Добірка наукової літератури з теми "Hydrogénation – Effets de la chaleur"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hydrogénation – Effets de la chaleur".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hydrogénation – Effets de la chaleur"
Salat, Olivier, and Philippe Verdoolaege. "Effets du stress de chaleur sur la reproduction des vaches laitières." Le Nouveau Praticien Vétérinaire élevages & santé 13, no. 50 (2021): 22–30. http://dx.doi.org/10.1051/npvelsa/50022.
Повний текст джерелаRENAUDEAU, D., N. MANDONNET, M. TIXIER-BOICHARD, J. NOBLET, and J. P. BIDANEL. "Atténuer les effets de la chaleur sur les performances des porcs : la voie génétique." INRAE Productions Animales 17, no. 2 (March 20, 2004): 93–108. http://dx.doi.org/10.20870/productions-animales.2004.17.1.3556.
Повний текст джерелаVida, Stephen. "Chaleur accablante et santé mentale : vulnérabilité des personnes avec troubles mentaux." Dossier : Santé mentale au coeur de la ville I 36, no. 2 (April 2, 2012): 97–121. http://dx.doi.org/10.7202/1008592ar.
Повний текст джерелаEl Bitar, N., and D. Le Bars. "Douleur et thermorégulation Les effets ambivalents de la morphine." Douleur et Analgésie 31, no. 1 (March 2018): 35–61. http://dx.doi.org/10.3166/dea-2018-0002.
Повний текст джерелаSAUVET, F., M. CHENNAOUI, S. BANZET, C. BOURRILHON, F. CANINI, L. BOURDON, and N. KOULMANN. "Coup de chaleur d’exercice, système cardiovasculaire et vulnérabilité systémique." Médecine et Armées Vol. 40 No. 3, Volume 40, Numéro 3 (June 1, 2012): 231–40. http://dx.doi.org/10.17184/eac.6611.
Повний текст джерелаSoualmi, Rabiaa, Abderrahmane Benbrik, Mohammed Cherifi, Denis Lemonnier, and Siham Laouar-Meftah. "Etude numérique de la convection naturelle dans une enceinte rectangulaire en présence d’un gradient de température et une génération de chaleur interne." Journal of Renewable Energies 21, no. 3 (September 30, 2018): 403–13. http://dx.doi.org/10.54966/jreen.v21i3.700.
Повний текст джерелаCharland, Marc, Lucie Lorrain, and Roger M. Leblanc. "Potentiel de la spectroscopic par effet mirage au domaine de la pollution de l’eau: effets de polluants sur l’activité photosynthétique." Water Quality Research Journal 28, no. 4 (November 1, 1993): 697–708. http://dx.doi.org/10.2166/wqrj.1993.037.
Повний текст джерелаMORAND-FEHR, P., and M. DOREAU. "Ingestion et digestion chez les ruminants soumis à un stress de chaleur." INRAE Productions Animales 14, no. 1 (February 16, 2001): 15–27. http://dx.doi.org/10.20870/productions-animales.2001.14.1.3722.
Повний текст джерелаBANZET, S., N. KOULMANN, and L. BOURDON. "Activité physique et hyperthermie." Médecine et Armées Vol. 40 No. 3, Volume 40, Numéro 3 (June 1, 2012): 207–16. http://dx.doi.org/10.17184/eac.6608.
Повний текст джерелаZiouziou, Imad, Tariq Karmouni, Khalid El khader, Abdellatif Koutani, and Aahmed Iben attya andaloussi. "Complications de l’hormonothérapie anti-androgénique du cancer de la prostate." Canadian Urological Association Journal 8, no. 3-4 (March 11, 2014): 159. http://dx.doi.org/10.5489/cuaj.1608.
Повний текст джерелаДисертації з теми "Hydrogénation – Effets de la chaleur"
Massard, Romaric. "Étude des effets de contraintes sur catalyseurs bimétalliques PDNI supportés." Lyon 1, 2006. http://www.theses.fr/2006LYO10156.
Повний текст джерелаTo study strain effects on catalytic properties for supported particles, core-shell Ni-Pd bimetallic nanoparticles have been prepared by chemical synthesis, characterized by multiple techniques (EDS, TEM, EXAFS, etc. ) and studied in buta-1,3-diene hydrogenation. The core-shell structure of Ni-Pd particles and the compressive stress induced on Pd surface atoms, due to its larger atomic radius compared to Ni, have been evidenced by EXAFS. On PdNi model catalysts, Pd activity is amplified. In our case, no amplification of the Pd activity is observed for a monolayer of strained Pd on Ni particles. As a consequence, compressive strain on Pd surface atoms of nanoparticles seems not to play a major role in the amplification of the activity for the buta-1,3-diene hydrogenation; surface reconstruction appearing on extended surfaces to relax the surface stress seems to be the key point
Vásquez, Salcedo Wenel Naudy. "Biο jet fuels prοductiοn frοm lignοcellulοsic biοmass : butyl levulinate a prοmising mοlecule tοwards the develοpment οf sustainable aviatiοn fuels". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR12.
Повний текст джерелаIn the context of the aviation sector, which poses significant challenges due to the complexity and stringent standards of fuel, our research proposal gains particular relevance. We aim to develop an integrated approach that fully valorizes lignocellulosic biomass into jet fuels, thereby contributing to the sustainable development of society. Lignocellulosic biomass is a renewable resource that can be used as feedstock to produce high-value materials and chemicals, such as jet fuel. This type of biomass valorization includes many transformation steps, for which the kinetics and the thermal risk of the chemical reaction are not necessarily known. This work focuses on a specific compound: butyl levulinate (BL). This compound can be obtained from lignocellulosic biomass and can be transformed into gamma-valerolactone (GVL) via hydrogenation. The GVL is a vital platform molecule that can serve as a feedstock to produce substitutes for fossil fuels like gasoline, diesel, and jet fuels. The main objectives of this research are: 1) To develop a robust and reliable kinetic model for BL hydrogenation to produce GVL. Here, we seek to develop a kinetic model experimentally in different thermal modes of operation, i.e., isothermal, isoperibolic, and adiabatic. This model type not only predicts kinetics and the corresponding heat-flow rate but also allows the assessment of the thermal risk related to the chemical reaction. The experiments for developing this kinetic model were performed in the calorimeter reactor Mettler-Toledo RC1. 2) The complete valorization of lignocellulosic biomass targets the industrial scale. Therefore, the continuous production of GVL from BL should be assessed. In that sense, we studied the thermal stability of the continuous production of GVL from BL in a CSTR reactor (continuous stirred tank reactor). 3) One of the intriguing aspects of our research is the potential use of butyl levulinate (BL) as a fuels additive. We have conducted a thorough assessment of the suitability of BL as a kerosene additive, aiming to understand how its addition affects the combustion efficiency and operating limits in a gas turbine combustion chamber. The results obtained concerning the kinetic model showed that the Non-Competitive Langmuir-Hinshelwood models predict the experimental data of concentration and temperature for BL hydrogenation with good accuracy. The thermal risk analysis, linked to BL hydrogenation, showed that the energy released during the reaction is relatively low, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, and subsequently the thermal stability study showed that for values of Ua > 1500 W/m³/K in a continuous reactor, the risk of thermal instabilities is low. The evaluation of BL as a kerosene additive showed that adding up to 20% of BL into Kerosene does not significantly change the physical properties, neither the combustion efficiency nor the operating limits in the operating conditions considered during the combustion assessment
En el contexto del sector de la aviación, que plantea importantes retos debido a la complejidad y a los estrictos estándares de combustible, nuestra propuesta de investigación cobra especial relevancia. Nuestro objetivo es desarrollar un enfoque integrado que valorice plenamente labiomasa lignocelulósica en combustibles para aviones, contribuyendo así al desarrollo sostenible de la sociedad. La biomasa lignocelulósica es un recurso renovable que se puede utilizar como materia prima para producir materiales y productos químicos de alto valor, como el combustible para aviones. Este tipo de valorización de la biomasa incluye muchas etapas de transformación, para las cuales no necesariamente se conoce la cinética y el riesgo térmico de la reacción química. Este trabajo se centra en un compuesto específico: el levulinato de butilo (BL). Este compuesto se puede obtener a partir de biomasa lignocelulósica y se puede transformar en gamma-valerolactona (GVL) mediante hidrogenación. El GVL es una molécula plataforma vital que puede servir como materia prima para producir sustitutos de combustibles fósiles como la gasolina, el diésel y los combustibles para aviones. Los principales objetivos de esta investigación son: 1. Desarrollar un modelo cinético robusto y fiable para la hidrogenación de BL para producir GVL. Aquí, buscamos desarrollar un modelo cinético experimentalmente en diferentesmodos de operación térmica, es decir, isotérmico, isoperibólico y adiabático. Este tipo de modelo no solo predice la cinética y el flujo de calor correspondiente, sino que también permite evaluar el riesgo térmico relacionado con la reacción química. Los experimentos para el desarrollo de este modelo cinético se realizaron en el reactor calorímetro Mettler-Toledo RC1. 2. La valorización completa de la biomasa lignocelulósica se dirige a la escala industrial. Por lo tanto, debe evaluarse la producción continua de GVL a partir de BL. En ese sentido, estudiamos la estabilidad térmica de la producción continua de GVL a partir de BL en un reactor CSTR (reactor continuo de tanque agitado). 3. Uno de los aspectos intrigantes de nuestra investigación es el potencial uso del levulinato de butilo (BL) como aditivo de combustibles. Hemos llevado a cabo una evaluación exhaustiva de la idoneidad del BL como aditivo de queroseno, con el objetivo de comprender cómo su adición afecta la eficiencia de la combustión y los límites de funcionamiento en una cámara de combustión de turbina de gas. Los resultados obtenidos en relación con el modelo cinético mostraron que los modelos no competitivos de Langmuir-Hinshelwood predicen los datos experimentales de concentración y temperatura para la hidrogenación de BL con buena precisión. El análisis de riesgo térmico, vinculado a la hidrogenación BL, mostró que la energía liberada durante la reacción es relativamente baja, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, y posteriormente el estudio de estabilidad térmica mostró que para valores de Ua > 1500 W/m ³/K en un reactor continuo, el riesgo de inestabilidades térmicas es bajo. La evaluación del BL como aditivo de queroseno mostró que la adición de hasta un 20% de BL al queroseno no cambia significativamente las propiedades físicas, ni la eficiencia de la combustión ni los límites de funcionamiento en las condiciones de funcionamiento consideradas durante la evaluación de la combustión
Rifai, Charaf Eddine. "Effets électroniques et stériques des ligands dans la chimie du zirconocène : influence sur l'activité catalytique." Toulouse 3, 1989. http://www.theses.fr/1989TOU30211.
Повний текст джерелаDouhou, Sallam. "Réaction thermique vers 800 k de l'isobutene seul ou en présence d'hydrogène : étude cinétique et modélisation informatique en phase homogène : effets de parois métalliques." Nancy 1, 1992. http://www.theses.fr/1992NAN10180.
Повний текст джерелаAbdoul-Wahab, Mohamed Houssein. "Hydrogénation énantiosélective du pyruvate d'éthyle sur platine : effets de la préparation et de la modification des catalyseurs." Poitiers, 1995. http://www.theses.fr/1995POIT2287.
Повний текст джерелаAlame, Mohamad. "Tentative de corrélation structure-énantiosélectivité et effet de pression en hydrogénation asymétrique." Lyon 1, 2007. http://www.theses.fr/2007LYO10016.
Повний текст джерелаThe enantioselectivity of catalytic asymmetric hydrogenations can be largely influenced by the hydrogen concentration in the catalytic liquid phase, with generally, a negative impact on enantiomeric excess (ee). In this thesis, we showed, on a large number of chiral diphosphine (56) and three prochiral substrates of acylaminoacrylate ester, that the conclusion of a negative effect of the hydrogen pressure generally admitted in the bibliography is wrong. Indeed, on the basis of 168 studied catalytic systems (diphosphine/substrate), an equivalent distribution of negative effects (28%) and beneficial effects (29%) is observed. In addition, the electronic effects were also studied on a restricted family of diphosphines of the BINAP type by substitution on the binaphtyl group in 5,5' and 4,4' position or para of the phenyls groups carried by phosphorus. The majority of these derivatives of the BINAP had to be synthesized. In particular a new method for the synthesis of derived 5,5' (Me, COOH, Ph) was developed and a new strategy of synthesis in ionic liquid medium was designed for the preparation of the 4,4'derivatives. In the case of para derivatives position, a clear correlation between enantiomeric excess and the HAMMETT constant for all the substituents (Me, H, NH2, +NMe3, OMe, OH, O-) is obtained. The enantioselectivity can thus be tuned, from +57 to -34 %
Girodeau, Alexandre. "Effets biologiques et psychomoteurs de la deshydratation induite par la chaleur." Bordeaux 2, 1993. http://www.theses.fr/1993BOR2M144.
Повний текст джерелаEl, Eter Mohamad. "Synthèse, caractérisation et évaluation de nouveaux précurseurs azotés pour dépôt de films d'oxydes métalliques MO2 (M = Hf, Zr) par MOCVD à injection liquide." Lyon 1, 2008. http://tel.archives-ouvertes.fr/docs/00/37/62/76/PDF/Eleter.pdf.
Повний текст джерелаNew precursors for LI-MOCVD (Liquid Injection Metal Organic Chemical Vapor Deposition) of Hf and Zr were synthesized and characterized by FT-IR, NMR multi-nuclei, X-ray diffraction on monocrystal and TGA. The comparison of the thermal behaviours of various synthesized complexes made it possible to study the effect of various groups on their volatility and thermal stability. The mono-amidinates and -guanidinates appeared more volatile and less stable thermically than the di-amidinates and -guanidinates. The films of hafnium oxide deposited were characterized by XRD, XRR, ATR and XPS. The asymmetrical mono-guanidinates such as Hf(NEt2)3(iPr-Et2-tBu-GUA) and the asymmetrical diguanidinates such as Hf(NMe2)2(Et-Me2-tBu-GUA)2 are very promising for the deposit of HfO2 films. They allow the stabilization of a crystalline phase of HfO2 with a symmetry that is superior to the monoclinical phase at 580°C. Moreover, these precursors allow obtain nitrided films of HfO2 in absence of an additional stage of nitriding
Belmeliani, Abdelhamid. "Réaction thermique du propane, seul ou en présence d'hydrogène : étude cinétique, modélisation et effets de parois métalliques vers 800 k." Nancy 1, 1993. http://www.theses.fr/1993NAN10034.
Повний текст джерелаPrévost, Michel. "Pompes à chaleur mettant en jeu une réaction chimique : identification des réactions, étude du système acétone-hydrogène-isopropanol." Toulouse, INPT, 1988. http://www.theses.fr/1988INPT029G.
Повний текст джерелаКниги з теми "Hydrogénation – Effets de la chaleur"
S, Sharma H., ed. The neurobiology of hyperthermia. Amsterdam: Elsevier, 2007.
Знайти повний текст джерелаSociety of Fire Protection Engineers. Task Group on Engineering Practices. Engineering guide: Predicting 1st and 2nd degree skin burns from thermal radiation. Bethesda, Md: Society of Fire Protection Engineers, 2000.
Знайти повний текст джерелаJorge, Welti-Chanes, Vélez-Ruiz Jorge Fernando 1955-, and Barbosa-Cánovas Gustavo V, eds. Transport phenomena in food processing. Boca Raton: CRC Press, 2003.
Знайти повний текст джерелаTechnical Committee ISO/TC 163, Thermal insulation. Subcommittee SC 1, Test and measurement methods. and International Organization for Standardization, eds. Thermal insulation: Moisture effects on heat transfer : determination of thermal transmissivity of a moist material = Isolation thermique : effets de l'humidité sur les propriétés relatives au transfert de chaleur : détermination de la transmissivité thermique dún matériau humide. Genève, Switzerland: International Organization for Standardization, 1996.
Знайти повний текст джерелаG, Edholm O., ed. Man and his thermal environment. London: E. Arnold, 1985.
Знайти повний текст джерелаDUCLAU-S. La chaleur et ses effets. HACHETTE LIVRE-BNF, 2018.
Знайти повний текст джерелаParsons, Ken. Human Heat Stress. Taylor & Francis Group, 2019.
Знайти повний текст джерелаHuman Heat Stress. Taylor & Francis Group, 2019.
Знайти повний текст джерелаCoveney, V. Elastomers and Components: Service Life Prediction - Progress and Challenges. Woodhead Publishing Ltd, 2006.
Знайти повний текст джерелаCoveney, V. Elastomers and Components: Service Life Prediction - Progress and Challenges. Elsevier Science & Technology, 2006.
Знайти повний текст джерелаЧастини книг з теми "Hydrogénation – Effets de la chaleur"
"3 Effets de la chaleur interne." In L'énergie de la Terre, 34–67. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2146-4-005.
Повний текст джерела"3 Effets de la chaleur interne." In L'énergie de la Terre, 34–67. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2146-4.c005.
Повний текст джерелаRAMOUSSE, Julien, and Stéphane PAILHÈS. "Les systèmes à effets thermoélectriques comme alternative aux machines à cycle inverse." In Systèmes frigorifiques, pompes à chaleur et machines à cycle inverse, 225–81. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9123.ch6.
Повний текст джерела