single ship, showing the necessity of a tuning factor reducing the hydrostatically predicted magnitude of parametric excitation. The non-Gaussianity of parametrically excited roll motion is also discussed. Finally, on the basis of the analytical modelling of the restoring term in irregular waves, an extension of the classical deterministic approach to ship static stability in calm water is proposed, to take into account, although is a semi-empirical form, restoring variations in waves. Classical calm water GZ curve is then extended from a deterministic quantity to a stochastic process. By limiting the discussion to the instantaneous ensemble properties of this process, it is shown how it is possible to extend any static stability criterion based on the geometrical properties of the GZ curve, in a rational probabilistic framework taking into account the actual operational area of the ship and the propensity of the ship to show restoring variations in waves. General measures of restoring variations are also discussed, such as the coefficient of variation of metacentric height, restoring lever and area under GZ. Both the short-term and long-term point of view are considered, and the method is applied to three different ships in different geographical areas.
Minář, Petr. "Návrh a optimalizace prostoru hydrostatické kapsy." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229483.
Повний текст джерелаMiller, Adam Charles. "Assessment of Alternate Viscoelastic Contact Models for a Bearing Interface between an Axial Piston Pump Swash Plate and Housing." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1403274866.
Повний текст джерелаCarlsson, Erik. "Modeling Hydrostatic Transmission in Forest Vehicle." Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-6864.
Повний текст джерелаHydrostatic transmission is used in many applications where high torque at low speed is demanded. For this project a forest vehicle is at focus. Komatsu Forest would like to have a model for the pressure in the hose between the hydraulic pump and the hydraulic motor. Pressure peaks can arise when the vehicle changes speed or hit a bump in the road, but if a good model is achieved some control action can be developed to reduce the pressure peaks.
For simulation purposes a model has been developed in Matlab-Simulink. The aim has been to get the simulated values to agree as well as possible with the measured values of the pressure and also for the rotations of the pump and the motor.
The greatest challenge has been due to the fact that the pressure is a sum of two flows, if one of these simulated flows is too big the pressure will tend to plus or minus infinity. Therefore it is necessary to develop models for the rotations of the pump and the motor that stabilize the simulated pressure.
Different kinds of models and methods have been tested to achieve the present model. Physical modeling together with a black box model are used. The black box model is used to estimate the torque from the diesel engine. The probable torque from the ground has been calculated. With this setup the simulated and measured values for the pressure agrees well, but the fit for the rotations are not as good.
Marien, Lennart Christopher [Verfasser]. "Towards well-balancing the regional hydrostatic climate model REMO / Lennart Christopher Marien." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2019. http://d-nb.info/1229625690/34.
Повний текст джерелаJúnior, Francival Barbosa. "Analysis of electro-hydrostatic actuator in more electric aircraft." Instituto Tecnológico de Aeronáutica, 2006. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=900.
Повний текст джерелаКниги з теми "Hydrostatic models"
Haase, Günther. A physical initialization algorithm for non-hydrostatic weather prediction models using radar derived rain rates. St. Augustin [Germany]: Asgard Verlag, 2002.
Знайти повний текст джерелаCastillo, Henry A. Optimum design of isotropic monocoque and ring-stiffened circular cylindrical shells subject to external hydrostatic pressure. Monterey, California: Naval Postgraduate School, 1992.
Знайти повний текст джерелаD, Roberts Gary, Gilat Amos, and NASA Glenn Research Center, eds. Implementation of an associative flow rule including hydrostatic stress effects into the high strain rate deformation analysis of polymer matrix composites. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Знайти повний текст джерелаRobinson, David N. A hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаQ, Tao, Verrilli M. J, and United States. National Aeronautics and Space Administration., eds. A hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Observational and numerical studies of extreme frontal scale contraction: Final report, NASA project NAG 5-2589, July 1, 1994-August 31, 1995. Raleigh, NC: Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 1995.
Знайти повний текст джерелаCanada. Defence Research Establishment Atlantic. Shipmo4: An Updated User's Manual For the Shipmo Computer Program Incorporating an Extended Hydrostatics Capability and an Improved Viscous Roll Damping Model. S.l: s.n, 1987.
Знайти повний текст джерелаYudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.
Повний текст джерелаauthor, Kreter Fabian, Archimedes, and Archimedes, eds. Heureka!: Francisco de Mello über das Archimedische Prinzip. Hildesheim: Georg Olms Verlag, 2015.
Знайти повний текст джерелаA hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаЧастини книг з теми "Hydrostatic models"
Satoh, Masaki. "Vertical discretization of hydrostatic models." In Atmospheric Circulation Dynamics and General Circulation Models, 572–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-13574-3_22.
Повний текст джерелаHasegawa, Tatsuhiko. "Hydrostatic Models of Bok Globules." In Third Asian-Pacific Regional Meeting of the International Astronomical Union, 151–54. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4630-9_35.
Повний текст джерелаJamet, Quentin, Etienne Mémin, Franck Dumas, Long Li, and Pierre Garreau. "Toward a Stochastic Parameterization for Oceanic Deep Convection." In Mathematics of Planet Earth, 143–57. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_6.
Повний текст джерелаSatoh, Masaki. "Basic equations of hydrostatic general circulation models." In Atmospheric Circulation Dynamics and General Circulation Models, 519–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-13574-3_20.
Повний текст джерелаCarroll, John J., Luis R-Mendez-Nuñez, and Saffet Tanrikulu. "Accurate Pressure Gradient Calculations in Hydrostatic Atmospheric Models." In Interactions between Energy Transformations and Atmospheric Phenomena. A Survey of Recent Research, 149–69. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-1911-7_11.
Повний текст джерелаFox-Rabinovitz, Michael S. "Computational Dispersion Properties of 3-D Staggered Grids for Hydrostatic and Non-Hydrostatic Atmospheric Models." In Notes on Numerical Fluid Mechanics (NNFM), 95–101. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-89838-8_13.
Повний текст джерелаYoshizaki, Masanori, Chiashi Muroi, Hisaki Eito, Sachie Kanada, Yasutaka Wakazuki, and Akihiro Hashimoto. "Simulations of Forecast and Climate Modes Using Non-Hydrostatic Regional Models." In High Resolution Numerical Modelling of the Atmosphere and Ocean, 129–39. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-49791-4_8.
Повний текст джерелаTalat Odman, M., and Armistead G. Russell. "Mass Conservative Coupling of Non-Hydrostatic Meteorological Models with Air Quality Models." In Air Pollution Modeling and Its Application XIII, 651–60. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_67.
Повний текст джерелаWolke, Ralf, Oswald Knoth, and Annette Münzenberg-St.Denis. "Online Coupling of Multiscale Chemistry-Transport Models with Non-Hydrostatic Meteorological Models." In Air Pollution Modeling and Its Application XIII, 769–70. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_98.
Повний текст джерелаWan, L., C. Ovalle, and L. Laiarinandrasana. "Modeling the mechanical response of reinforced rubber in taking into account heat build-up and hydrostatic stress." In Constitutive Models for Rubber XII, 53–58. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003310266-10.
Повний текст джерелаТези доповідей конференцій з теми "Hydrostatic models"
Stelling, G. S., and J. van Kester. "Efficient Non Hydrostatic Free Surface Models." In Seventh International Conference on Estuarine and Coastal Modeling. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40628(268)46.
Повний текст джерелаHao Sun, Thomas Meinlschmidt, and Harald Aschemann. "Passivity-based control of a hydrostatic transmission with unknown disturbances." In 2014 19th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2014. http://dx.doi.org/10.1109/mmar.2014.6957331.
Повний текст джерелаCoe, Ryan G., and Diana L. Bull. "Sensitivity of a Wave Energy Converter Dynamics Model to Nonlinear Hydrostatic Models." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41993.
Повний текст джерелаDanh, Dang Ngoc, and Harald Aschemann. "Comparison of Estimator-Based Compensation Schemes for Hydrostatic Transmissions with Uncertainties." In 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2018. http://dx.doi.org/10.1109/mmar.2018.8486052.
Повний текст джерелаRitzke, Joran, Jens Windelberg, and Harald Aschemann. "Fault detection for a hydrostatic drive chain using online parameter estimation." In 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2012. http://dx.doi.org/10.1109/mmar.2012.6347890.
Повний текст джерелаBöhle, M., Y. Gu, and A. Schimpf. "Two Flow Models for Designing Hydrostatic Bearings With Porous Material." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4657.
Повний текст джерелаHasebe, Masanobu, and Shigeru Tabeta. "Unsteady Buoyant Jet Simulations Using Dynamic Connection Scheme of Hydrostatic and Non-Hydrostatic Zone." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20666.
Повний текст джерелаPeres, G., F. Reale, and L. Golub. "Hydrostatic models of X-ray coronal loops observed by NIXT." In Electromechanical Coupling of the Solar Atmosphere. AIP, 1992. http://dx.doi.org/10.1063/1.42871.
Повний текст джерелаDanh, Dang Ngoc, and Harald Aschemann. "Tracking Differentiator-Based Sliding Mode Velocity Control of a Hydrostatic Transmission." In 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2021. http://dx.doi.org/10.1109/mmar49549.2021.9528444.
Повний текст джерелаAschemann, Harald, and Julia Kersten. "Observer-based decentralised control of a wind turbine with a hydrostatic transmission." In 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR ). IEEE, 2015. http://dx.doi.org/10.1109/mmar.2015.7283991.
Повний текст джерелаЗвіти організацій з теми "Hydrostatic models"
Hodges, Ben R. Evolution of Internal Waves in Hydrostatic Models. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625163.
Повний текст джерелаHodges, Ben R. Evolution of Internal Waves in Hydrostatic Models. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada626974.
Повний текст джерелаFan, Yalin, Zhitao Yu, and Fengyan Shi. Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts. Fort Belvoir, VA: Defense Technical Information Center, November 2016. http://dx.doi.org/10.21236/ada640860.
Повний текст джерелаAllen, John S. Effects of Turbulence Parameterization Schemes in Hydrostatic and Nonhydrostatic Shelf Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625208.
Повний текст джерелаAllen, John S. Effects of Turbulence Parameterization Schemes in Hydrostatic and Nonhydrostatic Shelf Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada627034.
Повний текст джерелаTandon, Samarth, Pablo Cazenave, and Ming Gao. PR-328-103602-R01 Improved Site-Selection Modeling by Correlating ILI with Operational-Geotechnical Data. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2017. http://dx.doi.org/10.55274/r0010854.
Повний текст джерелаGallacher, Patrick C. A Regional Modeling Study of the South China Sea with High Resolution Hydrostatic and Nonhydrostatic Nested Models of the Luzon Strait. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573055.
Повний текст джерелаGallacher, Patrick C. A Regional Modeling Study of the South China Sea with High Resolution Hydrostatic and Nonhydrostatic Nested Models of the Luzon Strait. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573280.
Повний текст джерелаBowlin, Elizabeth, Puneet Agarwal, and Rhett Dotson. PR-201-153718-R02 Integrity Assessment of DTI Pipelines Using High Resolution NDE. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2018. http://dx.doi.org/10.55274/r0011480.
Повний текст джерелаBettin, Giorgia, David Lord, and David Keith Rudeen. SPR Hydrostatic Column Model Verification and Validation. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1235644.
Повний текст джерела