Добірка наукової літератури з теми "Hydraulic engineering Linear programming"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hydraulic engineering Linear programming".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hydraulic engineering Linear programming"
Qi, Qing Lan, and Shao Xiong Zhang. "Nonlinear Regression Analysis for Programming and Engineering Application." Advanced Materials Research 846-847 (November 2013): 1080–83. http://dx.doi.org/10.4028/www.scientific.net/amr.846-847.1080.
Повний текст джерелаHan, Bin, and Hongyan Gao. "Linear Parameter-Varying Model Predictive Control for Hydraulic Wind Turbine." Actuators 11, no. 10 (October 12, 2022): 292. http://dx.doi.org/10.3390/act11100292.
Повний текст джерелаZhang, Ming Zhe, Wei Wang, Dong Ning Su, Kang Min Zhong, and Zhi Ming Sui. "Mechanical-Electronic-Hydraulic Integration: Light Load Linear Reciprocating Motion Device Having Variable Frequency, Displacement and Velocity." Advanced Materials Research 279 (July 2011): 377–81. http://dx.doi.org/10.4028/www.scientific.net/amr.279.377.
Повний текст джерелаSaad, João Carlos Cury, and Miguel A. Mariño. "DESIGN OF MICROIRRIGATION SYSTEMS IN SLOPING LANDS USING LINEAR PROGRAMMING." IRRIGA 7, no. 3 (December 13, 2002): 214–25. http://dx.doi.org/10.15809/irriga.2002v7n3p214-225.
Повний текст джерелаCreaco, Enrico, Feifei Zheng, and Giuseppe Pezzinga. "Minimum transport-driven algorithm for water distribution network partitioning." Journal of Water Supply: Research and Technology-Aqua 71, no. 1 (December 10, 2021): 120–38. http://dx.doi.org/10.2166/aqua.2021.143.
Повний текст джерелаZhang, Bin, Shuang Wang, Yuting Liu, and Huayong Yang. "Research on Trajectory Planning and Autodig of Hydraulic Excavator." Mathematical Problems in Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/7139858.
Повний текст джерелаAl-Khayat, Rasha Hayder, Ameer A. Kadhim, Maher A. R. Sadiq Al-Baghdadi, and Muhannad Al-Waily. "Flow parameters effect on water hammer stability in hydraulic system by using state-space method." Open Engineering 12, no. 1 (January 1, 2022): 215–26. http://dx.doi.org/10.1515/eng-2022-0014.
Повний текст джерелаMéthot, Jean-François, and Martin Pleau. "The effects of uncertainties on the control performance of sewer networks." Water Science and Technology 36, no. 5 (September 1, 1997): 309–15. http://dx.doi.org/10.2166/wst.1997.0225.
Повний текст джерелаOnen, Fevzi. "GEP PREDICTION OF SCOUR AROUND A SIDE WEIR IN CURVED CHANNEL." JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT 22, no. 3 (March 17, 2014): 161–70. http://dx.doi.org/10.3846/16486897.2013.865632.
Повний текст джерелаNie, S. L., Y. P. Li, X. Y. Shi, G. H. Huang, and B. Hu. "An IPINP model for the assessment of filter allocation and replacement strategies in a hydraulic contamination control system under uncertainty." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, no. 4 (December 11, 2008): 999–1015. http://dx.doi.org/10.1243/09544062jmes1074.
Повний текст джерелаДисертації з теми "Hydraulic engineering Linear programming"
Shah, Aditya Arunkumar. "Combining mathematical programming and SysML for component sizing as applied to hydraulic systems." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33890.
Повний текст джерелаKaramalis, Constantinos. "Data perturbation analyses for linear programming." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6709.
Повний текст джерелаFeldman, Jon 1975. "Decoding error-correcting codes via linear programming." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/42831.
Повний текст джерелаIncludes bibliographical references (p. 147-151).
Error-correcting codes are fundamental tools used to transmit digital information over unreliable channels. Their study goes back to the work of Hamming [Ham50] and Shannon [Sha48], who used them as the basis for the field of information theory. The problem of decoding the original information up to the full error-correcting potential of the system is often very complex, especially for modern codes that approach the theoretical limits of the communication channel. In this thesis we investigate the application of linear programming (LP) relaxation to the problem of decoding an error-correcting code. Linear programming relaxation is a standard technique in approximation algorithms and operations research, and is central to the study of efficient algorithms to find good (albeit suboptimal) solutions to very difficult optimization problems. Our new "LP decoders" have tight combinatorial characterizations of decoding success that can be used to analyze error-correcting performance. Furthermore, LP decoders have the desirable (and rare) property that whenever they output a result, it is guaranteed to be the optimal result: the most likely (ML) information sent over the channel. We refer to this property as the ML certificate property. We provide specific LP decoders for two major families of codes: turbo codes and low-density parity-check (LDPC) codes. These codes have received a great deal of attention recently due to their unprecedented error-correcting performance.
(cont.) Our decoder is particularly attractive for analysis of these codes because the standard message-passing algorithms used for decoding are often difficult to analyze. For turbo codes, we give a relaxation very close to min-cost flow, and show that the success of the decoder depends on the costs in a certain residual graph. For the case of rate-1/2 repeat-accumulate codes (a certain type of turbo code), we give an inverse polynomial upper bound on the probability of decoding failure. For LDPC codes (or any binary linear code), we give a relaxation based on the factor graph representation of the code. We introduce the concept of fractional distance, which is a function of the relaxation, and show that LP decoding always corrects a number of errors up to half the fractional distance. We show that the fractional distance is exponential in the girth of the factor graph. Furthermore, we give an efficient algorithm to compute this fractional distance. We provide experiments showing that the performance of our decoders are comparable to the standard message-passing decoders. We also give new provably convergent message-passing decoders based on linear programming duality that have the ML certificate property.
by Jon Feldman.
Ph.D.
KRUTZ, JILL E. "DESIGN OF A HYDRAULIC ACTUATOR TEST STAND FOR NON-LINEAR ANALYSIS OF HYDRAULIC ACTUATOR SYSTEM." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin990813095.
Повний текст джерелаHeybroek, Kim. "On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation." Doctoral thesis, Linköpings universitet, Fluida och mekatroniska system, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-142326.
Повний текст джерелаHochwallner, Martin. "On Motion Control of Linear Incremental Hydraulic Actuators." Doctoral thesis, Linköpings universitet, Industriell Produktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-142264.
Повний текст джерелаKelner, Jonathan 1980. "New geometric techniques for linear programming and graph partitioning." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38295.
Повний текст джерелаIncludes bibliographical references (leaves 79-82).
In this thesis, we advance a collection of new geometric techniques for the analysis of combinatorial algorithms. Using these techniques, we resolve several longstanding questions in the theory of linear programming, polytope theory, spectral graph theory, and graph partitioning. The thesis consists of two main parts. In the first part, which is joint work with Daniel Spielman, we present the first randomized polynomial-time simplex algorithm for linear programming, answering a question that has been open for over fifty years. Like the other known polynomial-time algorithms for linear programming, its running time depends polynomially on the number of bits used to represent its input. To do this, we begin by reducing the input linear program to a special form in which we merely need to certify boundedness of the linear program. As boundedness does not depend upon the right-hand-side vector, we run a modified version of the shadow-vertex simplex method in which we start with a random right-hand-side vector and then modify this vector during the course of the algorithm. This allows us to avoid bounding the diameter of the original polytope.
(cont.) Our analysis rests on a geometric statement of independent interest: given a polytope ... in isotropic position, if one makes a polynomially small perturbation to b then the number of edges of the projection of the perturbed polytope onto a random 2-dimensional subspace is expected to be polynomial. In the second part of the thesis, we address two long-open questions about finding good separators in graphs of bounded genus and degree: 1. It is a classical result of Gilbert, Hutchinson, and Tarjan [25] that one can find asymptotically optimal separators on these graphs if he is given both the graph and an embedding of it onto a low genus surface. Does there exist a simple, efficient algorithm to find these separators given only the graph and not the embedding? 2. In practice, spectral partitioning heuristics work extremely well on these graphs. Is there a theoretical reason why this should be the case? We resolve these two questions by showing that a simple spectral algorithm finds separators of cut ratio O( g/n) and vertex bisectors of size O(Vng) in these graphs, both of which are optimal. As our main technical lemma, we prove an O(g/n) bound on the second smallest eigenvalue of the Laplacian of such graphs and show that this is tight, thereby resolving a conjecture of Spielman and Teng.
(cont.) While this lemma is essentially combinatorial in nature, its proof comes from continuous mathematics, drawing on the theory of circle packings and the geometry of compact Riemann surfaces. While the questions addressed in the two parts of the thesis are quite different, we show that a common methodology runs through their solutions. We believe that this methodology provides a powerful approach to the analysis of algorithms that will prove useful in a variety of broader contexts.
by Jonathan A. Kelner.
Ph.D.
SARAVANAN, SHANKAR. "EVALUATION OF SPHERICITY USING MODIFIED SEQUENTIAL LINEAR PROGRAMMING." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1132343760.
Повний текст джерелаUkritchon, Boonchai 1970. "Evaluation of numerical limit analyses by finte elements and linear programming." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/11199.
Повний текст джерелаTiessen, Meinard. "Predicting the development of crescentic bed patterns : a comparison of linear stability model results with field observations." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/11028/.
Повний текст джерелаКниги з теми "Hydraulic engineering Linear programming"
1942-, Sandblom Carl-Louis, ed. Linear programming and its applications. Berlin: Springer, 2007.
Знайти повний текст джерелаOzan, Turgut. Applied mathematical programming for engineering and production management. Englewood Cliffs, N.J: Prentice-Hall, 1986.
Знайти повний текст джерелаservice), SpringerLink (Online, ed. Linear Programming and Generalizations: A Problem-based Introduction with Spreadsheets. Boston, MA: Springer Science+Business Media, LLC, 2011.
Знайти повний текст джерелаservice), SpringerLink (Online, ed. Eigenvalues of Non-Linear Problems. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Знайти повний текст джерелаOptimization in engineering sciences: Exact methods. London: ISTE, 2013.
Знайти повний текст джерелаBittanti, Sergio. Time Series and Linear Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.
Знайти повний текст джерелаTang, S. L. Linear optimization in applications. Hong Kong: Hong Kong University Press, 1999.
Знайти повний текст джерелаCooper, William W. Handbook on Data Envelopment Analysis. Boston, MA: Springer Science+Business Media, LLC, 2011.
Знайти повний текст джерелаCharles, ReVelle, and McGarity Arthur E, eds. Design and operation of civil and environmental engineering systems. New York: Wiley, 1997.
Знайти повний текст джерелаBakr, Mohamed. Nonlinear optimization in electrical engineering with applications in MATLAB. Stevenage: The Institution of Engineering and Technology, 2013.
Знайти повний текст джерелаЧастини книг з теми "Hydraulic engineering Linear programming"
Borne, Pierre, Dumitru Popescu, Florin Gh Filip, Dan Stefanoiu, and Bernard Dubuisson. "Linear Programming." In Optimization in Engineering Sciences, 1–22. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118577899.ch1.
Повний текст джерелаHelmke, Uwe, and John B. Moore. "Linear Programming." In Communications and Control Engineering, 101–24. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-3467-1_4.
Повний текст джерелаStroud, Ken A. "Linear Optimisation (Linear Programming)." In Further Engineering Mathematics, 1025–90. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-6616-5_20.
Повний текст джерелаStroud, K. A. "Linear Optimisation (Linear Programming)." In Further Engineering Mathematics, 1025–90. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20731-2_20.
Повний текст джерелаStroud, K. A. "Linear Optimisation (Linear Programming)." In Further Engineering Mathematics, 965–1022. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-14020-6_20.
Повний текст джерелаWillis, Robert, and Brad A. Finney. "Linear Programming." In Environmental Systems Engineering and Economics, 207–96. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4615-0479-5_6.
Повний текст джерелаStroud, K. A., and Dexter Booth. "Optimization and linear programming." In Advanced Engineering Mathematics, 1014–62. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1057/978-0-230-34474-7_28.
Повний текст джерелаFaísca, Nuno P., Vivek Dua, and Efstratios N. Pistikopoulos. "Multiparametric Linear and Quadratic Programming." In Process Systems Engineering, 1–23. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631209.ch1.
Повний текст джерелаDua, Pinky, and Michael C. Georgiadis. "Multiparametric Mixed-Integer Linear Programming." In Process Systems Engineering, 53–71. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631209.ch3.
Повний текст джерелаZahiri, A., A. A. Dehghani, and H. Md Azamathulla. "Application of Gene-Expression Programming in Hydraulic Engineering." In Handbook of Genetic Programming Applications, 71–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20883-1_4.
Повний текст джерелаТези доповідей конференцій з теми "Hydraulic engineering Linear programming"
Kerzhner, Aleksandr A., and Christiaan J. J. Paredis. "A Mathematical Programming-Based Approach for Architecture Selection." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71025.
Повний текст джерелаSafaei, Ali, Vahid Esfahanian, Mohammad Reza Ha’iri-Yazdi, Mohsen Esfahanian, Masood Masih Tehrani, and Hassan Nehzati. "Optimized Control Strategy Based on the Driving Cycle Type for a Hydraulic Hybrid Bus." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82673.
Повний текст джерелаKeel, L. H., and S. P. Bhattacharyya. "Controller Design Using Linear Programming." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0271.
Повний текст джерелаMulkay, Eric L., and Singiresu S. Rao. "Fuzzy Heuristics for Sequential Linear Programming." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dac-3966.
Повний текст джерела"Sensorless position control system of hydraulic linear stepper actuator." In Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-185.
Повний текст джерелаWu, Junjie, Renzhi Zhang, Haiquan Chen, Wenhua Li, and Yang Ji. "Analysis of pulsation of linear hydraulic motor." In 2018 8th International Conference on Manufacturing Science and Engineering (ICMSE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icmse-18.2018.83.
Повний текст джерелаLandberg, Magnus, Martin Hochwallner, and Petter Krus. "Novel Linear Hydraulic Actuator." In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9604.
Повний текст джерелаFeng, Qigao, Hanping Mao, Hongwei Jiao, and Jingben Yin. "On Minimax General Linear Fractional Programming." In 2009 International Conference on Information Engineering and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/iciecs.2009.5363280.
Повний текст джерелаGuoguang, Zhang. "LPSPS: A New Linear Programming Program." In 2009 WRI World Congress on Computer Science and Information Engineering. IEEE, 2009. http://dx.doi.org/10.1109/csie.2009.152.
Повний текст джерелаInomata, Renato Massamitsu Zama, Paulo Domingos Conejo, Simone Aparecida Miloca, and Paula Yumi Takeda. "TOPOLOGY OPTIMIZATION WITH SEQUENTIAL LINEAR PROGRAMMING." In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0421.
Повний текст джерела