Добірка наукової літератури з теми "HTC computation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "HTC computation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "HTC computation"
Shen, Fan, Siyuan Rong, Naigang Cui, and Xianren Kong. "A tensor-based modelling and simulation method for multibody system." Engineering Computations 34, no. 4 (June 12, 2017): 1107–25. http://dx.doi.org/10.1108/ec-11-2015-0375.
Повний текст джерелаChabicovsky, Martin, Petr Kotrbacek, Hana Bellerova, Jan Kominek, and Miroslav Raudensky. "Spray Cooling Heat Transfer above Leidenfrost Temperature." Metals 10, no. 9 (September 21, 2020): 1270. http://dx.doi.org/10.3390/met10091270.
Повний текст джерелаEl-Sayed, Hesham, Sharmi Sankar, Heng Yu, and Gokulnath Thandavarayan. "Benchmarking of Recommendation Trust Computation for Trust/Trustworthiness Estimation in HDNs." International Journal of Computers Communications & Control 12, no. 5 (September 10, 2017): 612. http://dx.doi.org/10.15837/ijccc.2017.5.2895.
Повний текст джерелаTran, Duc Q., Vaughn Barry, Ana G. Antun, Maria Ribeiro, Sidney F. Stein, and Christine L. Kempton. "Numeracy in Patients with Hemophilia." Blood 126, no. 23 (December 3, 2015): 40. http://dx.doi.org/10.1182/blood.v126.23.40.40.
Повний текст джерелаCui, Zhe, Shivalik Sen, Sriram Karthik Badam, and Niklas Elmqvist. "VisHive: Supporting web-based visualization through ad hoc computational clusters of mobile devices." Information Visualization 18, no. 2 (January 23, 2018): 195–210. http://dx.doi.org/10.1177/1473871617752910.
Повний текст джерелаPuzyrkov, Dmitry, Sergey Polyakov, Viktoriia Podryga, and Sergey Markizov. "Concept of a Cloud Service for Data Preparation and Computational Control on Custom HPC Systems in Application to Molecular Dynamics." EPJ Web of Conferences 173 (2018): 05014. http://dx.doi.org/10.1051/epjconf/201817305014.
Повний текст джерелаIrphan K, Ashiq, and Srisusindhran K. Srisusindhran K. "Reputation based Route Computation for Wireless Ad-Hoc Network Using AODV." International Journal of Scientific Research 3, no. 4 (June 1, 2012): 200–202. http://dx.doi.org/10.15373/22778179/apr2014/68.
Повний текст джерелаSun, Xiaoqiang, F. Richard Yu, Peng Zhang, Weixin Xie, and Xiang Peng. "A Survey on Secure Computation Based on Homomorphic Encryption in Vehicular Ad Hoc Networks." Sensors 20, no. 15 (July 30, 2020): 4253. http://dx.doi.org/10.3390/s20154253.
Повний текст джерелаRubio-Montero, Antonio Juan, Angelines Alberto-Morillas, Rosa De Lima Rosa De Lima, Pablo Colino-Sanguino, Jorge Blanco-Yagüe, Manuel Giménez, Fernando Blanco-Marcilla, Esther Montes-Prado, Alicia Acero, and Rafael Mayo-García. "Evolution of the maintainability of HPC facilities at CIEMAT headquarters." Revista UIS Ingenierías 19, no. 2 (May 3, 2020): 85–88. http://dx.doi.org/10.18273/revuin.v19n2-2020009.
Повний текст джерелаUbene, Mitchell, Mohammad Heidari, and Animesh Dutta. "Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review." Energies 15, no. 6 (March 17, 2022): 2209. http://dx.doi.org/10.3390/en15062209.
Повний текст джерелаДисертації з теми "HTC computation"
Farhat, Ahmad. "Trust computation in ad-hoc networks." FIU Digital Commons, 2005. http://digitalcommons.fiu.edu/etd/3251.
Повний текст джерелаMcKenzie, Simon Clayton. "Efficient computation of integrals in modern correlated methods." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23993.
Повний текст джерелаSen, Sevil. "Evolutionary computation techniques for intrusion detection in mobile ad hoc networks." Thesis, University of York, 2010. http://etheses.whiterose.ac.uk/998/.
Повний текст джерелаNatale, Irene. "A study on Friction Boundary Conditions with Unicorn/FEniCS-HPC." Thesis, KTH, Numerisk analys, NA, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241920.
Повний текст джерелаMålet med denna avhandling är att presentera och validera ett rand-villkor för CFD problem som inkluderar en friktionsparameter. I den första delen av avhandlingen presenterar vi det inkompressibla Navier-Stokes system av ekvationer och dess randvillkor för friktion. Sedan använder vi oss av Finita Elementmetoden som används för att diskretisera problemet som är presenterat, med en särskild betoning på a posteriori feluppskattningen, den adaptiva algoritmen och den numeriska trippingen som fanns med i flödet. Eftersom denna avhandling helt lutar sig mot FEniCS-HPC mjukvara, förklaras dess ramverk, tillsammans med dess kraftfulla parallelliseringsstrategi. Därefter pre-senterar vi den svaga formuleringen av Navier-Stokes system av ekvationer kopplad till friktionsgränserna, tillsammans med en initiell teoretisk härledning av friktionskoefficientens optimala värden. Vidare, i det sista kapitlet, presenteras de preliminära resultaten av en valide-ringsstudie av lyftkoefficienten för modellen som använts vid benchmarking av NACA0012:s bärytan, som är kommenterad i detalj. Även om det fortfarande finns aspekter som bör belysas tror vi att vårt preliminära resultat är väldigt lovande och att det öppnar en ny väg för simuleringsutveckling i aerodynamikrelaterade modeller.
Krishnamurthy, Siddhartha. "Peak Sidelobe Level Distribution Computation for Ad Hoc Arrays using Extreme Value Theory." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11300.
Повний текст джерелаEngineering and Applied Sciences
Lehmann, Rüdiger. "A universal and robust computation procedure for geometric observations." Hochschule für Technik und Wirtschaft, 2017. https://htw-dresden.qucosa.de/id/qucosa%3A31843.
Повний текст джерелаDer Beitrag beschreibt ein automatisches und robustes Verfahren, welches auf alle klassischen geodätischen Berechnungsprobleme angewendet werden kann. Ausgehend von vorgelegten Eingabegrößen (z.B. Koordinaten bekannter Punkte, Beobachtungen) werden Berechnungsmöglichkeiten für alle anderen relevanten Größen gefunden. Bei redundanten Eingabegrößen existiert eine Vielzahl von verschiedenen Berechnungsmöglichkeiten aus verschiedenen minimalen Untermengen von Eingabegrößen, die alle automatisch gefunden und deren Ergebnisse berechnet und verglichen werden. Wenn die Berechnung nicht eindeutig ist, aber nur eine endliche Anzahl von Lösungen existiert, dann werden alle Lösungen gefunden und berechnet. Durch den Vergleich verschiedener Berechnungsergebnisse können Ausreißer in den Eingabegrößen aufgedeckt werden und ein robustes Endergebnis wird erhalten. Das Verfahren arbeitet nicht stochastisch, so dass kein stochastisches Modell der Beobachtungen erforderlich ist. Die Beschreibung des Algorithmus wird an einem praktischen Fall illustriert. Er ist auf einem Webserver installiert und über das Internet frei verfügbar.
Soundarapandian, Manikandan. "Relational Computing Using HPC Resources: Services and Optimizations." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/56586.
Повний текст джерелаMaster of Science
Bramsäter, Jenny, and Kajsa Lundgren. "Study on the Dynamic Control of Dam Operating Water Levels of Yayangshan Dam in Flood Season." Thesis, KTH, Industriell ekologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174877.
Повний текст джерелаJamasebi, Reza. "COMPUTATIONAL PHENOTYPE DERIVED FROM PHYSIOLOGICAL TIME SERIES: APPLICATION TO SLEEP DATA ANALYSIS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1220467153.
Повний текст джерелаSan, Juan Sebastián Pablo. "HPC algorithms for nonnegative decompositions." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/113069.
Повний текст джерелаMolts problemes procedents de aplicacions del mon real poden ser modelats com problemes matemàtics en magnituts no negatives, i per tant, les solucions de estos problemes matemàtics només tenen sentit si son no negatives. Estes magnituts no negatives poden ser, per eixemple, la concentració dels elements en un compost químic, les freqüències en una senyal sonora, les intensitats dels pixels de una image, etc. Alguns d'estos problemes poden ser modelats utilisant un sistema d'equacions llineals sobredeterminat. Quant la solució de este problema deu ser restringida a valors no negatius, apareix un problema nomenat problema de mínims quadrats no negatius (NNLS per les seues sigles en anglés). La solució de este problema te múltiples aplicacions en ciències i ingenieria. Un atra descomposició no negativa important es la Factorisació de Matrius No negatives(NMF per les seues sigles en anglés). La NMF es una ferramenta molt popular utilisada en diversos camps, com per eixemple: classificacio de documents, aprenentage automàtic, anàlisis de image o separació de senyals sonores. Esta factorisació intenta aproximar una matriu no negativa en el producte de dos matrius no negatives de menor tamany, creant habitualment representacions a parts de les dades originals. Els algoritmes dissenyats per a calcular la solució de estos dos problemes no negatius tenen un elevat cost computacional, i degut a este elevat cost, estes descomposicions poden beneficiar-se molt del us de tècniques de Computació de Altes Prestacions (HPC per les seues sigles en anglés). Estos sistemes de computació de altes prestacions inclouen des dels moderns computadors multinucli a lo últim en acceleradors de càlcul (Unitats de Processament Gràfic (GPU), Intel Many Core (MIC), etc.). Per a obtindre el màxim rendiment de estos sistemes, els desenrolladors deuen utilisar tecnologies software tals com la programació paralela, la vectorisació o el us de llibreries de computació de altes prestacions. A pesar de que existixen diversos algoritmes per a calcular la NMF i resoldre el problema NNLS, no tots ells disponen de una implementació paralela i eficient. Ademés, es molt interessant reunir diversos algoritmes en propietats diferents en una sola llibreria computacional. Esta tesis presenta una llibreria computacional de altes prestacions que conté implementacions paraleles i eficients dels millors algoritmes existents per a calcular la NMF. Ademés, la tesis també inclou una comparació experimental entre les diferents implementacions presentades. Esta llibreria centrada en el càlcul de la NMF soporta diverses arquitectures tals com CPUs multinucli, GPUs i Intel MIC. El objectiu de esta llibreria es oferir una varietat de algoritmes eficients per a ajudar a científics, ingeniers o qualsevol tipo de professionals que necessiten utilisar la NMF. Un atre problema abordat en esta tesis es la actualisació de les factorisacions no negatives. El problema de la actualisació se ha estudiat tant per a la solució del problema NNLS com per a el càlcul de la NMF. Existixen problemes no negatius la solució dels quals es pròxima a atres problemes no negatius que ya han sigut resolts, el problema de la actualisació consistix en aprofitar la solució de un problema A que ya ha sigut resolt, per a obtindre la solució de un problema B pròxim al problema A. Utilisant esta aproximació, el problema B pot ser resolt molt mes ràpidament que si tinguera que ser resolt des de 0 sense aprofitar la solució coneguda del problema A. En esta tesis es presenta una metodologia algorítmica per a resoldre els dos problemes de actualisació: la actualisació de la solució del problema NNLS i la actualisació de la NMF. Ademés es presenten evaluacions empíriques de les solucions presentades per als dos problemes. Els resultats de estes evaluacions mostren que els algoritmes proposts son més ràpits que resoldre el problema des de 0 en tots els
Many real world-problems can be modelled as mathematical problems with nonnegative magnitudes, and, therefore, the solutions of these problems are meaningful only if their values are nonnegative. Examples of these nonnegative magnitudes are the concentration of components in a chemical compound, frequencies in an audio signal, pixel intensities on an image, etc. Some of these problems can be modelled to an overdetermined system of linear equations. When the solution of this system of equations should be constrained to nonnegative values, a new problem arises. This problem is called the Nonnegative Least Squares (NNLS) problem, and its solution has multiple applications in science and engineering, especially for solving optimization problems with nonnegative restrictions. Another important nonnegativity constrained decomposition is the Nonnegative Matrix Factorization (NMF). The NMF is a very popular tool in many fields such as document clustering, data mining, machine learning, image analysis, chemical analysis, and audio source separation. This factorization tries to approximate a nonnegative data matrix with the product of two smaller nonnegative matrices, usually creating parts based representations of the original data. The algorithms that are designed to compute the solution of these two nonnegative problems have a high computational cost. Due to this high cost, these decompositions can benefit from the extra performance obtained using High Performance Computing (HPC) techniques. Nowadays, there are very powerful computational systems that offer high performance and can be used to solve extremely complex problems in science and engineering. From modern multicore CPUs to the newest computational accelerators (Graphics Processing Units(GPU), Intel Many Integrated Core(MIC), etc.), the performance of these systems keeps increasing continuously. To make the most of the hardware capabilities of these HPC systems, developers should use software technologies such as parallel programming, vectorization, or high performance computing libraries. While there are several algorithms for computing the NMF and for solving the NNLS problem, not all of them have an efficient parallel implementation available. Furthermore, it is very interesting to group several algorithms with different properties into a single computational library. This thesis presents a high-performance computational library with efficient parallel implementations of the best algorithms to compute the NMF in the current state of the art. In addition, an experimental comparison between the different implementations is presented. This library is focused on the computation of the NMF supporting multiple architectures like multicore CPUs, GPUs and Intel MIC. The goal of the library is to offer a full suit of algorithms to help researchers, engineers or professionals that need to use the NMF. Another problem that is dealt with in this thesis is the updating of nonnegative decompositions. The updating problem has been studied for both the solution of the NNLS problem and the NMF. Sometimes there are nonnegative problems that are close to other nonnegative problems that have already been solved. The updating problem tries to take advantage of the solution of a problem A, that has already been solved in order to obtain a solution of a new problem B, which is closely related to problem A. With this approach, problem B can be solved faster than solving it from scratch and not taking advantage of the already known solution of problem A. In this thesis, an algorithmic scheme is proposed for both the updating of the solution of NNLS problems and the updating of the NMF. Empirical evaluations for both updating problems are also presented. The results show that the proposed algorithms are faster than solving the problems from scratch in all of the tested cases.
San Juan Sebastián, P. (2018). HPC algorithms for nonnegative decompositions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113069
TESIS
Книги з теми "HTC computation"
Chuanjiang, Miao, ed. Di 2 jie HNC yu yu yan xue yan tao hui lun wen ji. Beijing: Hai yang chu ban she, 2004.
Знайти повний текст джерелаComputation, Ad Hoc Committee on Research. Report of the Ad Hoc Committee on Research Computation: A report to the Natural Sciences and Engineering Research Council. Ottawa, Ont: Natural Sciences and Engineering Research Council of Canada, 1990.
Знайти повний текст джерелаISPA 2006 (2006 Sorrento, Italy). Frontiers of high performance computing and networking: ISPA 2006 workshops : ISPA 2006 international workshops, FHPCN, XHPC, S-GRACE, GridGIS, HPC-GTP, PDCE, ParDMCom, WOMP, ISDF, and UPWN, Sorrento, Italy, December 4-7, 2006 : proceedings. Berlin: Springer, 2006.
Знайти повний текст джерелаSotiris, Nikoletseas, Orponen Pekka, and SpringerLink (Online service), eds. Algorithms for Sensor Systems: 7th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, ALGOSENSORS 2011, Saarbrücken, Germany, September 8-9, 2011, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаBar-Noy, Amotz. Algorithms for Sensor Systems: 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, ALGOSENSORS 2012, Ljubljana, Slovenia, September 13-14, 2012. Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Знайти повний текст джерелаColloquium on Structural Information and Communication Complexity (17th 2010 İzmir, Turkey). Structural information and communication complexity: 17th international colloquium, SIROCCO 2010, Şirince, Turkey, June 7-11, 2010 : proceedings. Berlin: Springer, 2010.
Знайти повний текст джерелаUsing HPC for Computational Fluid Dynamics. Elsevier, 2015. http://dx.doi.org/10.1016/c2014-0-00508-4.
Повний текст джерелаVázquez, Mariano, Peter V. Coveney, Hernan Edgardo Grecco, Alfons Hoekstra, and Bastien Chopard, eds. Advanced HPC-based Computational Modeling in Biomechanics and Systems Biology. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-817-2.
Повний текст джерелаEvolutionary Algorithms for Mobile Ad Hoc Networks. Wiley, 2014.
Знайти повний текст джерелаBouvry, Pascal, Bernabé Dorronsoro, Patricia Ruiz, Grégoire Danoy, and Yoann Pigné. Evolutionary Algorithms for Mobile Ad Hoc Networks. Wiley & Sons, Limited, John, 2014.
Знайти повний текст джерелаЧастини книг з теми "HTC computation"
Manuali, Carlo, Alessandro Costantini, Antonio Laganà, Marco Cecchi, Antonia Ghiselli, Michele Carpené, and Elda Rossi. "Efficient Workload Distribution Bridging HTC and HPC in Scientific Computing." In Computational Science and Its Applications – ICCSA 2012, 345–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31125-3_27.
Повний текст джерелаPeralta, René. "Dark Encounter Computations." In Secure Mobile Ad-hoc Networks and Sensors, 182–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11801412_17.
Повний текст джерелаFlocchini, Paola. "Computations by Luminous Robots." In Ad-hoc, Mobile, and Wireless Networks, 238–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19662-6_17.
Повний текст джерелаNyhan, Julianne, and Andrew Flinn. "hic Rhodus, hic salta: Tito Orlandi and Julianne Nyhan." In Computation and the Humanities, 75–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20170-2_5.
Повний текст джерелаAupy, Guillaume, Anne Benoit, Aurlien Cavelan, Massimiliano Fasi, Yves Robert, Hongyang Sun, and Bora Uçar. "Coping with Silent Errors in HPC Applications." In Emergent Computation, 269–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46376-6_11.
Повний текст джерелаYao, Frances F. "Algorithmic Problems in Wireless Ad Hoc Networks." In Algorithms and Computation, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11602613_1.
Повний текст джерелаBari, Ataul, Fangyun Luo, Will Froese, and Arunita Jaekel. "Optimal Relay Node Placement and Trajectory Computation in Sensor Networks with Mobile Data Collector." In Ad Hoc Networks, 400–415. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17994-5_27.
Повний текст джерелаBell, Ron. "The AWE HPC Benchmark." In Computational Science – ICCS 2006, 7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11758501_5.
Повний текст джерелаde la Cruz, Raúl, and Mauricio Araya-Polo. "Modeling Stencil Computations on Modern HPC Architectures." In Lecture Notes in Computer Science, 149–71. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17248-4_8.
Повний текст джерелаBordim, J. L., J. Cui, T. Hayashi, K. Nakano, and S. Olariu. "Energy-Efficient Initialization Protocols for Ad-hoc Radio Networks." In Algorithms and Computation, 215–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-46632-0_23.
Повний текст джерелаТези доповідей конференцій з теми "HTC computation"
Chaquet, Jose M., Carlos Perez, and Jaime Quintanal. "Accurate and Efficient Computation of Heat Transfer Coefficient From CFD Simulations." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-81788.
Повний текст джерелаAl-Zihad, Md, Saad Ahmed Akash, Tamal Adhikary, and Md Abdur Razzaque. "Bandwidth allocation and computation offloading for service specific IoT edge devices." In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC). IEEE, 2017. http://dx.doi.org/10.1109/r10-htc.2017.8289012.
Повний текст джерелаCotul, Ugur, and Shripad T. Revankar. "Analysis of Passive Tube Condensation With Non-Condensable Gas Using Heat and Mass Analogy Model." In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65829.
Повний текст джерелаTallman, James A., and Rahul A. Bidkar. "Heat Transfer Coefficient Characterization for Large Aspect-Ratio Thin Films in Film-Riding Seals." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76168.
Повний текст джерелаJafarabadi, Mazdak, Hamidreza Chamani, Amir Malakizadi, and Seyed Ali Jazayeri. "A Fast Coupled CFD-Thermal Analysis of a Heavy Duty Diesel Engine Water Cooling System." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68163.
Повний текст джерелаMaffulli, Roberto, and Li He. "Wall Temperature Effects on Heat Transfer Coefficient." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94291.
Повний текст джерелаThorbole, Chandrashekhar K., and Hamid M. Lankarani. "Performance Evaluation of HIC Component Testing Device With a Flexible Neck Using Computational Model." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68712.
Повний текст джерелаWang, Zhiduo, Zhaofang Liu, and Zhenping Feng. "Influence of Mainstream Turbulence Intensity on Heat Transfer Characteristics of a HP Turbine Stage With Inlet Hot Streak." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42593.
Повний текст джерелаLuo, Jiang, Eli H. Razinsky, and Hee-Koo Moon. "3D RANS Prediction of Gas-Side Heat Transfer Coefficients on Turbine Blade and Endwall." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46723.
Повний текст джерелаPesek, Ludek, Pavel Snabl, and Vitezslav Bula. "HPC FEM Calculations for Damping Estimation of Bladed Disk With Dry-Friction Contacts." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22070.
Повний текст джерелаЗвіти організацій з теми "HTC computation"
Peisert, Sean. Fingerprinting Communication and Computation on HPC Machines. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/983323.
Повний текст джерелаNugent, Peter. HPC-enabled computation of demand models at scale. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1617377.
Повний текст джерелаHaehnel, Robert, Scott Christensen, J. Whitlow, Andrew Bauer, Ari Meyer, Gautham Rangarajan, Yonghu Wenren, et al. A computational prototyping environment interface for DoD CREATE™-AV Helios simulations. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40582.
Повний текст джерелаSookoor, Tamim I., David L. Bruno, and Dale R. Shires. Allocating Tactical High-Performance Computer (HPC) Resources to Offloaded Computation in Battlefield Scenarios. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada593253.
Повний текст джерелаRuvinsky, Alicia, Timothy Garton, Daniel Chausse, Rajeev Agrawal, Harland Yu, and Ernest Miller. Accelerating the tactical decision process with High-Performance Computing (HPC) on the edge : motivation, framework, and use cases. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42169.
Повний текст джерелаBrust, Frederick W., Edward F. Punch, Elizabeth Kurth Twombly, Suresh Kalyanam, James Kennedy, Garty R. Hattery, Robert H. Dodds, et al. Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1349722.
Повний текст джерелаFridman, Eyal, Jianming Yu, and Rivka Elbaum. Combining diversity within Sorghum bicolor for genomic and fine mapping of intra-allelic interactions underlying heterosis. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597925.bard.
Повний текст джерелаBrust, Frederick W., Edward F. Punch, Elizabeth A. Kurth, and James C. Kennedy. SBIR PHASE I FINAL REPORT: Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1108435.
Повний текст джерелаOr, Etti, David Galbraith, and Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7587232.bard.
Повний текст джерела