Добірка наукової літератури з теми "Hybrid systems for energy production"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hybrid systems for energy production".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hybrid systems for energy production"

1

Nifenecker, H. "Hybrid nuclear systems for energy production and waste management." Nuclear Physics News 4, no. 2 (January 1994): 21–23. http://dx.doi.org/10.1080/10506899408222879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Park, Seunghyun, and Surender Reddy Salkuti. "Optimal Energy Management of Railroad Electrical Systems with Renewable Energy and Energy Storage Systems." Sustainability 11, no. 22 (November 8, 2019): 6293. http://dx.doi.org/10.3390/su11226293.

Повний текст джерела
Анотація:
The proposed optimal energy management system balances the energy flows among the energy consumption by accelerating trains, energy production from decelerating trains, energy from wind and solar photovoltaic (PV) energy systems, energy storage systems, and the energy exchange with a traditional electrical grid. In this paper, an AC optimal power flow (AC-OPF) problem is formulated by optimizing the total cost of operation of a railroad electrical system. The railroad system considered in this paper is composed of renewable energy resources such as wind and solar PV systems, regenerative braking capabilities, and hybrid energy storage systems. The hybrid energy storage systems include storage batteries and supercapacitors. The uncertainties associated with wind and solar PV powers are handled using probability distribution functions. The proposed optimization problem is solved using the differential evolution algorithm (DEA). The simulation results show the suitability and effectiveness of proposed approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tee, Pei Fang, Mohammad Omar Abdullah, Ivy Ai Wei Tan, Nur Khairunnisa Abdul Rashid, Mohamed Afizal Mohamed Amin, Cirilo Nolasco-Hipolito, and Kopli Bujang. "Review on hybrid energy systems for wastewater treatment and bio-energy production." Renewable and Sustainable Energy Reviews 54 (February 2016): 235–46. http://dx.doi.org/10.1016/j.rser.2015.10.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lew, Roger, Thomas A. Ulrich, and Ronald L. Boring. "Rancor Hybrid Energy System Microworld." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 64, no. 1 (December 2020): 1760–64. http://dx.doi.org/10.1177/1071181320641426.

Повний текст джерела
Анотація:
Transitioning from fossil fuels to renewable energy sources will require a diverse energy portfolio to ensure a reliable and resilient electrical grid. Renewable sources are proliferating but are intermittent and low periods of low production must be offset by other energy generators. When renewable demand is high baseload generators must scale back or utilize energy for other sources such as hydrogen production. Hybrid energy systems such as nuclear thermolysis hydrogen production could play a critical role for our energy future. Hydrogen is critical for manufacturing fertilizer as well as other industrial processes. Here we describe the development of a human system interface for a micro-reactor thermal storage hydrogen production system. The development of the interface parallels the engineering of a physical test-loop known as the Thermal Energy Delivery System (TEDS) at Idaho National Laboratory.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Elia, Stefano, and Vincenzo Tiberi. "Dimensioning and efficiency evaluation of hybrid solar systems for energy production." Thermal Science 12, no. 3 (2008): 127–38. http://dx.doi.org/10.2298/tsci0803127e.

Повний текст джерела
Анотація:
Nowadays hybrid panels for joint production of thermal and electrical energy are available on the market. The main contribution of this work is to evaluate the performances of hybrid systems and to determine the field of application. Mathematical models of panels are considered to evaluate thermal and electrical behavior of the problem. A software produced by the authors is shown that calculates the energy production of these devices in several operating situations; a comparison to that of photovoltaic and thermal systems is performed. Moreover, the economic validity of a such investment is evaluated. Finally a simplified criterion has been developed to calculate the best subdivision of the available deployment surface among thermal, photovoltaic, and hybrid panels.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pinsky, Roxanne, Piyush Sabharwall, Jeremy Hartvigsen, and James O’Brien. "Comparative review of hydrogen production technologies for nuclear hybrid energy systems." Progress in Nuclear Energy 123 (May 2020): 103317. http://dx.doi.org/10.1016/j.pnucene.2020.103317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Elia, S., and V. Tiberi. "Dimensioning and Efficiency Evaluation of Hybrid Solar Systems for Energy Production." Cogeneration & Distributed Generation Journal 23, no. 4 (September 2008): 31–49. http://dx.doi.org/10.1080/15453660809509154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Akarsu, Beyhan, and Mustafa Serdar Genç. "Optimization of electricity and hydrogen production with hybrid renewable energy systems." Fuel 324 (September 2022): 124465. http://dx.doi.org/10.1016/j.fuel.2022.124465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Dichen, Chenxu Wang, Fei Tang, and Yixi Zhou. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems." Sustainability 12, no. 6 (March 11, 2020): 2183. http://dx.doi.org/10.3390/su12062183.

Повний текст джерела
Анотація:
In recent years, hybrid wind-photovoltaic (PV) systems are flourishing due to their advantages in the utilization of renewable energy. However, the accurate assessment of the maximum integration of hybrid renewable generation is problematic because of the complex uncertainties of source and demand. To address this issue, we develop a stochastic framework for the quantification of hybrid energy hosting capacity. In the proposed framework, historical data sets are adopted to represent the stochastic nature of production and demand. Moreover, extreme combinations of production and demand are introduced to avoid multiple load flow calculations. The proposed framework is conducted in the IEEE 33-bus system to evaluate both single and hybrid energy hosting capacity. The results demonstrate that the stochastic framework can provide accurate evaluations of hosting capacity while significantly reducing the computational burden. This study provides a comprehensive understanding of hybrid wind-PV hosting capacity and verifies the excellent performance of the hybrid energy system in facilitating integration and energy utilization.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fikru, Mahelet G., Gregory Gelles, Ana-Maria Ichim, and Joseph D. Smith. "Notes on the Economics of Residential Hybrid Energy System." Energies 12, no. 14 (July 10, 2019): 2639. http://dx.doi.org/10.3390/en12142639.

Повний текст джерела
Анотація:
Despite advances in small-scale hybrid renewable energy technologies, there are limited economic frameworks that model the different decisions made by a residential hybrid system owner. We present a comprehensive review of studies that examine the techno-economic feasibility of small-scale hybrid energy systems, and we find that the most common approach is to compare the annualized life-time costs to the expected energy output and choose the system with the lowest cost per output. While practical, this type of benefit–cost analysis misses out on other production and consumption decisions that are simultaneously made when adopting a hybrid energy system. In this paper, we propose a broader and more robust theoretical framework—based on production and utility theory—to illustrate how the production of renewable energy from multiple sources affects energy efficiency, energy services, and energy consumption choices in the residential sector. Finally, we discuss how the model can be applied to guide a hybrid-prosumer’s decision-making in the US residential sector. Examining hybrid renewable energy systems within a solid economic framework makes the study of hybrid energy more accessible to economists, facilitating interdisciplinary collaborations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hybrid systems for energy production"

1

Trivedi, Manas. "Multi-objective generation scheduling with hybrid energy resources." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1202498690/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abdallah, Ibrahim. "Event-driven hybrid bond graph : Application : hybrid renewable energy system for hydrogen production and storage." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10104/document.

Повний текст джерела
Анотація:
Ce travail de thèse constitue une contribution à la modélisation et au diagnostic des systèmes multi-domaines à commutation (hybrides). Il est appliqué à la supervision des systèmes multi-sources d’énergie propre où l’hydrogène est utilisé comme moyen de stockage. Un tel système associe des composantes énergétiques de nature différente et fait l’objet de commutations produites par la connexion et déconnexion d’un ou plusieurs composants. Ces commutations génèrent différents modes de fonctionnement et sont liées à l’intermittence des sources primaires, aux capacités de stockage et à la disponibilité opérationnelle des ressources matérielles qui constituent le système. La présence de ces commutations engendre une dynamique variable qui est classiquement difficile à exprimer mathématiquement sans exploiter tous les modes. Ces difficultés de modélisation se propagent pour affecter toutes les tâches dépendantes du modèle comme le diagnostic et la gestion de modes de fonctionnement. Pour résoudre ces problématiques, un nouvel outil, Bond Graph Hybride piloté par événements, a été développé. Entièrement graphique, ce formalisme permet une modélisation interdisciplinaire globale du système. En séparant la dynamique continue gérée par le Bond Graph Hybride des états discrets modélisés par un automate intégré, l’approche proposée simplifie la gestion des modes de fonctionnement. Le modèle issu de cette méthodologie est également bien adapté au diagnostic robuste, réalisable sans recourir aux équations analytiques. Associée au diagnostic robuste, cette gestion des modes permet l’implémentation de stratégies de reconfiguration et de protection en présence de défaillances
This research work constitutes a general contribution towards a simpler modelling and diagnosis of the multidisciplinary hybrid systems. Hybrid renewable energy systems where hydrogen is used to store the surplus of the power fits perfectly under this description. Such system gathers different energetic components that are needed to be connected or disconnected according to different operating conditions. These different switching configurations generate different operating modes and depend on the intermittency of the primary sources, the storage capacities and the operational availability of the different hardwares that constitute the system. The switching behaviour engenders a variable dynamic which is hard to be expressed mathematically without investigating all the operating modes. This modelling difficulty is transmitted to affect all the model-based tasks such as the diagnosis and the operating mode management. To solve this problematic, a new modelling tool, called event-driven hybrid bond graph, is developed. Entirely graphic, this formalism allows a multidisciplinary global modelling for all the operating modes at once. By separating the continuous dynamic driven by the bond graph, from the discrete states handled by an integrated automaton, this approach simplifies the management of the operating modes. The model issued using this methodology is also well-adapted to perform a robust diagnosis which is achievable without referring back to the analytical description of the model. The operating mode management, when associated with the on-line diagnosis, allows the implementation of reconfiguration strategies and protection protocols when faults are detected
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Somayajula, Deepak. "Control aspects of a double-input buckboost power electronic converter." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Somayajula_2009_09007dcc8070c9e2.pdf.

Повний текст джерела
Анотація:
Thesis (M.S.)--Missouri University of Science and Technology, 2009.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 17, 2009) Includes bibliographical references (p. 67-70).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

El, Tawil Tony. "On sizing and control of a renewables-based hybrid power supply system for stand-alone applications in an island context." Thesis, Brest, 2018. http://www.theses.fr/2018BRES0003/document.

Повний текст джерела
Анотація:
L’objectif de cette thèse est de dimensionner et régler un système hybride de production d’énergie pour un site isolé de type insulaire, basé sur des énergies renouvelables marines. De manière préliminaire divers systèmes de production d’énergie renouvelable marine ont d’abord été étudiés et comparés de manière qualitative à des systèmes de production d’énergie classiques. Plusieurs types de système de stockage d’énergie ont également été étudiés, comparés et évalués dans le cas du site considéré. Cette analyse préliminaire a été étendue aux différents types de transmissions d’énergie offshore et de méthodes de réglage des convertisseurs associés aux sources renouvelables. A partir de l’étude des caractéristiques du site et de l’analyse statistique des ressources renouvelables (vents, courants marins) une méthode de dimensionnement des éléments du système de production est présentée, dans l’objectif de minimiser les émissions de CO2 et le coût du système sur son cycle de vie. Pour cela, une solution de gestion de la puissance basée sur la logique floue est proposée pour le type de site considéré et comparée à une solution plus classique basée sur des règles logiques. Pour finir, une étude détaillée des différentes méthodes de réglage du système hybride côté réseau est présentée. Trois niveaux de réglage sont considérés : réglage d’une source unique, réglage d’une ferme de plusieurs sources et réglage global du système hybride. Plusieurs modes de réglage sont considérés pour chaque niveau
This PhD thesis models a renewable-based hybrid power supply system applied in an islanded context and investigates sizing and regulation strategies of such a hybrid system. First, various marine energy production technologies were reviewed and compared to common renewable resources. As well, various energy storage technologies were reviewed, compared, and evaluated to fit the chosen site characteristics. A brief investigation on offshore energy transmission and inverter regulations methods is presented. Then, a study of the site characteristics, and the availability of the different renewable energy resources in the area are presented. This energy study constitutes the basis of the proposed system sizing method, where minimizing the cost and the CO2 emissions are considered as the main objectives. Furthermore, a fuzzy logic power management approach is proposed for the islanded microgrid. Finally, a detailed study of the system components grid-side inverter regulation is presented. Three regulation levels were investigated: the single inverter, the renewable farm, and the hybrid system. In this context, different regulation strategies are considered at each level
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Herrera, Santisbon Eunice. "Production-consumption system coordination by hybrid predictive approaches : application to a solar cooling system for buildings." Thesis, CentraleSupélec, 2015. http://www.theses.fr/2015SUPL0006/document.

Повний текст джерела
Анотація:
Garantir le confort thermique des bâtiments est directement lié à la consommation d'énergie. Dans les zones tropicales, les systèmes de refroidissement représentent l'un des postes les plus gourmands en énergie. Afin de réduire la consommation d'énergie mondiale, il est primordial d'améliorer l'efficacité de ces systèmes ou bien de développer de nouvelles méthodes de production de froid. Une installation de refroidissement solaire basé sur le cycle à absorption est une alternative pour réduire les émissions de gaz à effet de serre et la consommation d'électricité. Contrairement aux systèmes classiques de refroidissement à compression mécanique, la production de froid par absorption est un système complexe composé de plusieurs composants comme des panneaux solaires, un ballon de stockage, une tour de refroidissement et une machine à absorption. Outre le dimensionnement des composants, ce système complexe nécessite des actions de contrôle pour être efficace parce que la coordination entre le stockage d'eau chaude, la production et la consommation du froid est nécessaire. Le but de cette thèse est de proposer une structure producteur-consommateur d'énergie basée sur la commande prédictive (MPC). Le système de refroidissement par absorption solaire est considéré comme faisant partie de ce système de production-consommation d'énergie, le système de stockage d'eau chaude est le producteur et la machine à absorption qui distribue de l'eau froide au bâtiment est l'un des consommateurs. Pour que la structure de commande soit modulaire, la coordination entre les sous-systèmes est réalisée en utilisant une approche de partitionnement où des contrôleurs prédictifs locaux sont conçus pour chacun des sous-systèmes. Les contrôleurs des consommateurs calculent un ensemble de profils de demande d'énergie. Ces profils sont ensuite envoyés au contrôleur du producteur qui sélectionne le profil qui minimise le coût global. Dans une première partie, l'approche proposée est testée sur un modèle linéaire simplifié composé d'un producteur et plusieurs consommateurs. Dans une deuxième partie, un cas plus complexe est étudié. Un modèle simplifié d'un système de refroidissement à absorption est évaluée en utilisant l'outil de simulation TRNSYS. Le modèle de production n'est plus linéaire, il est décrit par un modèle non linéaire hybride qui augmente la complexité du problème d'optimisation. Les résultats des simulations montrent que la sous-optimalité induite par la méthode est faible. De plus, la performance de l'approche atteint les objectifs de commande tout en respectant les contraintes
To guarantee thermal comfort in buildings is directly related to energy consumption. In tropical climates, cooling systems for buildings represent one of the largest energy consumers. Therefore, as energy consumption is a major concern around the world, it is important to improve the systems efficiency or seeking new methods of cooling production. A solar cooling installation based on the absorption cycle is an alternative to mitigate greenhouse gas emissions and electricity consumption. In contrast to conventional vapor-compression based cooling systems, the absorption cooling production involves a complex system composed of several components as collector panel, storage tank, cooling tower and absorption chiller. Besides the sizing of the components, this complex system requires control actions to be efficient as a coordination between hot water storage, cooling water production and consumption is necessary. The aim of this research is to propose a management approach for a production-consumption energy system based on Model Predictive Control (MPC). The solar absorption cooling system is seen as part of this production-consumption energy system where the hot water storage system is the producer and the chiller-building system is one of the consumers. In order to provide modularity to the control structure, the coordination between the subsystems is achieved by using a partitioning approach where local predictive controllers are developed for each of the subsystems. The consumer controllers compute a set of energy demand profiles sent to the producer controller which selects the profile that better minimize the global optimization cost. In a first part, the proposed approach is tested on a simplified linear model composed of one producer and several consumers. In a second part, a more complex case is studied. A simplified model of an absorption cooling system is evaluated using the simulation tool TRNSYS. The producer model is no longer linear, instead it is described by a nonlinear hybrid model which increases the complexity of the optimization problem. The simulations results show that the suboptimality induced by the method is low and the control strategy fulfills the objectives and constraints while giving good performances
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ben, Jemaa Abdelhak. "Coopération méta heuristique et logique floue pour le dimensionnement d'une installation hybride." Thesis, Reims, 2015. http://www.theses.fr/2015REIMS009/document.

Повний текст джерела
Анотація:
Cette thèse propose la méthodologie de dimensionnement optimal pour optimiser la configuration de système d'énergie hybride. Pour cela, nous utilisons une approche pour la génération de base de règles floues et une optimisation automatiques au moyen d'algorithme génétique et d'un PSO adaptés avec le floue. Ces algorithmes nous permet d'obtenir le nombre optimal de panneaux photovoltaïques, d'éoliennes et des batteries, minimisant le coût total du système et garantissant la disponibilité permanente de l'électricité pour couvrir les besoins énergétiques. L'historique horaire de vitesse du vent, d’ensoleillement, sont utilisés pour modéliser la production des éoliennes, la production photovoltaïque et de charge. Le coût total est la fonction objective et la taille technique est une contrainte
This thesis proposes the optimum sizing methodology to optimize the configuration of hybrid energy system. For this, we use an approach for automatic fuzzy rule base generation and optimization by means of Fuzzy-Adaptive Genetic Algorithm and fuzzy adaptive PSO. This Algorithms allows us to obtain the optimal number of photovoltaic panels, wind turbines and storages units, ensuring the minimal global high efficiency system total cost and guaranteeing the permanent availability of energy to cover the load energy requirements. Historical hourly wind speed, solar irradiance and load data are used to stochastically model the wind turbines, photovoltaic generation and load. The total cost is the objective function and the technical size is a constraint
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Saidi, Majdi. "Contribution à l'optimisation des systèmes hybrides de production énergétique à base de sources renouvelables." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0627.

Повний текст джерела
Анотація:
Cette thèse est une contribution à la conception optimale des systèmes hybrides pour la production énergétique. Les travaux proposés sont organisés en trois parties. La première partie consiste à étudier la possibilité d’intégrer des sous-réseaux constitués d’un ensemble de producteur-exploitant connectés au réseau principal. Le but est de renforcer la décentralisation de la production énergétique en tenant compte des besoins spécifiques et des disponibles de source renouvelable. Pour ce faire, l’approche consiste à optimiser le coût de l’installation, pour le producteur-exploitant, et les taux des subventions, assurées par l’état-soutien, tout en évitant la spéculation financière. La deuxième partie traite du problème de dimensionnement des systèmes hybrides par adaptation optimale de la charge, et l’approche est effectuée en deux parties. Une première partie consiste à modéliser la charge en tenant compte des contraintes spécifiques à l’exploitation. Ensuite, lors de la deuxième partie, une optimisation de la structure est effectuée en fonction du disponible énergétique. La troisième partie est consacrée au cas spécifique d’une application en nomade. Tout d’abord, il s’agit de déterminer les différentes contraintes caractéristiques à ce type d’application (sécurité énergétique, coût de la conception, etc.) et de définir les différents problèmes d’optimisation associés aux objectifs spécifiques. Ensuite, une étude de cas exprimée comme un problème d’optimisation de nature multi-objectif est énoncée. Finalement, des solutions optimales sont identifiées à travers des outils d’intelligence artificielle et de considérations liées à l’application
This thesis is a contribution to the optimal design of hybrid systems for energy production. The proposed work is organised in three parts. The first part is dedicated to an energy analysis at the level of the national electricity grid. The aim is to study the possibility of integrating sub-grids consisting of a set of producer-operators connected to the main grid. The aim is to strengthen the decentralisation of energy production, taking into account the specific needs and availability of renewable sources. To achieve this, the approach is to optimise the cost of the installation for the producer-operator and the subsidy rates provided by the supporting state, while avoiding financial speculation. The second part deals with the problem of sizing hybrid systems by optimal load adaptation, and the approach is carried out in two parts. In the first part, the load is modelled taking into account the specific constraints of the operation. Then, in the second part, an optimisation of the structure is carried out according to the available energy. To illustrate the relevance of the approach, an application to a concrete case of a company is performed. The third part is devoted to the specific case of a nomadic application. First, the different constraints characteristic of this type of application (energy security, design cost, etc.) are determined and the different optimisation problems associated with the specific objectives are defined. Then, a case study expressed as an optimisation problem of a multi-objective nature is stated. Finally, optimal solutions are identified through artificial intelligence tools and application
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martínez, Díaz Maria del Mar. "Stand-alone hybrid renewable energy systems (HRES)." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/457978.

Повний текст джерела
Анотація:
End of Energy Poverty and achieving Sustainable Energy for all by 2030 is a universal challenge. 1.3 billion people without energy access and 2.8 billion people using unsustainable solid fuel for cooking and heating are global challenges for human and societal sustainable development. Nearly $1 trillion of investment is expected in the Sustainable Energy for All (SE4ALL) scenario to achieve universal energy access in 2030. Around 60% of investments will be in isolated off-grid and mini-grid systems with the relevant goal of duplicating the renewable energy sources in the energy mix. Access to innovation trends in renewable energy off-grid would benefit future installations. This work brings to light the recent years research contributions in Hybrid Renewable Energy Systems (HRES) and related aspects that would benefit these required investments in isolated off-grid and mini-grid systems. An overview on the thematic focus of research in Hybrid Renewable Energy Systems (HRES) in the last decade, period 2005 - 2015, is provided. This review covers multiple key aspects of HRES as the main focus of the research (technical, economical, environmental, financial, etc.); the design of the system (type of load, energy sources, storage, availability of meteorology data, etc.); different optimization criteria and objective function; software and modelling tools; and the type of application and country among others. A methodology for searching, identifying and categorizing the innovations related to HRES is proposed. Applying this methodology during this PhD work results in a primary database with a categorized bibliography including nearly 400 entries. Currently system design is mainly technical driven with economic feasibility analysis regarding the energy cost. As for environmental aspects, the beneficial impacts of renewable energy are hardly introduced as an economical value that is so far the most important decision-making criteria. Regarding decision-making tools, the most currently used optimization algorithms and software tools for the design of HRES is HOMER and a case study for understanding is proposed. Following the analysis of most popular and relevant criteria, an easy to use guideline is proposed encouraging decision-making for more sustainable energy access. There are untapped research opportunities for HRES in multi-disciplinary thematic areas. The analysis of innovations regarding the system design for Hybrid Renewable Energy Systems (HRES) have identified potential for research community aligned with the trends to integrate the value chain and foster innovative business models and sustainable energy markets. After the analysis of those different focus that goes from technical and economical, to environmental, regulatory or policy aspects, an integrated value chain for HRES systems is defined. Knowledge, methodologies & tools are provided in this PhD work for more stand-alone hybrid systems creating value for more of the stakeholders involved. After reviewing the latest innovations in HRES per thematic focus, an integrated value chain for those systems has been proposed and multidisciplinary research opportunities have been identified. Identifying the need to include the environmental aspects in early stages of the decision-making has lead to propose an easy to use guideline integrating most relevant criteria for the design of stand-alone renewable power systems. Finally, the research opportunities identified and the untapped potential of transferring latest innovations have result in the creation of the website ElectrifyMe (www.electrifyme.org) to enable valuable international networking contacts among researchers and encouraging multi-disciplinary research. "Knowledge, methodologies & tools" are powerful contributions by research community and innovators to foster more sustainable energy for all.
El fi de la pobresa energètica i l'assoliment d'energia sostenible per a tothom l'any 2030 és un repte universal. 1,3 mil milions de persones sense accés a l'energia i 2,8 mil milions de persones que utilitzen combustible sòlid insostenible per cuinar i escalfar són desafiaments globals pel desenvolupament humà sostenible i social. S'espera una inversió aproximada de $1 trilió en l'energia sostenible per a tots (SE4ALL) per aconseguir l'accés universal a l'energia en 2030. Al voltant del 60 % de les inversions seran en sistemes off-grid i mini-grid, amb la corresponent meta de duplicar les fonts d'energia renovables en el mix energétic. En aquesta tesis es facilita una visió general sobre els àmbits temàtics de la recerca en Hybrid Renewable Energy Systems (HRES) en l'última dècada, període 2005-2015. Aquesta revisió es refereix a diversos aspectes clau deis HRES com: el focus principal de la investigació (tècnics, econòmics, ambientals, financers, etc.); el disseny del sistema (tipus de carrega, fonts d'energia, l'emmagatzematge, la disponibilitat de dades de meteorologia, etc.); diferents criteris d'optimització i funció objectiu; programari de modelatge eines; i el tipus d'aplicació i el país, entre d'altres. Es proposa una metodologia per buscar, identificar i categoritzar les innovacions relacionades amb els HRES. L'aplicació d'aquesta metodologia durant aquest treball de doctorat proporciona una base de dades primaria amb una bibliografia classificada incloent prop de 400 entrades. Actualment el disseny dels sistemes incorporen criteris tècnics amb anàlisi de viabilitat econòmica sobre el cost de l'energia. Pel que fa a les eines de presa de decisions, el métode d'optimització més utilitzats en l'actualitat pel disseny de HRES és HOMER, i es proposa un estudi de cas per a la comprensió deis criteris de disseny. Després de l'anàlisi de la majoria deis valors més habituals i rellevants, es proposa una senzilla guia per la presa de decisions per a l'accés a l'energia més sostenible. Després de compartir innovacions i proporcionar metodologies i eines, facilitar la creació de xarxes entre els investigadors ha demostrat ser una poderosa acció per promoure recerca sense explotar amb equips multidisciplinaris i internacionals. La pàgina web ElectrifyMe (www .electrifyme .org) ha estat creada amb la finalitat de facilitar a la comunitat d'investigació descobrir les innovacions i compartir projectes . Coneixements, metodologies i eines es proporcionen en aquest treball de doctorat per afavorir la creació de valor als sistemes aïllats híbrids renovables (stand-alone HRES) pels actors involucrats. Després de revisar les últimes innovacions en la introducció de renovables en sistemes aïllats en diferent enfoc temàtic, s'han estat identificat oportunitats de recerca multidisciplinars i s'ha proposat una cadena de valor integrada per aquests sistemes. La identificació de la necessitat d'incloure els aspectes ambientals en les primeres etapes de la presa de decisions ha portat a proposar una guia fàcil per utilitzar la integració de criteris més rellevants pel disseny de sistemes d'energia renovables independents. Finalment, tes oportunitats de recerca identificades i el potencial sense explotar de transferir les darreres innovacions tenen com a resultat la creació de la pàgina web ElectrifyMe (www.electrifyme.org) per promoure contactes i col·laboracions de xarxes internacionals entre investigadors i el foment de la investigació multidisciplinar. "El coneixement, les metodologies i les eines són poderoses contribucions de la comunitat de recerca per assolir un accés sostenible a l'energia per tots"
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Das, Debosmita. "Advanced power electronics for hybrid energy systems." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1412940298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rae, Callum. "Variable energy pricing in stand alone community hybrid energy systems." Thesis, University of Strathclyde, 2016. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27096.

Повний текст джерела
Анотація:
Satisfying the demand for a more efficient and sustainable energy supply model has presented a new challenge for the energy industry. It has also created an opportunity for alternative and renewable sources of energy generation, which has led to a significant increase in the deployment of renewable technologies in many countries. Recent years have also seen these technologies deployed at a community scale, with remote and isolated communities in particular being regarded as ideal locations. Such systems are capable of providing increasingly viable, standalone alternatives to the centralised energy supply model. This thesis investigates the extent to which the viability of these stand-alone hybrid energy systems could be further improved by implementing domestic demand response, promoted via variable domestic energy pricing. A high resolution,disaggregated model of domestic energy demand at the community level is then developed, supported by the findings of a targeted consumer attitudes survey. This model is combined with a series of demand response algorithms which replicate the response of domestic consumers to energy price variation. Three variable pricing approaches are then applied to the model under a range of conditions, and the impacts examined from both a community-wide and household level perspective. The thesis demonstrates the relevance and potential of stand-alone hybrid applications and the remote/isolated communities in which they are typically deployed. The results find variable domestic energy pricing based on renewable energy supply to be capable of achieving modest yet significant levels of demand response under a broad range of conditions (83% of the scenarios modelled).Further sensitivity analysis shows the pricing strategies to be resilient to changes in supply conditions, thereby illustrating the broad ranging potential of such an approach. However, susceptibility to free-rider behaviour and insensitivity to household elasticity levels suggest the need for additional/supplementary forms of financial incentivisation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Hybrid systems for energy production"

1

Viswanathan, B., and Ravi Subramanian. Materials and processes for solar fuel production. New York: Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Phillips, S. J. Research and demonstration: Optimised hybrid energy system. East Perth, W.A: Minerals and Energy Research Institute of Western Australia, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zohuri, Bahman. Hybrid Energy Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70721-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rekioua, Djamila. Hybrid Renewable Energy Systems. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34021-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Blair, Thomas H. Energy Production Systems Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119238041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

El-Hawary, M. E. Electrical energy systems. 2nd ed. Boca Raton: CRC Press, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yue, Dong, Huifeng Zhang, and Chunxia Dou. Cooperative Optimal Control of Hybrid Energy Systems. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6722-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Villa, A. Hybrid control systems in manufacturing. New York: Gordon and Breach Science Publishers, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Elbaset, Adel A., and Salah Ata. Hybrid Renewable Energy Systems for Remote Telecommunication Stations. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66344-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Younghyun, and Naehyuck Chang. Design and Management of Energy-Efficient Hybrid Electrical Energy Storage Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07281-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hybrid systems for energy production"

1

Shah, Yatish T. "Hybrid Energy Systems for Hydrogen Production." In Hybrid Energy Systems, 493–525. First edition. | Boca Raton, FL : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003159421-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sircar, Anirbid, Shishir Chandra, and Manan Shah. "Utilization of Geo-Solar Hybrid System for Efficient Power Production in India." In Springer Proceedings in Energy, 207–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63085-4_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Akyuz, Ersin, Zuhal Oktay, and Ibrahim Dincer. "Energy Analysis of Hydrogen Production from a Hybrid Wind Turbine-Electrolyzer System." In Progress in Exergy, Energy, and the Environment, 377–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sayama, Kazuhiro. "Solar Hydrogen Production on Photocatalysis-Electrolysis Hybrid System Using Redox Mediator and Porous Oxide Photoelectrodes." In Lecture Notes in Energy, 345–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25400-5_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Jun, Yidong Guo, Yiran Wang, and Ying Qi. "Using Hybrid Method Based on Machine Learning for Energy Consumption Prediction of Oil and Gas Production." In Advances in Intelligent Systems and Computing, 234–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5887-0_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Burhan, Muhammad, Muhammad Wakil Shahzad, and Kim Choon Ng. "Compact CPV—Sustainable Approach for Efficient Solar Energy Capture with Hybrid Concentrated Photovoltaic Thermal (CPVT) System and Hydrogen Production." In Springer Proceedings in Energy, 93–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00105-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Đurin, Bojan, Shpetim Lajqi, Nikola Kranjčić, and Božo Soldo. "Sustainable Energy Production, Small Hydropower Plant and Solar Photovoltaic Power Plant Hybrid System." In Encyclopedia of the UN Sustainable Development Goals, 1–14. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-71057-0_110-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Đurin, Bojan, Shpetim Lajqi, Nikola Kranjčić, and Božo Soldo. "Sustainable Energy Production: Small Hydropower Plant and Solar Photovoltaic Power Plant Hybrid System." In Encyclopedia of the UN Sustainable Development Goals, 1235–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-95864-4_110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abuadala, Abdussalam, and Ibrahim Dincer. "Exergetic Assessment of a Hybrid Steam Biomass Gasification and SOFC System for Hydrogen, Power, and Heat Production." In Progress in Exergy, Energy, and the Environment, 33–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ogbolumani, Omolola A., and Nnamdi Nwulu. "Integrated Appliance Scheduling and Optimal Sizing of an Autonomous Hybrid Renewable Energy System for Agricultural Food Production." In Lecture Notes in Mechanical Engineering, 651–60. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5753-8_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hybrid systems for energy production"

1

McDaniel, Robin J. "Evaluation of Hybrid Nuclear Energy Systems." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59452.

Повний текст джерела
Анотація:
Small Modular Reactor (SMR) technologies have been recently deemed by the DOE as clean energy, a low carbon-dioxide emitting “alternative energy” source. Recent UN Sustainability Goals and Global Climate Talks to reduce the anthropomorphic Carbon-Dioxide atmospheric concentrations signal a renewed interest and need for nuclear power. The objective of this paper is to present an improved approach to the evaluation of “Hybrid Nuclear Energy Systems”. A hybrid energy system is defined as an energy system that utilizes two or more sources of energy to be used in single or multiple applications. Traditional single sourced energy or power systems require the amount of energy creation and the production of usable power to be carefully balanced. With the introduction of multiple energy sources, loads, and energy capacitors, the design, simulation, and operation of such hybrid systems requires a new approach to analysis and control. This paper introduces three examples of “Hybrid Nuclear Energy Systems”, for large scale power, industrial heat, and electricity generation. The system component independence, reliability, availability, and dynamic control aspects, coupled with component operational decisions presents a new way to optimize energy production and availability. Additional novel hybrid hydro-nuclear systems, concentrated solar-nuclear power desalination systems, and nuclear-insitu petroleum extraction systems are compared. The design aspects of such hybrid systems suitable for process heat, electricity generation, and/or desalination applications are discussed. After a multiple-year research study of past hybrid reactor designs and recent system proposals, the following design evaluation approach is the result of analysis of the best concepts discovered. This review of existing literature has summerized that postulated benefits of Hybrid Nuclear Sytems are; reduced greenhouse gas emissions, increased energy conversion efficiency, high reliability of electricity supply and consistent power quality, reduced fossil fuel dependence, less fresh water consumption, conversion of local coal or shale into higher value fuels, while lowering the risks and costs. As these proposed hybrid systems are interdisciplinary in nature, they will require a new multidisciplinary approach to systems evaluation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dean, Jered, Robert Braun, Michael Penev, Christopher Kinchin, and David Mun˜oz. "Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90067.

Повний текст джерела
Анотація:
The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26–40 per metric ton of CO2 equivalent (CO2e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a non-renewable, grid-mix electricity is used, the hybrid system is found to be a net CO2e emitter.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Seyam, Shaimaa, Khaled H. M. Al-Hamed, Ali M. M. I. Qureshy, Ibrahim Dincer, Martin Agelin-Chaab, and Shahryar Rahnamayan. "Multi-objective Optimization of Hydrogen Production in Hybrid Renewable Energy Systems." In 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2019. http://dx.doi.org/10.1109/cec.2019.8790299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Okedu, Kenneth E., Dharmasa Pawar, R. Uhunmwangho, Richard A. John, and Peter Madifie. "Hydrogen production in hybrid renewable energy system and power factor improvement." In 2016 3rd International Conference on Electrical Energy Systems (ICEES). IEEE, 2016. http://dx.doi.org/10.1109/icees.2016.7510641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vallero, Greta, and Michela Meo. "Hybrid Energy Production Analysis and Modelling for Radio Access Network Supply." In 10th International Conference on Smart Cities and Green ICT Systems. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010423601310141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tee, Pei Fang, Mohammad Omar Abdullah, Ivy Ai Wei Tan, Cirilo Nolasco-Hipolito, and Kopli Bujang. "Review on Microbial Fuel (MFC) Hybrid Energy Systems for Wastewater Treatment and Bio-Energy Production." In Proceedings of the International Engineering Conference. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-4587-9_p36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhou, B., M. Frye, C. Sander, and R. H. Schmitt. "A hybrid simulation tool to improve the energy efficiency in production environment*." In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kallel, Randa, Ghada Boukettaya, and Lotfi Krichen. "Power management of an isolated hybrid energy production unit with super-capacitor." In 2013 10th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2013. http://dx.doi.org/10.1109/ssd.2013.6564063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schwung, Dorothea, Andreas Schwung, and Steven X. Ding. "On-line Energy Optimization of Hybrid Production Systems Using Actor-Critic Reinforcement Learning." In 2018 International Conference on Intelligent Systems (IS). IEEE, 2018. http://dx.doi.org/10.1109/is.2018.8710466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Anoune, Kamal, Mohsine Bouya, Mokhtar Ghazouani, Abdelali Astito, and Abdellatif Ben Abdellah. "Hybrid renewable energy system to maximize the electrical power production." In 2016 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2016. http://dx.doi.org/10.1109/irsec.2016.7983992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hybrid systems for energy production"

1

Muelaner, Jody Emlyn. Unsettled Issues in Electrical Demand for Automotive Electrification Pathways. SAE International, January 2021. http://dx.doi.org/10.4271/epr2021004.

Повний текст джерела
Анотація:
With the current state of automotive electrification, predicting which electrification pathway is likely to be the most economical over a 10- to 30-year outlook is wrought with uncertainty. The development of a range of technologies should continue, including statically charged battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), plug-in hybrid electric vehicles (PHEVs), and EVs designed for a combination of plug-in and electric road system (ERS) supply. The most significant uncertainties are for the costs related to hydrogen supply, electrical supply, and battery life. This greatly is dependent on electrolyzers, fuel-cell costs, life spans and efficiencies, distribution and storage, and the price of renewable electricity. Green hydrogen will also be required as an industrial feedstock for difficult-to-decarbonize areas such as aviation and steel production, and for seasonal energy buffering in the grid. For ERSs, it is critical to understand how battery life will be affected by frequent cycling and the extent to which battery technology from hybrid vehicles can be applied. Unsettled Issues in Electrical Demand for Automotive Electrification Pathways dives into the most critical issues the mobility industry is facing.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ashwood, A., and D. Bharathan. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1009690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shannon Bragg-Sitton, J. Michael Doster, and Alan Rominger. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1060985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reilly, Jim, Ram Poudel, Venkat Krishnan, Ben Anderson, Jayaraj Rane, Ian Baring-Gould, and Caitlyn Clark. Hybrid Distributed Wind and Battery Energy Storage Systems. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1874259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Author, Not Given. Modular Hybrid Plasma Systems for Low Cost Production of Nanoparticles. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/964934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cetiner, Sacit M., Michael Scott Greenwood, Thomas J. Harrison, A. L. Qualls, Askin Guler Yigitoglu, and David W. Fugate. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1338537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mikkelson, Daniel, Konor Frick, Cristian Rabiti, and Shannon Bragg-Sitton. Thermal Energy Storage Model Development within the Integrated Energy Systems Hybrid Repository. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1787041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sethi, Vijay. Sorbent-based Oxygen Production for Energy Systems. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1352448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Greenwood, Michael Scott, Askin Guler Yigitoglu, and Thomas J. Harrison. Nuclear Hybrid Energy Systems South East Regional Case Progress Report. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1495965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ruth, Mark, Dylan Cutler, Francisco Flores-Espino, Greg Stark, Thomas Jenkin, Travis Simpkins, and Jordan Macknick. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1285734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії