Добірка наукової літератури з теми "Hybrid data mining"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hybrid data mining".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Hybrid data mining"
Ambulkar, Bhagyashree, and Prof Gunjan Agre. "Data Mining Over Encrypted Data of Database Client Engine Using Hybrid Classification Approach." International Journal of Innovative Research in Computer Science & Technology 5, no. 3 (May 31, 2017): 291–94. http://dx.doi.org/10.21276/ijircst.2017.5.3.7.
Повний текст джерелаElankavi, R., R. Kalaiprasath, and R. Udayakumar. "DATA MINING WITH BIG DATA REVOLUTION HYBRID." International Journal on Smart Sensing and Intelligent Systems 10, no. 4 (2017): 560–73. http://dx.doi.org/10.21307/ijssis-2017-270.
Повний текст джерелаLakshmi Devasena, C., and M. Hemalatha. "A Hybrid Image Mining Technique using LIMbased Data Mining Algorithm." International Journal of Computer Applications 25, no. 2 (July 31, 2011): 1–5. http://dx.doi.org/10.5120/3007-4056.
Повний текст джерелаShadroo, Shabnam, Mohsen Yoosefi Nejad, Samira Tavanaiee Yosefian, Morteza Naserbakht, and Mehdi Hosseinzadeh. "Proposing Two Hybrid Data Mining Models for Discovering Students' Mental Health Problems." Acta Informatica Pragensia 10, no. 1 (June 30, 2021): 85–107. http://dx.doi.org/10.18267/j.aip.148.
Повний текст джерелаAzad, Chandrashekhar. "Data Mining based Hybrid Intrusion Detection System." Indian Journal of Science and Technology 7, no. 6 (June 20, 2014): 781–89. http://dx.doi.org/10.17485/ijst/2014/v7i6.19.
Повний текст джерелаSharma, Monica, and Rajdeep Kaur. "Data Mining in Healthcare using Hybrid Approach." International Journal of Computer Applications 128, no. 4 (October 15, 2015): 49–53. http://dx.doi.org/10.5120/ijca2015906539.
Повний текст джерелаAbidi, Balkis, Sadok Ben Yahia, and Charith Perera. "Hybrid microaggregation for privacy preserving data mining." Journal of Ambient Intelligence and Humanized Computing 11, no. 1 (November 26, 2018): 23–38. http://dx.doi.org/10.1007/s12652-018-1122-7.
Повний текст джерелаLee, Zne-Jung, Chou-Yuan Lee, So-Tsung Chou, Wei-Ping Ma, Fulan Ye, and Zhen Chen. "A hybrid system for imbalanced data mining." Microsystem Technologies 26, no. 9 (August 8, 2019): 3043–47. http://dx.doi.org/10.1007/s00542-019-04566-1.
Повний текст джерелаPanda, Mrutyunjaya, and Ajith Abraham. "Hybrid evolutionary algorithms for classification data mining." Neural Computing and Applications 26, no. 3 (August 10, 2014): 507–23. http://dx.doi.org/10.1007/s00521-014-1673-2.
Повний текст джерелаHarrag, Fouzi, and Ali Alshehri. "Applying Data Mining in Surveillance." International Journal of Distributed Systems and Technologies 14, no. 1 (February 10, 2023): 1–24. http://dx.doi.org/10.4018/ijdst.317930.
Повний текст джерелаДисертації з теми "Hybrid data mining"
Daglar, Toprak Seda. "A New Hybrid Multi-relational Data Mining Technique." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606150/index.pdf.
Повний текст джерелаSeetan, Raed. "A Data Mining Approach to Radiation Hybrid Mapping." Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27315.
Повний текст джерелаZall, Davood. "Visual Data Mining : An Approach to Hybrid 3D Visualization." Thesis, Högskolan i Borås, Institutionen Handels- och IT-högskolan, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-16601.
Повний текст джерелаProgram: Magisterutbildning i informatik
Yang, Pengyi. "Ensemble methods and hybrid algorithms for computational and systems biology." Thesis, The University of Sydney, 2012. https://hdl.handle.net/2123/28979.
Повний текст джерелаTheobald, Claire. "Bayesian Deep Learning for Mining and Analyzing Astronomical Data." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0081.
Повний текст джерелаIn this thesis, we address the issue of trust in deep learning predictive systems in two complementary research directions. The first line of research focuses on the ability of AI to estimate its level of uncertainty in its decision-making as accurately as possible. The second line, on the other hand, focuses on the explainability of these systems, that is, their ability to convince human users of the soundness of their predictions.The problem of estimating the uncertainties is addressed from the perspective of Bayesian Deep Learning. Bayesian Neural Networks assume a probability distribution over their parameters, which allows them to estimate different types of uncertainties. First, aleatoric uncertainty which is related to the data, but also epistemic uncertainty which quantifies the lack of knowledge the model has on the data distribution. More specifically, this thesis proposes a Bayesian neural network can estimate these uncertainties in the context of a multivariate regression task. This model is applied to the regression of complex ellipticities on galaxy images as part of the ANR project "AstroDeep''. These images can be corrupted by different sources of perturbation and noise which can be reliably estimated by the different uncertainties. The exploitation of these uncertainties is then extended to galaxy mapping and then to "coaching'' the Bayesian neural network. This last technique consists of generating increasingly complex data during the model's training process to improve its performance.On the other hand, the problem of explainability is approached from the perspective of counterfactual explanations. These explanations consist of identifying what changes to the input parameters would have led to a different prediction. Our contribution in this field is based on the generation of counterfactual explanations relying on a variational autoencoder (VAE) and an ensemble of predictors trained on the latent space generated by the VAE. This method is particularly adapted to high-dimensional data, such as images. In this case, they are referred as counterfactual visual explanations. By exploiting both the latent space and the ensemble of classifiers, we can efficiently produce visual counterfactual explanations that reach a higher degree of realism than several state-of-the-art methods
Cheng, Xueqi. "Exploring Hybrid Dynamic and Static Techniques for Software Verification." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/26216.
Повний текст джерелаPh. D.
Viademonte, da Rosa Sérgio I. (Sérgio Ivan) 1964. "A hybrid model for intelligent decision support : combining data mining and artificial neural networks." Monash University, School of Information Management and Systems, 2004. http://arrow.monash.edu.au/hdl/1959.1/5159.
Повний текст джерелаpande, anurag. "ESTIMATION OF HYBRID MODELS FOR REAL-TIME CRASH RISK ASSESSMENT ON FREEWAYS." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3016.
Повний текст джерелаPh.D.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Civil Engineering
Sainani, Varsha. "Hybrid Layered Intrusion Detection System." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/44.
Повний текст джерелаZhang, Jiapu. "Derivative-free hybrid methods in global optimization and their applications." Thesis, University of Ballarat, 2005. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/34054.
Повний текст джерелаDoctor of Philosophy
Книги з теми "Hybrid data mining"
Evgenii, Vityaev, ed. Data mining in finance: Advances in relational and hybrid methods. Boston: Kluwer Academic, 2000.
Знайти повний текст джерелаBergmeir, Philipp. Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-20367-2.
Повний текст джерелаDaniel, Howard, Ślęzak Dominik, Hong You Sik, and SpringerLink (Online service), eds. Convergence and Hybrid Information Technology: 6th International Conference, ICHIT 2012, Daejeon, Korea, August 23-25, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаSifeng, Liu, and Lin Yi 1959-, eds. Hybrid rough sets and applications in uncertain decision-making. Boca Raton: Auerbach Publications, 2010.
Знайти повний текст джерелаLee, Geuk. Convergence and Hybrid Information Technology: 6th International Conference, ICHIT 2012, Daejeon, Korea, August 23-25, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаDaniel, Howard, Kim Haeng-kon, Kim Tai-hoon, Ko Il-seok, Lee Geuk, Ślęzak Dominik, Sloot Peter 1956-, and SpringerLink (Online service), eds. Advances in Hybrid Information Technology: First International Conference, ICHIT 2006, Jeju Island, Korea, November 9-11, 2006, Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007.
Знайти повний текст джерелаEmilio, Corchado, Abraham Ajith 1968-, and Pedrycz Witold 1953-, eds. Hybrid artificial intelligence systems: Third international workshop, HAIS 2008, Burgos, Spain, September 24-26, 2008 : proceedings. Berlin: Springer, 2008.
Знайти повний текст джерелаDaniel, Howard, Ślęzak Dominik, and SpringerLink (Online service), eds. Convergence and Hybrid Information Technology: 5th International Conference, ICHIT 2011, Daejeon, Korea, September 22-24, 2011. Proceedings. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Знайти повний текст джерелаLee, Geuk. Convergence and Hybrid Information Technology: 5th International Conference, ICHIT 2011, Daejeon, Korea, September 22-24, 2011. Proceedings. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Знайти повний текст джерелаDavid, Hutchison. Hybrid Artificial Intelligence Systems: 4th International Conference, HAIS 2009, Salamanca, Spain, June 10-12, 2009. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Знайти повний текст джерелаЧастини книг з теми "Hybrid data mining"
Dani, Virendra, Priyanka Kokate, Surbhi Kushwah, and Swapnil Waghela. "Privacy Preserving Data Mining Technique to Secure Distributed Client Data." In Hybrid Intelligent Systems, 565–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96305-7_52.
Повний текст джерелаDu, Mingjing, and Shifei Ding. "L-DP: A Hybrid Density Peaks Clustering Method." In Data Mining and Big Data, 74–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61845-6_8.
Повний текст джерелаSonawani, Shilpa, and Amrita Mishra. "DHPTID-HYBRID Algorithm: A Hybrid Algorithm for Association Rule Mining." In Advanced Data Mining and Applications, 149–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17316-5_14.
Повний текст джерелаMucherino, A., and L. Liberti. "A VNS-Based Heuristic for Feature Selection in Data Mining." In Hybrid Metaheuristics, 353–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30671-6_13.
Повний текст джерелаSmith-Miles, Kate, Brendan Wreford, Leo Lopes, and Nur Insani. "Predicting Metaheuristic Performance on Graph Coloring Problems Using Data Mining." In Hybrid Metaheuristics, 417–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30671-6_16.
Повний текст джерелаLi, Kan, Wensi Mu, Yong Luan, and Shaohua An. "A Hybrid-Sorting Semantic Matching Method." In Advanced Data Mining and Applications, 404–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-53917-6_36.
Повний текст джерелаShafiq, Sobia, Wasi Haider Butt, and Usman Qamar. "Attack Type Prediction Using Hybrid Classifier." In Advanced Data Mining and Applications, 488–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14717-8_38.
Повний текст джерелаCecotti, Hubert, and Abdel Belaïd. "Hybrid OCR Combination for Ancient Documents." In Pattern Recognition and Data Mining, 646–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11551188_71.
Повний текст джерелаLee, Jae Sik, and Jin Chun Lee. "Customer Churn Prediction by Hybrid Model." In Advanced Data Mining and Applications, 959–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11811305_104.
Повний текст джерелаRakotomalala, Ricco, Faouzi Mhamdi, and Mourad Elloumi. "Hybrid Feature Ranking for Proteins Classification." In Advanced Data Mining and Applications, 610–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527503_72.
Повний текст джерелаТези доповідей конференцій з теми "Hybrid data mining"
Grzymala-Busse, J. W., Z. S. Hippe, T. Mroczek, E. Roj, and B. Skowronski. "Data mining experiments on hop processing data." In Fifth International Conference on Hybrid Intelligent Systems (HIS'05). IEEE, 2005. http://dx.doi.org/10.1109/ichis.2005.32.
Повний текст джерелаTiwari, Anil Kumar, G. Ramakrishna, Lokesh Kumar Sharma, and Sunil Kumar Kashyap. "Neural Network and Genetic Algorithm based Hybrid Data Mining Algorithm (Hybrid Data Mining Algorithm)." In 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, 2019. http://dx.doi.org/10.1109/icccis48478.2019.8974485.
Повний текст джерелаChung, Sheng-Hao, Wei-Han Chang, and Kawuu W. Lin. "A data mining algorithm for mining region-aware cyclic patterns." In 2011 11th International Conference on Hybrid Intelligent Systems (HIS 2011). IEEE, 2011. http://dx.doi.org/10.1109/his.2011.6122195.
Повний текст джерелаHambaba, M. L. "Intelligent hybrid system for data mining." In IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr). IEEE, 1996. http://dx.doi.org/10.1109/cifer.1996.501832.
Повний текст джерелаSuraj, Z., and Delimata. "Data Mining Exploration System for Feature Selection Tasks." In 2006 International Conference on Hybrid Information Technology. IEEE, 2006. http://dx.doi.org/10.1109/ichit.2006.253500.
Повний текст джерелаHadzic, F., H. Tan, T. S. Dillon, and E. Chang. "Implications of frequent subtree mining using hybrid support definition." In DATA MINING & INFORMATION ENGINEERING 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/data070021.
Повний текст джерелаXydas, S., A. S. Hassan, C. E. Marmaras, N. Jenkins, and L. M. Cipcigan. "Electric Vehicle Load Forecasting using Data Mining Methods." In Hybrid and Electric Vehicles Conference 2013 (HEVC 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.1914.
Повний текст джерелаChen, Chunying, Xiongwei Zhou, and Jianzhong Zhang. "Web Data Mining System Based on Web Services." In 2009 Ninth International Conference on Hybrid Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/his.2009.258.
Повний текст джерелаPutri, Awalia W., and Laksmiwati Hira. "Hybrid transformation in privacy-preserving data mining." In 2016 International Conference on Data and Software Engineering (ICoDSE). IEEE, 2016. http://dx.doi.org/10.1109/icodse.2016.7936114.
Повний текст джерелаBellary, Jyothi, Bhargavi Peyakunta, and Sekhar Konetigari. "Hybrid Machine Learning Approach in Data Mining." In 2010 Second International Conference on Machine Learning and Computing. IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.57.
Повний текст джерела