Добірка наукової літератури з теми "Hydrocarbon basins"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hydrocarbon basins".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hydrocarbon basins"

1

Meng, Qingqiang, Jiajun Jing, Jingzhou Li, Dongya Zhu, Ande Zou, Lunju Zheng, and Zhijun Jin. "New exploration strategy in igneous petroliferous basins – Enlightenment from simulation experiments." Energy Exploration & Exploitation 36, no. 4 (March 11, 2018): 971–85. http://dx.doi.org/10.1177/0144598718758338.

Повний текст джерела
Анотація:
There are two kinds of relationships between magmatism and the generation of hydrocarbons from source rocks in petroliferous basins, namely: (1) simultaneous magmatism and hydrocarbon generation, and (2) magmatism that occurs after hydrocarbon generation. Although the influence of magmatism on hydrocarbon source rocks has been extensively studied, there has not been a systematic comparison between these two relationships and their influences on hydrocarbon generation. Here, we present an overview of the influence of magmatism on hydrocarbon generation based on the results of simulation experiments. These experiments indicate that the two relationships outlined above have different influences on the generation of hydrocarbons. Magmatism that occurred after hydrocarbon generation contributed deeply sourced hydrogen gas that improved liquid hydrocarbon productivity between the mature and overmature stages of maturation, increasing liquid hydrocarbon productivity to as much as 451.59% in the case of simulation temperatures of up to 450°C during modelling where no hydrogen gas was added. This relationship also increased the gaseous hydrocarbon generation ratio at temperatures up to 450°C, owing to the cracking of initially generated liquid hydrocarbons and the cracking of kerogen. Our simulation experiments suggest that gaseous hydrocarbons dominate total hydrocarbon generation ratios for overmature source rocks, resulting in a change in petroleum accumulation processes. This in turn suggests that different exploration strategies are warranted for the different relationships outlined above. For example, simultaneous magmatism and hydrocarbon generation in an area means that exploration should focus on targets likely to host large oilfields, whereas in areas with magmatism that post-dates hydrocarbon generation the exploration should focus on both oil and gas fields. In addition, exploration strategies in igneous petroliferous basins should focus on identifying high-quality reservoirs as well as determining the relationship between magmatism and initial hydrocarbon generation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kerimov, V. Yu, E. A. Lavrenova, R. N. Mustaev, and Yu V. Shcherbina. "Hydrocarbon potential and prospects for exploration of Eastern Arctic oil and gas deposits." SOCAR Proceedings, SI2 (December 30, 2021): 85–92. http://dx.doi.org/10.5510/ogp2021si200556.

Повний текст джерела
Анотація:
Conditions for the formation of hydrocarbon systems and prospects for searching for accumulations of oil and gas in the waters of the Eastern Arctic are considered. Significant hydrocarbon potential is predicted in the sedimentary basins of this region. All known manifestations of oil hydrocarbons are installed on land adjacent to the south, as well as on the east of the shelf. The East Arctic waters are included in a single model in order to perform an adequate comparative analysis of the evolution of hydrocarbon systems. The purpose of the research was to build space-time digital models of sedimentary basins and hydrocarbon systems, and to quantify the volume of generation, migration, and accumulation of hydrocarbons for the main horizons of source rocks. To achieve this goal, a spatiotemporal numerical basin simulation was carried out, based on which the distribution of probable hydrocarbon systems was determined and further analyzed. Following to the data obtained the most probable HC accumulation zones and types of fluids contained in potential traps were predicted. Keywords: numerical space-time basin modeling; modeling of hydrocarbon systems; evidence of oil and gas presence; Eastern Arctic; elements of hydrocarbon systems; oil and gas reservoirs; migration; accumulation; perspective objects
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Senin, B. V., V. Yu Kerimov, E. A. Lavrenova, and R. N. Mustaev. "GEODYNAMIC ANALYSIS AND REGIONAL-SCALE PROGNOSTICATION OF THE HYDROCARBON EXPLORATION POTENTIAL FOR THE TATAR STRAIT OF THE SEA OF JAPAN BASED ON THE APPLICATION OF NUMERICAL MODELING TECHNOLOGIES." Tikhookeanskaya Geologiya 41, no. 4 (2022): 41–59. http://dx.doi.org/10.30911/0207-4028-2022-41-4-41-59.

Повний текст джерела
Анотація:
The article presents the results of analysis and numerical modeling of sedimentary basins of the Tatar Strait riftogenic trough of the Sea of Japan, which made it possible to create its structural 3D model and determine the conditions for the formation of its generation-accumulation hydrocarbon systems. To study the geodynamic evolution of the sedimentary basins of the Tatar Strait, a digital reconstruction of the history of subsidence and sedimentation was carried out using numerical basin modeling technologies. The chronothermobaric conditions for the occurrence and evolution of sources of hydrocarbon generation and the formation of oil and gas accumulations in sedimentary basins of the riftogenic trough were reconstructed by three-dimensional modeling of generation-accumulation hydrocarbon systems using the PetroMod software (Schlumberger, Ltd, USA). Modeling of the hydrocarbon systems made it possible to identify the fundamental features of their structure in the water area of the Tatar Strait at the present stage of their development, which in general terms are as follows: the sources of hydrocarbon (HC) generation are located in depressions of the sedimentary basin; the maturity of rocks decreases from south to north with depth; and hydrocarbons accumulate along the flanks of the basins.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lavrenova, E. A., S. A. Guryanov, and V. Yu Kerimov. "Assessment of the hydrocarbon potential of the Bering Sea." Proceedings of higher educational establishments. Geology and Exploration 63, no. 5 (August 30, 2021): 42–56. http://dx.doi.org/10.32454/0016-7762-2020-63-5-42-56.

Повний текст джерела
Анотація:
Background. The issues of hydrocarbon (HC) forecasting and prospecting on sea shelves remain relevant. In this paper, an experience of assessing the hydrocarbon potential of the Bering Sea using the method of basin modelling is demonstrated.Aim. To assess the hydrocarbon potential of the Bering Sea and to identify prospective areas on the basis of a comprehensive analysis of factual data and the results of modelling sedimentary basins and hydrocarbon systems.Materials and methods. A large volume of geological and geophysical materials and the results of geochemical studies were analysed. Modelling was carried out based on factual data, which made it possible to design space-time digital models of sedimentary basins and hydrocarbon (HC) systems for the main horizons of oil and gas source rocks. Geochemical and lithological studies, as well as modelling, were performed using the Schlumberger PetroMod and QGIS software. A smallscale modelling of sedimentary basins and hydrocarbon systems of the region under study was conducted. In the process of preparing the input data for modelling, a number of necessary structural constructions, lithological-paleogeographic and paleodynamic reconstructions and other special studies were performed, which made it possible to determine the modelling boundary conditions.Results. The studied hydrocarbon systems of the Bering Sea differ in the area and size of the generation source, and consequently, in the volumes of generated hydrocarbons. The maximum specific (per unit area of the generation-accumulation hydrocarbon system (GAHS)) volumes of generated hydrocarbons are predicted in the Mainitsko-Sobolkovskaya GAHS of the East Anadyr depression, the Nikolaevskaya Mainitsko-Sobolkovskaya and Mainitsko-Sobolkovskaya of the Lagoon trough. However, even the most promising areas are attributed to the V category due to the low quality of kerogen and a low accumulation coefficient.Conclusion. In the water area of the Anadyr trough, prospective areas were identified. Two promising levels of oil and gas potential were determined. A quantitative assessment of the hydrocarbon potential of the GAHS was carried out.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shaw, R. D., and G. H. Packham. "THE TECTONIC SETTING OF SEDIMENTARY BASINS OF EASTERN INDONESIA: IMPLICATIONS FOR HYDROCARBON PROSPECTIVITY." APPEA Journal 32, no. 1 (1992): 195. http://dx.doi.org/10.1071/aj91016.

Повний текст джерела
Анотація:
The region east of the Sunda Craton, in Indonesia, formed during the past 50 million years as a consequence of interaction between the Southeast Asia, India–Australia and Philippine plates. These interactions were initially dominated by oceanic plate convergence but since the Miocene the overall northward movement of the India–Australia Plate, and with it the Australian continent, has led increasingly to convergence between oceanic and continental plates. The result has been the creation of a wide range of tectonic regimes and the development of twenty-three major sedimentary basins.Many of these basins exhibit indications of hydrocarbons, but most are frontier basins; several have not yet been drilled and only three have commercial production of oil. Gas production may be feasible soon in one other basin.The preferential occurrence of hydrocarbons in Southeast Asian basins of certain tectonic settings provides a basis for ranking the Eastern Indonesian basins. Seven distinct tectonic settings are represented. The foreland/rifted basins underlain by crust of continental affinity are considered to have the greatest hydrocarbon prospectivity whereas the fore-arc basins bordering the Celebes Basin and Molucca Plate are considered to have the least prospectivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pedersen, K. S., and P. L. Christensen. "Fluids in Hydrocarbon Basins." Reviews in Mineralogy and Geochemistry 65, no. 1 (July 1, 2007): 241–58. http://dx.doi.org/10.2138/rmg.2007.65.8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Korsch, J., C. J. Boreham, J. M. Totterdell, R. D. Shaw, and M. G. Nicoll. "DEVELOPMENT AND PETROLEUM RESOURCE EVALUATION OF THE BOWEN, GUNNEDAH AND SURAT BASINS, EASTERN AUSTRALIA." APPEA Journal 38, no. 1 (1998): 199. http://dx.doi.org/10.1071/aj97011.

Повний текст джерела
Анотація:
The Early Permian to Middle Triassic Bowen and Gunnedah basins and the Early Jurassic to Early Cretaceous Surat Basin in eastern Australia developed in response to a series of interplate and intraplate tectonic events located to the east of the basin system. The initial event was extensional and stretched the continental crust to form a significant Early Permian East Australian Rift System. The most important of the rift-related features are a series of half graben that form the Denison Trough, now the site of several commercial gas fields. Several contractional events from the mid-Permian to the Middle Triassic are associated with the development of a foreland fold and thrust belt in the New England Orogen. This caused a foreland loading phase of subsidence in the Bowen and Gunnedah basins. Thick coal measures deposited towards the end of the Permian are the most important hydrocarbon source rocks in these basins. The development of the Surat Basin marked a major change in the subsidence and sedimentation patterns. It was only towards the end of this subsidence that sufficient burial was achieved to put the source rocks over much of the basin into the oil window. Based on an evaluation of the undiscovered hydrocarbon resources for the Bowen and Surat basins in southern Queensland, our estimates of the yields of hydrocarbons suggest that significant volumes of hydrocarbons have been produced in the basins. The bulk of the hydrocarbons were generated after 140 Ma and most of the generation occurred in the late Early Cretaceous. Because the estimated volume of the hydrocarbons generated far exceeds the volume of discovered hydrocarbons, preservation of accumulations may be the main risk factor. The yield analysis, by demonstrating the potentially large quantities of hydrocarbons available, should act as a stimulus to exploration initiatives, particularly in the search for stratigraphic traps.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Xiaoping, Zhijun Jin, Guoping Bai, Jie Liu, Ming Guan, Qinghua Pan, and Ting Li. "A comparative study of salient petroleum features of the Proterozoic–Lower Paleozoic succession in major petroliferous basins in the world." Energy Exploration & Exploitation 35, no. 1 (December 11, 2016): 54–74. http://dx.doi.org/10.1177/0144598716680308.

Повний текст джерела
Анотація:
The Proterozoic–Lower Paleozoic marine facies successions are developed in more than 20 basins with low exploration degree in the world. Some large-scale carbonate oil and gas fields have been found in the oldest succession in the Tarim Basin, Ordos Basin, Sichuan Basin, Permian Basin, Williston Basin, Michigan Basin, East Siberia Basin, and the Oman Basin. In order to reveal the hydrocarbon enrichment roles in the oldest succession, basin formation and evolution, hydrocarbon accumulation elements, and processes in the eight major basins are studied comparatively. The Williston Basin and Michigan Basin remained as stable cratonic basins after formation in the early Paleozoic, while the others developed into superimposed basins undergone multistage tectonic movements. The eight basins were mainly carbonate deposits in the Proterozoic–early Paleozoic having different sizes, frequent uplift, and subsidence leading to several regional unconformities. The main source rock is shale with total organic carbon content of generally greater than 1% and type I/II organic matters. Various types of reservoirs, such as karst reservoir, dolomite reservoir, reef-beach body reservoirs are developed. The reservoir spaces are mainly intergranular pore, intercrystalline pore, dissolved pore, and fracture. The reservoirs are highly heterogeneous with physical property changing greatly and consist mainly of gypsum-salt and shale cap rocks. The trap types can be divided into structural, stratigraphic, lithological, and complex types. The oil and gas reservoir types are classified according to trap types where the structural reservoirs are mostly developed. Many sets of source rocks are developed in these basins and experienced multistage hydrocarbon generation and expulsion processes. In different basins, the hydrocarbon accumulation processes are different and can be classified into two types, one is the process through multistage hydrocarbon accumulation with multistage adjustment and the other is the process through early hydrocarbon accumulation and late preservation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Roberts, David G. "Hydrocarbon habitat in rift basins." Marine and Petroleum Geology 14, no. 1 (February 1997): 88–89. http://dx.doi.org/10.1016/s0264-8172(97)88317-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bosworth, William, and Gábor Tari. "Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea." Solid Earth 12, no. 1 (January 14, 2021): 59–77. http://dx.doi.org/10.5194/se-12-59-2021.

Повний текст джерела
Анотація:
Abstract. Folds associated with inverted extensional faults are important exploration targets in many basins across our planet. A common cause for failure to trap hydrocarbons in inversion structures is crestal breaching or erosion of top seal. The likelihood of failure increases as the intensity of inversion grows. Inversion also decreases the amount of overburden, which can adversely affect maturation of source rocks within the underlying syn-extensional stratigraphic section. However, many rift basins are multi-phase in origin, and in some cases the various syn-rift and post-rift events are separated by multiple phases of shortening. When an inversion event is followed by a later phase of extension and subsidence, new top seals can be deposited and hydrocarbon maturation enhanced or reinitiated. These more complex rift histories can result in intra-basinal folds that have higher chances of success than single-phase inversion-related targets. In other basins, repeated inversion events can occur without significant intervening extension. This can also produce more complicated hydrocarbon maturation histories and trap geometries. Multiple phases of rifting and inversion affected numerous basins in North Africa and the Black Sea region and produced some structures that are now prolific hydrocarbon producing fields and others that failed. Understanding a basin's sequence of extensional and contractional events and the resulting complex interactions is essential to formulating successful exploration strategies in these settings.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hydrocarbon basins"

1

Monson, Bryan J. G. "Aspects of hydrocarbon migration and hydrocarbon-metal interactions in sedimentary basins." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Weihua. "Studies of sandstone diagenesis in hydrocarbon-prospective basins." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mohammed, Wolela Ahmed. "Sedimentology, diagenesis and hydrocarbon potential of sandstones in hydrocarbon prospective Mesozoic rift basins (Ethiopia, UK and USA)." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ward, Nicholas I. P. "Subtle traps in sedimentary basins and their importance to hydrocarbon exploration." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/113131/.

Повний текст джерела
Анотація:
This thesis uses high-quality 3D seismic data from the Broad Fourteens Basin (Southern North Sea), Espírito Santo Basin (SE Brazil), and Taranaki Basin (New Zealand) to characterise the evolution of geological structures related to differential compaction and subsidence; also known as subtle hydrocarbon traps. Each chapter tackles deformation over a different geological feature, spanning from salt-withdrawal basins, to submarine channel complexes and associated mass-transport deposits. These chapters subsequently discuss the impact the results have on the hydrocarbon industry. Included in these discussions are the importance of subtle traps on carbon capture and storage, local sealing potential, and reservoir distribution. The Broad Fourteens Basin dataset was used to investigate concentric faults associated with salt withdrawal from below Triassic units. Throw-depth and throw-distance plots helped to understand the growth histories of the concentric faults. It was shown that these faults formed as a result of the bending of strata due to differential subsidence during salt withdrawal. Slip tendency analyses assessed the likelihood for faults to reactivate and transmit fluids whenever pore fluid pressure is increased. This approach simulated a typical profile during carbon capture and storage. It was shown that concentric faults will reactivate if pore fluid pressures are increased above 30 MPa at the relevant sub-surface depths, leaking fluids (including stored CO2) past regional seal intervals in the basin. Data from the Espírito Santo Basin were first used to assess the timing and magnitude of differential compaction over a submarine channel complex. Thickness-relief models helped quantify both the variations in thickness in overburden strata. Smaller channels associated with downslope knickpoints were located within the channel complex. Differential compaction over channels produced four-way dip closures, as coarse-grained sediments were deposited at the knickpoint base. These provide adequate structural traps after early burial. The Espírito Santo Basin 3D survey was used in a third chapter to assess how differential compaction affected sediment distribution over a mass-transport deposit. As large remnant and rafted blocks entrained within the MTD were buried, differential compaction produced anticlines over them. This created a rugged seafloor and the topographic highs confined sediment moving downslope, allowing it to pond in discrete depocentres. Results from the data analysis chapters were compared with compaction-related structures documented in the published literature. A novel classification for subtle structural traps associated with differential compaction was produced, separating each feature into one of four types; Type A: folds over tectonic structures >2 km wide; Type B: folds over sedimentary packages, typically elongate, ~500 m to 5 km wide; Type C: folds over topographic features that are 20 m to 2 km wide; Type D: folds over sub-seismic/outcrop features no larger than 20 m. The results of the classification can be used as a first assessment when recognising a compaction-related fold and to rapidly assess its evolution and effectiveness as a subtle hydrocarbon trap.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reynolds, Peter William. "Monogenetic basaltic edifices : their architecture, volcanology and importance in hydrocarbon basins." Thesis, Durham University, 2015. http://etheses.dur.ac.uk/11369/.

Повний текст джерела
Анотація:
Flood basalt provinces host significant hydrocarbon reserves. The provinces are produced during fissure eruptions which construct volcanic edifices atop an erupting dyke. The edifices are important components of volcanic-affected hydrocarbon basins; they provide insights into the underlying structural and magmatic plumbing systems, as well as acting as fluid migration pathways after burial. Furthermore, the edifices host a wealth of volcanological evidence that can be used to derive information relating to eruption dynamics such as eruption column height, mass flux and duration; as well as providing insights into the effects of eruptions on the environment. However, the location of the fissures in many hydrocarbon basins is poorly constrained. Furthermore, few studies have characterised the internal architecture of the edifices produced during fissure eruptions. This thesis uses field, seismic and well data to characterise the architecture of monogenetic basaltic edifices and understand their temporal and spatial evolution. Field studies along a dissected Holocene fissure, Northeast Iceland, reveal that a scoria-agglutinate cone, spatter ramparts and a scoria rampart were constructed during Hawaiian-style lava fountaining. These edifices are analogous to those formed in the 1783 Laki eruption. Data gathered in this study can be used to recognise fissure-derived edifices in other volcanic provinces. I then contrast these dyke-fed edifices with rootless cones; a morphologically similar volcanic edifice produced during explosive interaction between inflating pāhoehoe lava and unconsolidated sediment. This thesis reveals that rootless cones can be distinguished from dyke-fed edifices on the basis of their juvenile clast morphology and clast density. This allows us to better recognise dyke-proximal locations. Lastly, I use exceptional quality 3D seismic and well data to show how a series of submarine monogenetic volcanoes evolved; progressing from a maar-forming stage, to a pillow volcano and tuff-cone-building stage as the confining pressure decreased above the growing edifices. These insights allow us to distinguish volcanic edifices from similar non-volcanic edifices in other seismic data sets, and also indicates that our understanding of submarine volcanism has previously been biased towards recognition of constructional features.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Spry, Trent B. "Source potential index (SPI) as a hydrocarbon prospectivity ranking factor in Australian Basins /." Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09SB/09sbs771.pdf.

Повний текст джерела
Анотація:
Thesis (B. Sc. (Hons.))--University of Adelaide, National Centre for Petroleum Geology and Geophysics, 1994.
Volume 2 is loose leaf and contains all the Appendices. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Muia, George. "The ''Turkana Grits'' : Potential Hydrocarbon Reservoirs of the Northern and Central Kenya Basins." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S069/document.

Повний текст джерела
Анотація:
Plus des deux tiers des champs pétroliers mondiaux se trouvent dans deux principaux environnements tectoniques : les marges continentales passives et les rifts continentaux. Dans le bassin de Lockichar dans le rift kenyan, plus de 600 millions de barils d'huile extractible ont été découverts. Les roches réservoirs principales dans ce bassin sont les grès de Lokone qui appartiennent à une famille plus large de grès appelés les ‘Turkana Grits', grès arkosiques en sandwich entre le socle métamorphique et les roches volcaniques du Miocène Moyen. La quantité des hydrocarbures dans les grès réservoirs de Lokone ont ainsi motivé la présente étude des ‘Turkana Grits' pour en préciser les caractéristiques en tant que réservoir potentiel d'hydrocarbures. Trois formations sédimentaires, c'est-à-dire, la Formation Kimwarer, la Formation Kamego et le grès de Loriu, qui n'ont jamais été complètement caractérisées du point de vue chronostratigraphique et sédimentologique ont été étudiées à travers des relevés détaillés. Plus de 170 échantillons ont été récoltés pour déterminer leur contenu en fraction détritique et authigène, les zones principales de cimentation des différents affleurements et, à partir d'une analyse des lithofaciès, les environnements de dépôts. Les échantillons de roches volcaniques et intrusives ont également été caractérisés et utilisés pour des datations avec la méthode 39Ar-40Ar. Trois environnements de dépôt superposés ont été déterminés pour la Formation Kimwarer : un chenal fluviatile distal, un cône d alluvial et une plaine d'inondation. L'étude diagénétique montre des changements de ciments à hématite dominante à la base, calcite dominante dans les zones intermédiaires et retour à l'hématite dominante au sommet de la formation. Les épisodes de cimentation opèrent pendant la diagénèse précoce à tardive, à basse température (<80°C), et en condition de compaction mécanique significative. Un âge minimum des dépôts d'environ 18 Ma (Miocène précoce-Burdigalien) a également été établi pour cette formation. La Formation Kamego évolue d'un environnement fluviatile à celui d'une plaine d'inondation et est principalement cimentée par de l'hématite. De la calcite est présente uniquement dans les premiers 5 m. Une coulée de lave peu épaisse interstratifiée dans les sédiments les plus jeunes de la Formation Kamego a livré un âge minimum des dépôts d'environ 20 Ma pour l'essentiel des sédiments. Le grès de Loriu est une formation principalement composée de dépôts de chenal fluviatile. Les principaux ciments sont la calcite, l'hématite et la kaolinite. Un filon intrusif suggère que l'âge minimum des dépôts est d'environ 18.5 Ma. L'analyse de réservoir finale sur les 'Turkana Grits' montre que la compaction et la cimentation sont les agents dominants de la réduction de porosité, et que les ‘Turkana Grits' sont généralement de médiocre à modérément bonnes unités réservoirs. Les grès de Lokone ont des porosités en sub-surface qui s'échelonnent entre 10 et 20 % et des perméabilités aussi élevées que 3 Darcy (Africa Oil Corporation, 2011). A partir des analyses pétrographiques, la Formation Kimwarer a été classée comme ayant la seconde place en tant que réservoir potentiel d'hydrocarbures avec des porosités aussi élevées que 20 % sur certains segments du log stratigraphique étudié. La Formation Kamego a également un bon potentiel mais n'est pas aussi bien classée à cause de la fraction importante de matériel volcanique qu'elle renferme et de la capacité de ce matériel à s'altérer au cours de la diagénèse. Les porosités sont basses dans les grès de Loriu, en conséquence cette formation n'est classée que cinquième parmi les Turkana Grits, réservoir potentiel d'hydrocarbures
Over two thirds of the world’s giant oilfields are found in two principle tectonic regimes; continental passive margins and continental rifts. The preferential formation of hydrocarbons in rifts is attributed to the proximal juxtaposition of high grade, lacustrine source rock units with medium to high grade reservoir rocks - a consequence of both faulting and sedimentation in the resulting accommodation space, which in many cases may locally modify the prevailing climatic conditions. In one of such basins, the Lokichar Basin in the Kenyan Rift, over 600 million barrels of recoverable oil have been discovered. The principle reservoir unit in this basin is the Lokone Sandstone that belongs to a larger family of sandstones called the ‘Turkana Grits’, arkosic sandstones that are sandwiched between metamorphic basement and mid-Miocene volcanics. The hydrocarbon proclivity of the Lokone Sandstones as reservoir units motivated further study of the ‘Turkana Grits’, as potential hydrocarbon reservoirs. In this work, three sedimentary formations, i.e. Kimwarer Formation, Kamego Formation and Loriu Sandstones, which have not been previously fully characterized from chronostratigraphic and sedimentological point of views were studied through detailed logging. Over 170 samples were collected to determine, detrital and authigenic components, the main cementation zones in the different outcrops, and, from lithofacies analysis, the depositional environments. Volcanic and intrusive samples were also characterized and used for 39Ar-40Ar dating. Three superposed depositional environments were determined for the Kimwarer Formation, a distal fluvial channel, an alluvial fan and a floodplain depositional environment. The diagenetic study shows cements change from dominant hematite at the base to calcite within the middle zones and back to hematite towards the top of the Formation. These cementation episodes occur during early and relatively late diagenesis in low temperature conditions (<80 °C), under significant mechanical compaction. A minimum deposition age at ca. 18 Ma (Early Miocene – Burdigalian) has also been set for the Kimwarer Formation. The Kamego Formation evolves from fluvial to floodplain depositional environments and is dominantly cemented by hematite. Calcite cement is only noted in the lowermost 5m. A thin lava flow interbedded with the topmost sediments of the Kamego Formation gave a minimum deposition age of ca. 20 Ma for most of the sediments. The Loriu Sandstone is composed predominantly of fluvial channel deposits. The main cements are calcite, hematite and kaolinite clays. A cross-cutting dyke suggests a minimum deposition age of ca. 18.5Ma. A final reservoir analysis of the Turkana Grits shows that while compaction and cementation are dominant agents of porosity reduction, the Turkana Grits are generally poor to moderately good reservoir units. The Lokone Sanstone has been proven to have sub-surface porosities ranging between 10 - 20% and permeabilities as high as 3 darcies (Africa Oil Corporation, 2011). For petrographic analyses, the Kimwarer Formation has been ranked as having the second best reservoir potential with porosities as high as 20% in some sections of its studied stratigraphy. The Kamego Formation also has good potential but is not as highly ranked owing to the huge component of volcanic material that have a greater propensity to diagenetic alteration. No good porosities were noted for the Loriu Sandstone and hence this formation has been ranked 5th amongst the Turkana Grits
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kloss, Olaf. "The relationship of faulting to hydrocarbon accumulations in the Barrow and Exmouth Sub-basins /." Title page, abstract and table of contents only, 1996. http://web4.library.adelaide.edu.au/theses/09S.B/09s.bk66.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gillam, Daniel J. "Structural and geomechanical analysis of naturally fractured hydrocarbon provinces of the Bowen and Amadeus Basins: onshore Australia /." Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phg4758.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Spaak, Gemma. "Molecular and isotopic perspectives on Australian petroleum systems: Hydrocarbon fluid correlations and source rock depositional environments in the Canning and Browse basins." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/69412.

Повний текст джерела
Анотація:
This PhD study provides further insights into the petroleum systems of the Canning and Browse basins, Western Australia. Oil-oil correlations, oil-source correlations and palaeoenvironmental reconstructions of Paleozoic source rock intervals are performed. Non-conventional correlation tools such as quantitative diamondoid analysis and δ13C of individual aromatics were successfully applied for hydrocarbon correlation purposes. This work has implications for the petroleum industry but also provides a further understanding of the evolution of life during the Paleozoic.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Hydrocarbon basins"

1

Schultz, Arthur P. Hydrocarbon potential of Eastern Mesozoic Basins. [Denver, Colo.?: U.S. Dept. of Interior, Geological Survey, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schultz, Arthur P. Hydrocarbon potential of Eastern Mesozoic Basins. [Denver, Colo.?: U.S. Dept. of Interior, Geological Survey, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rocky Mountain Association of Geologists. Symposium. Compartmentalized reservoirs in Rocky Mountain Basins. Edited by Slatt Roger M. Denver, Colo: Rocky Mountain Association of Geologists, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ulmishek, Gregory F. Geology and hydrocarbon resources of onshore basins in eastern China. [Denver, Colo.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

France, Société géologique de, Lacombe Olivier, Sociedad Geológica de España, and Institut français du pétrole, eds. Thrust belts and foreland basins: From kinematics to hydrocarbon systems. Berlin: Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Geology and hydrocarbon potential of Neoproteozoic-Cambrian basins in Asia. London: Geological Society, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Crostella, A. (Angelo). Structural evolution and hydrocarbon potential of the Merlinleigh and Byro sub-basins, Carnarvon Basin, Western Australia. Perth, W.A: Geological Survey of Western Australia, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

You qi cang tiao zheng gai zao yu gou zao po huai ting liang mo ni: Alternation and reformation of hydrocarbon reservoirs and simulation of the hydrocarbon loss through major tectonic events. Beijing Shi: Ke xue chu ban she, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Daniel, Richard. Atlas of Australian and New Zealand hydrocarbon seals: Worldwide analogs for cap rocks and intraformational barriers in clastic depositional settings. Tulsa, Okla: American Association of Petroleum Geologists, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Craig, J. Geology and hydrocarbon potential of the neoproterozoic--cambrian basins in India, Pakistan, and the Middle East: A contribution to the international conference : 20-21 February, 2008. Edited by University of Jammu. Dept. of Geology and University College, London. Maghreb Petroleum Research Group. Jammu: Geology Dept., University of Jammu, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hydrocarbon basins"

1

Berger, Zeev. "Structural Analysis of Sedimentary Basins." In Satellite Hydrocarbon Exploration, 171–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78587-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pedersen, Karen S., and Peter L. Christensen. "8. Fluids in Hydrocarbon Basins." In Fluid-Fluid Interactions, edited by Axel Liebscher and Christoph A. Heinrich, 241–58. Berlin, Boston: De Gruyter, 2007. http://dx.doi.org/10.1515/9781501509407-009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brewer, Robert J. "Gulf of Mexico Basin and Atlantic Coastal (East Coastal) Basins." In Hydrocarbon Potential in Southeastern United States, 57–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00218-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Djunin, V. I., and A. V. Korzun. "Oil Origin and Formation of Hydrocarbon Accumulations." In Hydrogeodynamics of Oil and Gas Basins, 343–80. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2847-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brewer, Robert J. "Triassic Rift Basins in the Southeastern United States." In Hydrocarbon Potential in Southeastern United States, 31–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00218-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lafoy, Y. "The Sedimentary Basins of the New Caledonia Region." In Hydrocarbon and Petroleum Geology of France, 427–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78849-9_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bouysse, Ph, and A. Mascle. "Sedimentary Basins and Petroleum Plays Around the French Antilles." In Hydrocarbon and Petroleum Geology of France, 431–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78849-9_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gabrielsen, Roy H. "The Structure and Hydrocarbon Traps of Sedimentary Basins." In Petroleum Geoscience, 299–327. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02332-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gabrielsen, Roy H. "The Structure and Hydrocarbon Traps of Sedimentary Basins." In Petroleum Geoscience, 319–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-34132-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Green, Paul F., Ian R. Duddy, Andrew J. W. Gleadow, and John F. Lovering. "Apatite Fission-Track Analysis as a Paleotemperature Indicator for Hydrocarbon Exploration." In Thermal History of Sedimentary Basins, 181–95. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3492-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hydrocarbon basins"

1

Wang, Hongjun, Zhaoming Wang, and Guangyou Zhu. "Hydrocarbon Plays and Unconventional Hydrocarbon Distribution in Lacustrine Basins in China." In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2014. http://dx.doi.org/10.15530/urtec-2014-1921691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harris, Charles, and Emery D. Goodman. "Hydrocarbon prospectivity and classification of extensional basins." In SEG Technical Program Expanded Abstracts 1994. Society of Exploration Geophysicists, 1994. http://dx.doi.org/10.1190/1.1932004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shoupakova, A., and T. A. Kirjukhina. "Basin Geodynamics in the Western Arctic Basins and Their Hydrocarbon Potential." In 59th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609-pdb.131.gen1997_d023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borodulin, A., N. Malyshev, V. Obmetko, S. Savishkin, and K. Sitar. "Hydrocarbon Prospectivity of the Lisiansky and Kashevarovsky Basins." In First Workshop on Far East Hydrocarbons 2011. Netherlands: EAGE Publications BV, 2011. http://dx.doi.org/10.3997/2214-4609.20144330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Negulescu, R., M. Axente, and N. Ivanoiu. "Petroleum System’S Hydrocarbon Prospect In Romanian Sedimentary Basins." In 4th Congress of the Balkan Geophysical Society. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.26.p5-08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anissimov, L., and G. Moscowsky. "Salt Basins Around Europe - Distribution, Definition, Hydrocarbon Potential." In 59th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609-pdb.131.gen1997_d017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kerimov, V. Y., E. A. Lavrenova, S. A. Guryanov, and R. N. Mustaev. "Hydrocarbon Systems and Predicted Hydrocarbon Accumulations in Sedimentary Basins of the Bering Sea." In Geomodel 2020. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202050045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rempel, H. "Hydrocarbon Potential of Mediterranean Region." In EAGE Conference on Geology and Petroleum Geology of the Mediterranean and Circum-Mediterranean Basins. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609.201406058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

J. K., Ego, and Ng’enoh D.K. "Hydrocarbon Potential of the Tertiary Rift Basins of Kenya." In 6th SAGA Biennial Conference and Exhibition. European Association of Geoscientists & Engineers, 1999. http://dx.doi.org/10.3997/2214-4609-pdb.221.071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lefebvre, Christian, Nancy Mariana Alvis, Vincent De Groen, Sebastien Delamarre, and Gregory Roy. "Coalbed Methane Resources Evaluation Methodology: An Integrated Case Study in Former Coal Mining Basins in France." In SPE Hydrocarbon Economics and Evaluation Symposium. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/162913-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hydrocarbon basins"

1

Lavoie, D., N. Pinet, J. Dietrich, S. Zhang, K. Hu, E. Asselin, Z. Chen, et al. Geological framework, basin evolution, hydrocarbon system data and conceptual hydrocarbon plays for the Hudson Bay and Foxe basins, Canadian Arctic. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/293119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lavoie, D., N. Pinet, S. Zhang, J. Reyes, C. Jiang, O. H. Ardakani, M. M. Savard, et al. Hudson Bay, Hudson Strait, Moose River, and Foxe basins: synthesis of Geo-mapping for Energy and Minerals program activities from 2008 to 2018. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/326090.

Повний текст джерела
Анотація:
As part of its Geo-mapping for Energy and Minerals program, the Geological Survey of Canada included the Hudson Bay Basin in its research portfolio with the goal of generating a modern understanding of its geological framework and a precise knowledge of its hydrocarbon systems. The Hudson Bay-Foxe Basins GEM-1 project led to the proposal of modern stratigraphic frameworks and produced extensive geochemical data on hydrocarbon source rocks as well as data on diverse burial-thermal indicators. Satellite data were acquired over the entire offshore domain in the search for evidence for active hydrocarbon systems. For the Hudson-Ungava GEM-2 project, the aim of the research activities was to better understand local and regional factors associated with the burial and exhumation histories as they pertain to regional or local hydrocarbon prospectivity. This research led to a basin-scale stratigraphic framework coupled with detailed analyses of hydrocarbon generation and the appraisal of the best potential reservoir units.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Williamson, M. A., T. J. Katsube, Z. Huang, M. Fowler, K D McAlpine, F. C. Thomas, R. Fensome, and M. Avery. Hydrocarbon charge history of east coast offshore basins: modelling geological uncertainty. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/184124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lavoie, D., N. Pinet, and S. Castonguay. History of hydrocarbon exploration in the Paleozoic basins of eastern Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/226316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, S., and K. Dewing. Rock-Eval data for four hydrocarbon exploration wells in Hudson Bay and Foxe basins. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2008. http://dx.doi.org/10.4095/225633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Larmagnat, S., and D. Lavoie. Regional and global correlations of the Devonian stratigraphic succession in the Hudson Bay and Moose River basins from onshore Manitoba and Ontario to offshore Hudson Bay. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/326091.

Повний текст джерела
Анотація:
The Devonian successions in northeastern Manitoba and northern Ontario are integrated in a single stratigraphic framework. To the north, in the offshore Hudson Bay Basin, stratigraphic nomenclaturesare unified and correlated with the successions to the south. The carbon stable-isotope (d13CVPDB) trends for Devonian carbonate rocks are used for regional correlations and are compared with global Devonian isotope trends. Local and global d13CVPDB trends are used to evaluate the position of the Silurian-Devonian boundary in the Hudson Bay Platform. The Devonian succession of the Hudson Bay Platform belongs to the Kaskaskia Sequence and compares with similar carbonate-evaporite successions of the adjacent Williston and Michigan basins. In these basins, two episodes of roughly coeval reef development are present (Emsian-Eifelian and Givetian), with corals and stromatoporoids as main framework constituents. The Hudson Bay Platform reefs and dolomitized facies exhibit significant porosity and have the potential to form hydrocarbon reservoirs, with intervals bearing direct and petrophysical evidence of hydrocarbon charge.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

St. Peter, C., and S. Hinds. Geology and hydrocarbon potential of the Paleozoic Basins of Eastern Canada: Maritimes Basin exploration, and production in New Brunswick. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/226327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lavoie, D., N. Pinet, S. Castonguay, J. Dietrich, P. Giles, M. Fowler, R. Thériault, et al. Hydrocarbon systems in the Paleozoic basins of eastern Canada - Presentations at the Calgary 2007 workshop. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/226315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hamblin, A. P. Hydrocarbon potential of the Tertiary succession of Intermontane Basins of the Cordillera: preliminary conceptual synthesis of background data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2008. http://dx.doi.org/10.4095/225186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cesar, J. R., and O. H. Ardakani. Organic geochemistry of the Montney Formation: new insights about the source of hydrocarbons, their accumulation history and post accumulation processes. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329788.

Повний текст джерела
Анотація:
This study consists of a non-traditional molecular and stable isotope approach to analyze organic matter (soluble bitumen and produced oil/condensate) from the Montney Formation low-permeability reservoirs, with the purpose of identifying source(s) of hydrocarbons, accumulation history and post accumulation processes. The same approach bases on the distribution of compound classes such as aromatic carotenoids, polycyclic aromatic hydrocarbons (PAHs), bicyclic alkanes, and oxygen-polar compounds. The geochemical screening has been enhanced with performing compound specific isotope analysis (CSIA) of n-alkanes and selected aromatic hydrocarbons. Widely spread PAHs, the presence of molecular indicators of euxinia, and hydrocarbon mixtures identified using CSIA profiles, are some of the key findings from this research, which will improve our understanding of the Montney petroleum system(s).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії